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Abstract. All-trans retinoic acid can specifically in- 
crease receptor mediated intoxication of ricin A chain 
immunotoxins more than 10,000 times, whereas fluid 
phase endocytosis of ricin A chain alone or ricin A 
chain immunotoxins was not influenced by retinoic 
acid. The immunotoxin activation by retinoic acid 
does not require RNA or protein synthesis and is not 
a consequence of increased receptor binding of the im- 
munotoxin. Vitamin D3 and thyroid hormone T3, that 
activate retinoic acid receptor (RAR) cognates, form- 
ing heterodimers with mtinoid X receptor (RXR), do 
not affect the potency of immunotoxins. Among other 
retinoids tested, 13-cis retinoic acid, which binds nei- 
ther RAR nor RXR, also increases the potency of the 
ricin A chain immunotoxin. Therefore, retinoic acid 
receptor activation does not appear to be necessary for 
immunotoxin activity. Retinoic acid potentiation of im- 
mtmotoxins is prevented by brefeldin A (BFA) indicat- 
ing that in the presence of retinoic acid, the im- 
munotoxin is efficiently muted through the Golgi 
apparatus en route to the cytoplasm. Directly examin- 
ing cells with a monoclonal antibody (Mab) against 
mannosidase II, a Golgi apparatus marker enzyme, 
demonstrates that the Golgi apparatus changes upon 

treatment with retinoic acid from a perinuclear net- 
work to a diffuse aggregate. Within 60 rain after 
removal of retinoic acid the cell reassembles the 
perinuclear Golgi network indistinguishable with that 
of normal control cells. C6-NBD-ceramide, a vital 
stain for the Golgi apparatus, shows that retinoic acid 
prevents the fluorescent staining of the Golgi apparatus 
and eliminates fluorescence of C6-NBD-ceramide pre- 
stained Golgi apparatus. Electron microscopy of 
retinoic acid-treated cells demonstrates the specific 
absence of any normal looking Golgi apparatus and a 
perinuclear vacuolar structure very similar to that seen 
in monensin-treated cells. This vacuolization disappears 
after removal of the retinoic acid and a perinuclear 
Golgi stacking reappears. These results indicate that 
retinoic acid alters intracellular muting, probably 
through the Golgi apparatus, potentiating immunotoxin 
activity independently of new gene expression. 
Retinoic acid appears to be a new reagent to manipu- 
late the Golgi apparatus and intracellular traffic. As 
retinoic acid and immunotoxins are both in clinical 
trials for cancer therapy, their combined activity in 
vivo would be interesting to examine. 

ETINOIC acid is a morphogen that defines certain cell 
fates during development and has the potential to 
treat cancer by inducing tumor cell differentiation 

(34, 39). Retinoic acid binds the retinoic acid receptor 
(RAR) 1 causing it to form heterodimers with the retinoid X 
receptor (RXR) and induce gene transcription (3, 19, 45). In 
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1. Abbreviations used in this paper: BFA, brefeldin A; C6-NBD-ceramide, 
N- [7-(4-nitrobenzo-2-oxa- 1,3-diazole)]-6-aminohexanoyl-D-erythro-sphin- 
gosine; DT, diphtheria toxin; PE, Pseudomonas exotoxin; RAR, refinoic 
acid receptor; rRA, recombinant ricin A chain; RXR, retinoid X receptor; 
Tfn, transferrin. 

addition to the well accepted role of mtinoids in transcription 
activation, some retinoids may have direct effects on cell sec- 
ond messengers (9). 

Monoclonal antibodies coupled to protein toxins, called 
immunotoxins, are being examined in numerous clinical 
trials for treatment of cancer and autoimmune diseases (36). 
Subsequent to cell surface binding by the monoclonal anti- 
body, the toxic protein subunit crosses the membrane sur- 
rounding the cytosol to reach the intracellular substrate. 
Ricin, for example, enzymatically inactivates ribosomes in- 
hibiting protein synthesis and causing cell death (8, 30, 31). 
How the hydrophilic enzyme crosses into the cytosol is un- 
known although endocytosis and intracellular muting to the 
proper compartment are required (17). The Golgi apparatus 
appears to be one compartment through which ricin must 
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Figure 1. Potentiation of 454A12-rRA, Tfn-rRA, and rRA cytotox- 
icity by all-trans rvtinoic acid in U251, K562, and 9L cells. (A) 
U251 cells growing in 96-well plates were incubated with increas- 
ing concentrations of 454A12-rRA (circles) or rRA (squares) in the 
presence (e ,  m) and in the absence (o, n) of 10 #M retinoic acid 
in leucine-free RPMI1640 medium; (B) K562 cells growing in 96- 
well plates were incubated with increasing concentrations of 
454A12-rRA in the presence (e) or absence (o) of 10 #M retinoic 
acid; (C) 9L cells were incubated with increasing concentrations 
of 454A12-rRA (circles) or Tfn-rRA (squares) in the presence (e ,  
m) or absence (o, t3) of 10 #M retinoic acid. After 3-h incubation, 
~4C-leucine was added for another h. Cells were harvested and 
counted as described in Materials and Methods. 

pass en route to the cytosol. Native ricin efficiently routes 
through the Golgi apparatus (12, 16, 38, 44) to the cytosol 
due to galactose-binding sites on the ricin B chain (17). 
When the ricin B chain is removed and enzymatically active 
A chain is linked to monoclonal antibodies reactive with cell 
surface molecules such as the transferrin receptor, much less 
effi- cient entry into the cytosol ensues (43). Although the 
immunotoxin is rapidly endocytosed via the transferrin 
receptor, it does not traffic such that the enzymaticaUy active 
A chain rapidly reaches the cytosol. In addition to ricin B 
chain, some drugs that cause alterations in the Golgi appara- 
tus such as the ionophore, monensin, and lysosomotropic 
amines cause a large increase in cell sensitivity to the im- 
munotoxins (2). Chloroquine (21), a lysosomotropic agent, 
and the ricin B chain (14), have been tested in man for their 
ability to improve the anti-cancer activity of immunotoxins. 

We find that retinoic acid alters the Golgi apparatus mor- 
phology and causes a tremendous potentiation of immuno- 
toxin toxicity. This activity of retinoic acid is not the result 
of transcription activation but appears to be a direct effect of 
retinoids on the Golgi apparatus and intracellular traffic. 

Materials and Methods 

Materials 
All-trans retinoic acid was purchased from Sigma Chem. Co. (St. Louis, 
MO) and Calbiochem Corp. (La Jolla, CA); brefeldin A (BFA), 13-cis 
retinoic acid, all-trans retinol, 13-cis retinol, all-traus retinal, 9-cis retinal, 
and 13-cis retinal all from Sigma Chem. Co.; N-[7-(4-nitrobenzo-2-oxa-l,3- 
diazole)]-6-aminohexanoyl-D-erythro-sphingosine (Ct-NBD-ceramide) and 
fluorescein labeled goat anti-mouse IgG conjugate from Molecular Probe, 
Inc. (Eugene, OR); 53FC3 Mab against mannosidase II was a generous gift 
from Dr. Lippincott-Schwartz (National Institutes of Health); 1,25- 
dihydroxy vitamin D3 and L-3,3',5-trh'odothyronino(T3) were from Calbio- 
chem Corp.; 454A12-rRA was prepared as described (i1); diphtheria toxin 
and Pseudomonas ex_otoxin were obtained from List Biological Co.; 
transferrin-CRM107 was prepared as described by Johnson et al. (18) and 
transferrin-PE was a generous gift from Dr. Aslak Godal (Hafslund 
Nycomed); 260F9-rRA (i1) and M6-rRA (13) were prepared as described; 
and transferrin-rRA was a generous gift from Dr. Jerry Fulton (Inland 
Laboratories, Inc.). 

Cell Lines 

U251 (human glioma) cells and MCF-7 (human breast cancer) cells, and 
9L (rat glioma) were grown in DMEM containing 10% FCS, 2 mM giuta- 
mine, 1 mM sodium pyruvate, 0.1 mM non-essential amino acids, and 10 
#g/mi gentamycin. K562 (human erythroleukemia) cells were grown in 
RPMI1640 containing 10% FCS, 2 mM glutamine, I mM sodium pyruvate, 
0.1 mM non-essential amino acids, and 10 #g/ml gentamycin; L2C cells, 
a spontaneous transplantable B cell leukemia, were maintained by serial 
passage in inbred strain 2 guinea pigs as reported previously (13). L2C 
cells were harvested from the peripheral blood and purified in Lymphocyte 
Separation Medium (Orgenon Teknika, Durham, NC), washed three times 
with HBSS, and resnspended in leucine-free RPMI1640 for cytotoxicity 
assay. 

Protein Synthesis Assay 

Protein synthesis inhibition by DT, PE, ricin, and immunotoxins was deter- 
mined as described previously (41). Briefly, cells were plated at concentra- 
tions of 2 × 105 cells/ml in 96-well microtiter plates overnight in DMEM 
complete medium. Retinoic acid (15 mM in DMSO) and BFA (10 mg/ml 
in ethanol) stock solutions were diluted into lcucine-free RPMI1640 
medium without FCS to the appropriate concentrations. The same amount 
of DMSO and/or ethanol were added in the control solutions. After remov- 
ing the complete DMEM medium, cells were incubated in the above 
leucine-free RPMI 1640 medium containln~ increasing concentrations of 
protein toxins with or without retinoic acid or other retinoids and/or BFA 
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Figure 2. Potentiation of 
260F9-rRA and M6-rRA cy- 
totoxicity by all-trans retinoic 
acid in MCF-7 and L2C cells. 
MCF-7 cells (A) or L2C cells 
(B) growing in 96-well plates 
were incubated with increas- 
ing concentrations of 260F9- 
rRA with or without 10/~M 
retinoic acid as indicated. Af- 
ter 3 h, the mediumwas  re- 
moved and the cells were 
pulsed with ~4C-leucinc for 
another h. Cells were har- 
vested and counted as de- 
scribed in Materials and 
Methods. 

for 3 h followed by a 1-h pulse with 0.1 ~tCi 14C-leucine. Cells were har- 
vested onto glass fiber filters using a PHD cell harvester, washed with water, 
dried with ethanol, and counted. The results were expressed as the percent- 
age of ~4C-leucine incorporation in mock-treated control cells. 

Vital Staining of the Golgi Apparatus 
C6-NBD-ceramide was used to stain the Golgi apparatus in living cells 
(28). Cells were treated with retinoic acid either before C6-NBD-ceramide 
staining or after staininoo. In the case of C6-NBD-ceramide staining after 
retinoic acid exposure, cells plated on coverslips were incubated in leucine- 
free RPMI1640 without FCS containing 10/~M retinoic acid or media con- 
taining an equivalent amount of DMSO in control cells. After 2 h, the above 
medium was removed and fresh medium containing 5 ~tM C6-NBD- 
ceramide was added and incubated at 2°C for 1 h followed by an additional 
incubation at 37°C for 30 rain. After staining, coverslips with labeled cells 

were mounted for fluorescence micmsco W. In the case of C6-NBD- 
ceramide staining before rctinoic acid exposure, cells wcm first incubated 
with 5 t~M C6-NBD-ceramide at 2°C for 60 rain, the medium was removed 
and washed twice followed by an additional incubation at 37°C for 2 h in 
the presence or absence of 10 #M retinoic acid. Cells thus treated were 
mounted for fluorescence microscopy. 

Immunostaining of the Golgi Apparatus 
for Light Microscopy 
9L cells were cultured on coverslips in RPMII640 medium with or without 
10 #M retinoic acid for 3 h, and then fixed for 10 min in 2% formaldehyde 
in PBS at 25°C, washed in PBS containing 10% FCS. Cells were incubated 
with monoclonai antibody to mannosidase II in PBS containing 10% FCS 
and 0.2 % saponin for I h, washed with PBS + I0 % serum. Cells were then 
incubated with fluorescein-labcled goat anti-mouse IgG in PBS containing 
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Figure 3. The effect of cyclo- 
heximide and actinomycin D 
on all-trans retinoic acid 
potentiated cytotoxicity of 
454AI2-rRA to U251 cells. 
Cells were preincubated for 
30 min with (squares) or with- 
out (circles) 1.2/~g/ml cyclo- 
hcximide (A), or 3 h with 
(squares) or without (circles) 
5.0 ~g/ml actinomycin D (B), 
and then further incubated 
with increasing concentra- 
tions of 454AI2-rRA in the 
presence (e, a) or absence 
(o, D) of 10 #M retinoic acid. 
After 3 h, the medium was re- 
moved and the cells were 
washed with fresh medium 
three times before pulsing 
with 14C-leucine. Protein syn- 
thesis was measured as de- 
scribed in Fig. I. 
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Figure 4. Brefeldin A blocks all-trans retinoic acid potentiated cyto- 
toxicity of 454A12-rRA immunotoxin. U251 ceils were incubated 
with increasing concentrations of 454A12-rRA at 37"C with (e, 
m) or without (o, D) 10 #M retinoic acid in the presence (squares) 
or absence (circles) of 10 ttg/ml brefeldin A. After 3 h, protein syn- 
thesis was assayed as described for Fig. 1. 

10% serum and 0.2% saponin for 1 h, washed three times with PBS/serum, 
and then with PBS alone. The coverslips were mounted in 75 % glycerol. 

Electron Microscopy 
Ceils were grown in 4-well chamber slides overnight in DMEM complete 
medium, and then ceils were incubated in leucine-free RPMI1640 medium 
contalnln~ 10 btM retinoic acid or an equivalent amount of DMSO in control 
culture. After 3 h, cells were washed twice and fixed with 2.5 % glutaralde- 
hyde in 0.1 M Na-cacodylate buffer, pH 7.2 for 60 min at room temperature, 
cells then were further processed for electron microscopy. 

Results 

All-trans Retinoic Acid Potentiates Receptor Mediated 
Cytotoxicity of lmmunotoxins 
454AI2-rRA, an immtmotoxin made by a disulfide linkage 
between a monoclonal antibody against the human transfer- 
rin receptor (454A12) and recombinant ricin A chain (rRA), 
was incubated with the human glioma cell line, U251. After 
3 h, there was no inhibition of protein synthesis up to 10 -9 
M 454A12-rRA. In the presence of 10 #M retinoic acid, cell 
protein synthesis was inhibited 50% at 10 -13 M, a concen- 
tration more than 10,000 times lower than that which in- 
hibited protein synthesis in the absence of retinoic acid (Fig. 
1 A). AT 10 -I~ M immunotoxin, protein synthesis was only 
20% of control after only 3 h. Human erythroleukemia cells, 
K562, were also more than 10,000 times more sensitive to 
454A12-rRA in the presence of retinoic acid than in the ab- 
sence of retinoic acid (Fig. 1 B). However, recombinant ricin 
A chain by itself was not detectably potentiated by retinoic 
acid (Fig. 1 A). 454A12-rRA was not detectably toxic to a 
non-target cell line (9L glioma) even in the presence of 10 
I~M retinoic acid (Fig. 1 C). However, transferrin-rRA, 

which can bind rat 9L cells, was potentiated at least 1,000- 
fold by 10 ttM retinoic acid (Fig. 1 C). 

Two other immunotoxins, 260F9-rRA, against a human 
breast cancer antigen (11) and M6-rRA against a B cell sur- 
face idiotype antigen (13), were examined for potentiation of 
toxicity by retinoic acid. Assayed against their respective tar- 
get cell lines, MCF-7 and L2C, both immunotoxins were 
potentiated at least several orders of magnitude by 10 #M 
retinoic acid (Fig. 2). 

Thus, of three cell surface receptors examined, all deliver 
rRA to the cytosol much more efficiently in the presence of 
retinoic acid than in the absence of retinoic acid. In contrast 
to the dramatic effect on receptor-mediated toxicity of ricin 
immunotoxins by retinoic acid, no effect on fluid phase cyto- 
toxicity of rRA or immunotoxin was seen in the presence of 
retinoic acid. 

Comparison of the Effect of AU-trans Retinoic Acid, 
Other Retinoids, Vitamin De and Triiodothyronine (Tj) 
on Immunotoxin Potency 
All-trans retinoic acid binds the RAR causing it to hetero- 
dimerize with the RXR and activate gene transcription (3, 
19, 29, 45). 9-cis retinoic acid interacts with the RXR and 
also stimulates dirner formation and transcription activation 
(1, 15, 23). All other cis retinoic acids do not bind either 
RAR or RXR. We examined whether or not 13-cis retinoic 
acid, which binds to neither RAR nor RXR (1), would affect 
immunotoxin activity. Our results indicate that 10 #M 13-cis 
retinoic acid potentiates immunotoxins similarly to all-trans 
retinoic acid (data not shown). Among other retinoids 
tested, 10 ~M all-trans retinol shows potentiation similar to 
that of all-trans retinoic acid, whereas 13-cis retinol, all 
trans-retinal, 13-cis retinal, and 9-cis retinal do not seem to 
increase 454A12-rRA immunotoxin potency at 10 t~M con- 
centrations (data not shown). All-trans retinol has been re- 
cently demonstrated to be a ligand of RAR, whereas all-trans 
retinal does not bind to RAR (35). Whether the cis-forms of 
retinol or retinal bind RAR or RXR receptor is not known. 
Thus there is some specificity among different retinoids in 
potentiating the cytotoxicity of immunotoxins, however reti- 
noid receptor binding and the potentiation of the im- 
munotoxin do not correlate. The thyroid hormone (%) 
receptor and the vitamin D3 receptor are homologous with 
RAR and also form heterodimers with RXR to induce tran- 
scription activation (19, 45). Up to 1 t~M thyroid hormone 
(%) or 1 t~M 1,25-dihydroxy, vitamin D3 had no affect on 
the sensitivity of 15251 to 454A12-rRA immunotoxin (data 
not shown). 

All-tmns Retinoic Acid Potentiation of lmmunotoxins 
Is Independent of Gene Expression 
To test whether or not new gene products induced by retinoic 
acid result in immunotoxin sensitization, cells were in- 
cubated with cycloheximide (Fig. 3 A) or actinomycin D 
(Fig. 3 B) before exposure to retinoic acid and 454A12-rRA. 
Fig. 3 shows that neither actinomycin D nor cycloheximide 
prevented the potentiation of 454A12-rRA cytotoxicity by 
retinoic acid. Thus the well established transcription activa- 
tion activity of retinoic acid does not appear to be the mecha- 
nism by which retinoic acid increases cell sensitivity to ira- 
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Figure 5. Effects of all-tram retinoic acid on the cytotoxicity of DT, 
PE, tfn-CRM107, and tfn-PE in U251 cells. U251 cells were in- 
cubated with increasing concentrations of DT, PE, tfn-CRM107, 
and tfn-PE as indicated in the figure with (e) or without (o) 10 #M 
all-trans retinoic acid for 3 h. Protein synthesis was assayed as de- 
scribed for Fig. 1. 

munotoxins. This conclusion is also consistent with the rapid 
time course of the activation by retinoic acid. After only 3 
h, the immunotoxin is 10,000 times more toxic to cells 
whereas many of the effects of retinoic acid on cellular 
differentiation occur days after exposure to retinoic acid. 
Apparently retinoic acid has a direct effect on cells that 
causes the increased sensitivity to immunotoxins. 

AU-trans Retinoic Acid Potentiates Immunotoxins at 
Steps Subsequent to Cell Surface Receptor Binding 
Immunotoxins may be potentiated by increasing the amount 
of immunotoxin bound to cell surface receptors or by in- 
creasing the delivery of surface bound immunotoxin to the 
cytosol compartment. To examine if retinoic acid increases 
the binding of immunotoxins to target cells, cells were in- 
cubated with 454A12-rRA for 2 h at 4°C, and then washed 
to remove unbound immunotoxin. The cells were divided in 
half and one half was incubated in the presence and one half 
was incubated in the absence of retinoic acid for 3 h at 37°C, 
and then the cells were pulsed with ~'C-leucine and har- 
vested. The results show that the potentiation of 454A12- 
rRA occurs even in cells washed before adding the retinoic 
acid (data not shown) indicating that the effect of retinoic 
acid is not a consequence of increased receptor binding. This 
leaves intracellular routing and passage into the cytosol as 
the likely effect retinoic acid has upon immunotoxin potency. 

Brefeidin A Blocks the AU-trans Retinoic Acid 
Potentiation of lmmunotoxin Toxicity 
The Golgi apparatus has been implicated in the efficient rout- 
ing of native ricin to the cytosol through functions of the ri- 
c h  B chain (17). To examine whether or not retinoic acid 

may affect muting of immunotoxins through the Golgi ap- 
paratus, the effect of BFA on the retinoic acid potentiation 
of 454A12-rRA was examined. BFA, by inhibiting vesicular 
transport from the ER to the Golgi, results in collapse of the 
cis-Golg~ apparatus blocking the retrograde vesicular trans- 
port of vesicles from the Golgi to the ER (6, 24). BFA was 
incubated with U251 cells in the presence of 454A12-rRA 
and retinoic acid. Fig. 4 shows that BFA completely blocks 
the potentiation of toxicity by retinoic acid. This indicates 
that 454A12-rRA routes through a BFA sensitive compart- 
ment, possibly the Golgi apparatus or the ER, in the pres- 
ence of retinoic acid. 

The Effect of All-trans Retinoic Acid on the Potency of 
Other Protein Toxins and lmmunotoxins 

In contrast to rRA chain immunotoxins, which are poten- 
tiated by ionophores that disrupt the Golgi apparatus, diph- 
theria toxin (DT) and Pseudomonas exotoxin A (PE) and 
their respective immunotoxins, are blocked by monensin, a 
carboxylic ionophore. We examined the effect of retinoic 
acid on the toxicity of PE, DT, and transferrin coupled to 
PE and transferrin coupled to a diphtheria toxin mutant, 
CRM107. Fig. 5 shows that, in contrast to 454A12-rRA, DT, 
PE, and transferrin-CRM107 (ffn-CRM107) and transferrin- 
PE (tfn-PE) are not potentiated by retinoic acid. DT and fin- 
CRM107 are actually inhibited to a small extent by retinoic 
acid. These results are consistent with the model that retinoic 
acid alters the muting of immunotoxins through the Golgi 
apparatus with some degree of selectivity. The effect of 
retinoic acid differs markedly from that of monensin, how- 
ever. Retinoic acid has little effect on DT and PE whereas 
monensin blocks DT over 1,000 times. 

AU-trans Retinoic Acid Alters the Golgi Apparatus 
Morphology Visualized by Immunostaining with an 
anti-Mannosidase II Monoclonal Antibody and by 
Vital Staining with Ct-NBD-Cemmide 

Immunostaining of the Golgi apparatus with a monoclonal 
antibody against the Golgi marker, mannosidase II, shows 
that retinoic acid causes a marked perturbation in the Golgi 
apparatus (Fig. 6 b). In control 9L cells the Golgi apparatus 
has a typical perinuclear network appearance (Fig. 6 a). Af- 
ter treatment of 9L cells with 10/~M retinoic acid the Golgi 
apparatus becomes clumped and diffuse with no perinuclear 
distribution. Upon removal of the retinoic acid the typical 
perinuclear distribution of the Golgi apparatus reassembles 
by 60 rain (Fig. 6 c). Thus retinoic acid causes a reversible 
dissolution of the perinuclear Golgi network when observed 
with an anti-mannosidase H antibody. 

C~-NBD-ceramide, a fluorescent dye, is another powerful 
tool to study the structure and function of the Golgi appara- 
tus in living cells (28). We examined Ct-NBD-ceramide 
staining of the Golgi apparatus in U251 cells in the presence 
and absence of retinoic acid (Fig. 7). The Golgi apparatus 
in control cells (a) shows a perinuclear appearance as previ- 
ously reported (28). In cells treated with 10 ~M retinoic acid 
for 2 h there is a dramatic inhibition of Golgi fluorescence 
(b). If the Golgi apparatus is stained first with C~-NBD- 
ceramide, and then incubated with retinoic acid (Fig. 7 d) 
or without (Fig. 7 c) for 2 h, cells show a dramatic decrease 
in fluorescence labeling. Thus retinoic acid disrupts the nor- 
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Figure 6. All-trans retinoic acid treatment causes redistribution of Golgi apparatus stained with mAb against mannosidase II. 9L cells 
grown on coverslips in leucine-free RPMI1640 medium were treated with (b and c) or without (a) 10/zM retinoic acid. After 2 h, the 
medium was removed and the cells were washed twice. Cells were then either fixed in 2% formaldehyde (a and b) or incubated further 
in DMEM complete medium for 60 min (c), and then fixed in 2% formaldehyde. Cells were incubated with mAb against mannosidase 
II in PBS containing 10% FCS and 0.2% saponin for 60 rain, and washed. Cells were then incubated with fluorescein-labeled goat 
anti-mouse IgG in PBS containing 10% FCS and 0.2% saponin for another 60 rain. Cells were washed and mounted in 75% glycerol. 
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Figure 7. All-trans retinoic acid treatment either prevents or disrupts the specific vital staining of the Golgi apparatus with C6-NBD- 
ceramide. U251 ceils grown on glass coverslips in leucine-free RPMI1640 medium were treated with (b) or without (a) 10 ~M retinoic 
acid. After 2 h, the medium was removed and the cells were washed twice. Cells were then incubated in the same medium with 5 ttM 
tluorescently labeled C6-NBD-ceramide in the absence of aU-trans retinoic acid at 2°C for 1 h, washed twice, and incubated for 30 min 
at 37°C. Cells were carefully mounted on glass slides and photographed under a fluorescent microscope. In c and d, cells were first stained 
with 5 ttM C6-NBD-ceramide, washed twice, and further incubated at 37°C in the presence (d) or absence (c) of 10/~M all-trans retinoic 
acid for 2 h without C6-NBD-ceramide. Cells thus treated were mounted and photographed as described above. 

mai Golgi apparatus when examined with the vital dye, C6- 
NBD-ceramide. 

AU-trans Retinoic Acid Treatment Causes a 
Reversible Disappearance of the Golgi Apparatus 
Observed by Electron Microscopy 

To further examine the status of the Golgi apparatus in 
retinoic acid-treated cells we used electron microscopy. 
Retinoic acid treatment of U251 cells correlated with a com- 
plete disappearance of normal Golgi cisterna and the appear- 
ance of large perinuclear vacuoles (Fig. 8). Retinoic acid 
caused a similar disappearance of the Golgi apparatus and 
vacuolization in 9L ceUs (Fig. 9 B). Upon removal of the 
retinoic acid, normal Golgi stacking reappeared and the 
swollen vacuoles disappeared within 60 rain. (Fig. 9 C). 

These results indicate that the vacuolized structures may at 
least partiaily be composed of dilated Golgi apparatus. 
Monensin causes massive dilation of the Golgi apparatus 
(22) similar to the appearance of retinoic acid-treated cells 
and also causes potentiation of rRA immunotoxins. The 
effect of retinoic acid on the Golgi may relate to the mecha- 
nism of immunotoxin potentiation. 

Discussion 
All-trans retinoic acid selectively increases the potency of 
certain immunotoxins, rRA containing immunotoxins, via 
three different receptors, on several different cell lines, are 
potentiated by retinoic acid whereas immunotoxins with 
diphtheria toxin and Pseudomonas toxin are not. Thus the 
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Figure 8. All.tram retinoic acid treatment causes disappearance of the Golgi apparatus and appearance of perinuclear vacuolization. Human 
13251 cells grown in 4-well chamber slides were incubated in leucine-free RPMI1640 medium with or without 10 ~M retinoic acid, after 
3 h, cells were washed twice and fixed with 2.5% glutaraldehyde in 0.1 M Na-cacodylate buffer, pH 7.2 for 60 min at room temperature, 
cells then were further processed for electron microscopy (M, mitochondrium; G, Golgi apparatus; N, nucleus; thick arrow, vacuolized 
structures). A, control cell (x 10,000); B, retinoic acid-treated cells (x 10,000); C, control cells (x 20,000); D, retinoic acid-treated 
cells (x 20,000). 

effect seems to be independent of the cell surface receptor 
yet specific to the toxin. Only receptor mediated pathways 
of intoxication appear to be affected by retinoic acid. rRA 
alone, and non-b'mding immtmotoxins are not detectably 
potentiated by retinoic acid. 

The sensitization of cells to immtmotoxins by retinoic acid 
is completely blocked by BFA. BFA blocks the vesicular 
transport from the ER to the c/s-Golgi apparatus causing a 
collapse of the cis-Golgi and a termination of the retrograde 
vesicular transport from the cis-Golgi back to the ER (24, 

The Journal of Cell Biology, Volume 125, 1994 750 



Figure 9. All-trans retinoic acid caused vacuolisation disappears af- 
ter removing the drug. Rat 9L cells cultured in 4-well chamber 
slides were incubated with (B and C) or without (A) 10 ~M retinoic 
acid. After 3 h, cells were washed twice and either fixed (A and 
B) with glutaraldehyde as described in Fig. 8 or further incubated 
in complete DMEM medium for 60 rain (C) before fixing. Cells 
were then processed for electron microscopy (G, Golgi apparatus; 
M, mitochondrium; N, nucleus; thick arrow, vacuolized structures; 
x 12,000). 

25). The block of the retinoic acid potentiation by BFA sug- 
gests that retinoic acid stimulates transport of the im- 
mtmotoxins through the c/s-Golgi, possibly to the ER en 
route to the cytosol. BFA has also been shown to affect endo- 
somes, lysosomes, and the trans-Golgi network (26, 33), and 
we cannot ascertain at this time which of the cellular effects 
of BFA cause the blockage of immunotoxin potentiation by 
retinoic acid. 

Retinoic acid seems to be having an effect on cell sensitiv- 
ity to toxins somewhat like that of lysosomotropic agents 

such as monensin. As monensin disrupts intraceilular traffic 
and causes morphologic alterations in the Golgi apparatus 
(22), we examined retinoic acid-treated cells by immuno- 
staining with an anti-mannosidase II Mab, with the vital 
Golgi stain, Ct-NBD-ceramide, and by EM. Examination 
of the Golgi apparatus with a lipid that specifically stains the 
Golgi in living ceils (28), fluorescent C6-NBD-ceramide, 
shows that retinoic acid treatment caused a dramatic disap- 
pearance of the Golgi apparatus staining. This is not because 
of decreased C6-NBD-ceramide uptake since treatment 
with retinoic acid following C6-NBD-ceramide staining 
also causes a dramatic decrease in fluorescence intensity of 
the Golgi apparatus. Immunostaining of mannosidase II 
demonstrates the disruption of the perinuclearly located 
Golgi apparatus by retinoic acid treatment, and this disrup- 
tion is readily reversible upon removal of the retinoic acid. 
Electron microscopy also shows a complete disappearance 
of the Golgi stacking, and the appearance of a perinuclear 
vacuolization upon exposure of ceils to retinoic acid. This 
vacuolization is reversed and normal Golgi apparatus reap- 
pears after removal of retinoic acid indicating that the vacuo- 
lized structures are derived at least partially from the swollen 
Golgi apparatus. The vacuolization seen by EM caused by 
retinoic acid in two different cell lines (U251, 9L) resembles 
that caused by monensin (22). However, the results of Ct- 
NBD-ceramide staining of retinoic acid-treated cells are 
opposite to those seen in monensin-treated ceils. With mon- 
ensin, C6-NBD-ceramide staining of the Golgi is more in- 
tense and punctate (27) whereas retinoic acid eliminates 
C6-NBD-ceramide staining. BFA causes diminution of the 
Golgi apparatus by EM and with NBD-ceramide in appro- 
priate cell types (5, 20). Thus, the effects of retinoic acid on 
the Golgi presents a new pattern relative to that seen with 
previously described drugs. 

The effects of retinoic acid on ricin, diphtheria toxin, and 
Pseudomonas exotoxin are consistent with this model that 
retinoic acid alters the endocytotic routing in cells. Native 
ricin, modeccin, and abrin toxicity are blocked a small 
amount by 10 pM retinoic acid in HeLa cells and Vero cells 
(37). Retinoic acid also protects U251 cells from ricin toxic- 
ity (data not shown). These results and the potentiation of 
rRA immunotoxins by retinoic acid are similar to the effects 
seen with lysosomotropic amines and ionophores. Native ri- 
cin contains a B chain that is thought to use a galactose- 
binding function, intracellularly, to route the toxin through 
the Golgi apparatus to reach the cytosol (17). The galactose- 
binding activity may allow ricin, in the trans-Golgi, to bind 
to KDEL receptor-like glycoproteins that cycle to and from 
the cis-Golgi and the ER (32, 40). Immunotoxins that lack 
a B chain are much less potent, apparently due to a deft- 
ciency in intraceilular routing, rRA immunotoxins may re- 
cycle through the trans-Golgi back to the cell surface repeat- 
edly in the absence of a B chain and disruption of the Golgi 
with monensin or retinoic acid may allow trans-Golgi to cis- 
Golgi movement, sensitizing the ceil to the toxin. Retinoic 
acid, by disrupting the Golgi, may slightly disrupt the 
efficient B chain mechanism of Golgi transport resulting in 
a small inhibition of native ricin toxicity while potentiating 
the inefficient ricin A chain immunotoxin routing. 

Diphtheria toxin requires a low intravesicular pH for the 
toxin B chain to mediate membrane transport to the cytosol 
(7). Endosomes or lysosomes may be the optimal intraceilu- 
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lar site for DT entry into the cytosol and, as BFA does not 
inhibit DT, there is no evidence that routing to or through 
the Golgi is needed for DT toxicity. Monensin and lysosomo- 
tropic amines block DT presumably simply by neutralizing 
low pH in endosomes and lysosomes. Retinoic acid does not 
inhibit the intracellular routing of DT to these compartments 
nor does it appear to alter the intracellular pH of these com- 
partments from which DT enters the cytosol. 

PE, like DT, is blocked by lysosomotropic agents but ap- 
pears to route through different intracellular compartments 
on its way to the cytosol (10). PE contains a KDEL-Iike 
COOH-terminal sequence that can bind the KDEL receptor 
in the Golgi and is proposed to route PE out of the Golgi to 
the ER for efficient transport to the cytosol (4). Consistent 
with this model BFA blocks PE toxicity (42). The inhibition 
of PE by monensin may result from its affect on the Golgi 
apparatus. Retinoic acid had little affect on PE arguing that 
retinoic acid is very specific in its ceUular perturbation or 
that PE is already adept at Golgi to ER transfer and retinoic 
acid does not further facilitate this step. Even when different 
toxins enter cells via the same receptor they are affected 
differently by retinoic acid. Tfn-PE and tfn-CRM107, two 
immunotoxins that traffic into cells via the transferrin recep- 
tor, are not affected by retinoic acid whereas tfn-rRA and 
454A12-rRA, rRA immunotoxins that use the transferrin 
receptor, are strongly potentiated. 

The potentiation of immunotoxins by retinoic acid and 
monensin, however, shows some significant differences. 
Retinoic acid has little affect on DT or PE whereas monensin 
strongly blocks both DT and PE, and BFA can block retinoic 
acid mediated immunotoxin potentiation but not monensin- 
mediated immunotoxin potentiation (data not shown). Thus, 
similar to the results from morphology studies by EM, im- 
munostalning and C6-NBD-ceramide staining, retinoic acid 
shows some characteristics of immunotoxin potentiation 
similar to monensin and some very different from monensin. 

The effect of retinoic acid on immunotoxin activity is not 
blocked by cycloheximide or actinomycin D indicating that 
the retinoic acid directly affects cells and does not function 
via induction of new gene expression. Furthermore, examin- 
ing a series of agents that bind or heterodimerize members 
of the retinoic acid receptor, e.g., all-trans retinoic acid, all- 
trans retinol, thyroxine (T3) and vitamin D3, and retinoids 
that do not bind the receptors, e.g., all-trans retinal, 13-cis 
retinoic acid, and other cis-forms of retinol and retinal, 
shows a lack of correlation between immunotoxin activation 
and RAR or RXR receptor interaction. Thus the well estab- 
lished transcription activation activity of retinoic acid does 
not appear to be the mechanism by which retinoic acid in- 
creases cell sensitivity to immunotoxins. The morphological 
effects of retinoic acid on the Golgi apparatus as shown by 
vital staining and by EM study likely relate to the mecha- 
nism of immunotoxin potentiation. The molecular mecha- 
nisms of this new activity of certain retinoids remains to be 
discovered. 
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