
Review Article
Caffeates and Caffeamides: Synthetic Methodologies and Their 
Antioxidant Properties

Merly de Armas-Ricard ,1 Enrique Ruiz-Reyes,2 and Oney Ramírez-Rodríguez  1

1Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén, Eusebio Lillo 667, Coyhaique 5951537, Aysén, Chile
2�Department of Chemistry, Basic Sciences Institute, Technical University of Manabí (Universidad Técnica de Manabí),  
Av Urbina y Che Guevara, Portoviejo, Manabí, Ecuador

Correspondence should be addressed to Merly de Armas-Ricard; merly.dearmas@uaysen.cl  
and Oney Ramírez-Rodríguez; oney.ramirez@uaysen.cl

Received 29 April 2019; Accepted 25 July 2019; Published 11 November 2019

Academic Editor: Rosaria Volpini

Copyright © 2019 Merly de Armas-Ricard et al. �is is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Polyphenols are secondary metabolites of plants and include a variety of chemical structures, from simple molecules such as 
phenolic acids to condensed tannins and highly polymerized compounds. Caffeic acid (3,4-dihydroxycinnamic acid) is one of the 
hydroxycinnamate metabolites more widely distributed in plant tissues. It is present in many food sources, including coffee drinks, 
blueberries, apples, and cider, and also in several medications of popular use, mainly those based on propolis. Its derivatives are 
also known to possess anti-inflammatory, antioxidant, antitumor, and antibacterial activities, and can contribute to the prevention 
of atherosclerosis and other cardiovascular diseases. �is review is an overview of the available information about the chemical 
synthesis and antioxidant activity of caffeic acid derivatives. Considering the relevance of these compounds in human health, many 
of them have been the focus of reviews, taking as a center their obtaining from the plants. �ere are few revisions that compile the 
chemical synthesis methods, in this way, we consider that this review does an important contribution.  

1. Introduction
Polyphenols are secondary metabolites of plants and include 
a variety of chemical structures, from simple molecules such 
as phenolic acids to condensed tannins and highly polymer-
ized compounds. �e benefits of polyphenols on human 
health are o�en ascribed to their potential ability to act as 
antioxidants [1, 2]. �e phenolic derivatives, such as caffeic 
acid, catechol, catechin, vanillic acid, eugenol, and thymol, act 
as natural antimicrobial agents. As components of herbs and 
spices, that o�en provide unique flavoring properties, many 
of these compounds have been used by humans for centuries. 
�ese agents protect human health and extend the shelf life 
of foods [3]. Catechol derivateives with antitumor [4–14], 
antifungal [15] and antibacterial [16–23] activities, among 
others [24, 25], have been reported in the literature.

�ere are two fundamental classes of phenolic acids, 
hydroxycinnamics (C6–C3) and hydroxybenzoics (C6–C1). 
Caffeic acid (3,4-dihydroxycinnamic acid) is one of the hydrox-
ycinnamate metabolites more widely distributed in plant tis-
sues. It is present in many food sources, including coffee drinks, 

blueberries, apples, and cider [26], and also in several medica-
tions of popular use, mainly those based on propolis. Its deriv-
atives are also known to possess anti-inflammatory [27, 28], 
antioxidant [29–31], antitumor [32–39] and antibacterial activ-
ities [40–42], and can contribute to the prevention of athero-
sclerosis and other cardiovascular diseases [30, 43].

Although there are many literature reports that address 
the different caffeate biological activities, much research 
remains to be done on this family of polyphenols, and new 
derivatives with potentially higher activity than natural or 
synthetic products reported can be obtained. In this review, 
we will show several synthetic methods and the antioxidant 
activity of these compounds.

2. Chemical Synthesis of Caffeic Acid 
Derivatives

Polyphenol and its derivatives may be obtained through 
organic synthesis methodologies from caffeic acid itself or 
from other chemical precursors.
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Caffeic acid amides and esters have been synthesized by 
several methods. One of the most common methods is from 
caffeic acid using coupling reagents, such as (benzotri-
azol-1-yloxy)tris(dimethylamino)phosphonium hexafluoro-
phosphate (BOP reagent), dicyclohexylcarbodiimide (DCC), 
1-(bis(dimethylamino)methylene)-1H-[1,2,3]triazolo[4,5-b]
pyridine-1-ium 3-oxide hexafluorophosphate (HATU), and 
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochlo-
ride (EDC). Rajan et al. [44], Fu et al. [45], Shi et al. [46], and 
Jitareanu et al. [47] report the use of BOP to prepare amides 
from caffeic. Fancelli et al. [48], Arliolo et al. [49], Dai et al. 
[50], Misra et al. [41], Chen et al. [51], Misra et al. [40], and Liu 
et al. [52], report the use of DCC. Li et al. [53] report the use 
HATU, while Kwon et al. [54], Takahashi et al. [55], Chen et al. 
[56], and Otero et al. [57] report the use of EDC (Figure 1).

Other methods use acetylated caffeic acid. Caffeic acid is 
acetylated with acetic anhydride in basic media (pyridine or 
its derivatives [58–60] or sodium hydroxide [61]) to yield 
di-O-acetyl caffeic acid. �is intermediate can be used to 

prepare amides and esters [62, 63]. Yang et al. [58] synthesize 
N-Propargyl caffeate amide (PACA) transforming this com-
pound into di-O-acetyl-caffeic acid N-hydroxysuccinimide 
ester via the reaction with N,N′-disuccinimidyl carbonate in 
DMF. �is ester is transformed in propargyl amide by reaction 
with the corresponding amine, which simultaneously removes 
the O-acetyl groups (Figure 2). N-Hydroxysuccinimide esters 
of p-coumaric, ferulic, and caffeic acids are used to transfer 
hydroxycinnamic moiety to other structures. Stoekigt and 
Zenk [64] prepared those esters using DCC in dry ethyl acetate 
and Ishihara et al. [65], using the same protocol, synthesized 
avenanthramides (Figure 3).

Di-O-acetyl caffeic acid can be transformed into amides 
via acid chloride too [59, 66, 67]. Doiron et al. [67] used 
acetylated caffeic acid to prepare esters and amides; thionyl 
chloride with catalytic DMF is preferred to obtain esters, while 
cold oxalyl chloride in dichloromethane is preferred in the 
synthesis of the caffeamides (Figure 2). �e acetyl protecting 
groups can be removed under basic [58, 62, 63, 67] or acid [53,  
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Figure 1: Synthesis of caffeic acid amides using some coupling reagents.
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compounds are caffeic acid and 3,4-dihydroxybenzaldehyde. 
From caffeic acid, some authors synthesize alkyl caffeates by 
nucleophilic displacement of a halogen atom from an alkyl 
halide in a basic medium [60, 73]. Other authors prepare those 
compounds using DCC in different conditions [33,  64, 65]. 
Paracatu et al. [79] report the use of DCC in dioxane and caffeic 
acid to prepare methyl, butyl, and heptyl caffeate, stirring for 
48 h at room temperature with a yield between 53% and 77%. 
Zhang et al. [80] report the synthesis of many benzyl esters of 
caffeic acid using DCC in THF, refluxing for 5 hours with much 
lower yields. Jia et al. [81] use DCC and the esterification reac-
tion was conducted at room temperature for 8 hours. Iqbal 
et al. [82] obtain guar gum caffeate using DCC in dry DMF at 
70°C for 48 hours under inert atmosphere. Other reports show 
the use of DCC with acetylated caffeic acid. Chyba et al. [83] 
prepared 4-nitrophenyl caffeate by a combination of standard 
procedures of organic synthesis and enzymatic deacetylation 
and used it in assays of caffeoyl esterases.

Mitsunobu reaction is used in the synthesis of caffeic acid 
esters too [84–88]. Hajmohamad et al. [87] used this method 
(triphenylphosphine (TPP) and diisopropyl azodicarboxylate 
(DIAD) in dry tetrahydrofuran as solvent at room tempera-
ture) to obtain several heterocyclic esters of caffeic acid  
(Figure 5).

�ere are many reports of the use of enzymatic methods 
to obtain esters of caffeic acid. �ey are mainly transesterifi-
cation methods. Tan and Shahidi [89] report a novel method 
for chemoenzymatic synthesis of phytosteryl caffeates through 
an intermediate vinyl caffeate, which was first chemically 

59] mild conditions. Other authors use ethyl chloroformate to 
obtain amides from protected caffeic acid (Figure 4) [68, 69].

Hydroxyl groups of caffeic acid can be protected by meth-
ylation too. Amides can be synthesized by all methods already 
described. Demethylation reaction is carried out using boron 
tribromide solution (Figure 4) [69, 70].

Caffeic acid alkyl esters can be obtained by many different 
pathways. Direct esterification (Fisher method) is one of the 
most used synthetic strategies to obtain esters with a short 
alkyl chain, using in the most of case sulfuric acid or p-tolue-
nesulfonic acid as catalyst [71–74]. Steverding et al. [75] obtain 
isoamyl caffeate by this method, refluxing isoamyl alcohol, 
caffeic acid, and sulfuric acid, for 3 hours. Etzenhouser et al. 
[73] synthesize different alkyl esters using p-toluenesulfonic 
acid and Dean–Stark trap by the Fisher method. Yang et al. 
[76] obtained bornyl caffeate by the same method some years 
later. Sørensen et al. [77] report the esterification of caffeic, 
ferulic, and coumaric acids, catalyzed by acid either added as 
the strongly acidic sulfonic resin Amberlite IR-120H or as pure 
sulfuric acid to the reaction medium. Other authors obtain 
alkyl esters of ferulic and caffeic acid under microwave irra-
diation, which is not only faster than using conventional heat-
ing methods, but also potentially more efficient, clean, and 
safe [33]. de Campos et al. [78] synthesized caffeic acid esters 
by the esterification procedure proposed by Fischer with some 
modifications, they used acetyl chloride as the source of 
hydrogen chloride catalyst in situ.

�ere are other methods to synthesize caffeic acid ester. 
�e most common precursors for the synthesis of these 
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2,2,2-trifluoroethyl caffeates as caffeoyl donors and a lipase from 
�ermomyces lanuginosus (Lipozyme TL IM). �e regioselective 
formation of methyl 6-O-caffeoyl-β-D-glucopyranoside was 
obtained using vinyl caffeate in tert-butanol and verified with 
arbutin and salidroside as acceptors (Figure 7).

One of the most common methods reported in the liter-
ature for the synthesis of caffeic acid esters uses thionyl chlo-
ride as reagent and protected or unprotected caffeic acid in 
phenolic hydroxyl groups. �e most commonly used protec-
tion method is acetylation with acetic anhydride. �ese two 
methods transform caffeic acid in caffeoyl chloride.

Reaction with unprotected acid is carried out in a dry sol-
vent, heating to reflux under inert atmosphere (nitrogen or 
argon). �e solvent and SOCl2 can be removed under vacuum 
or not, and then desired alcohol is added under dry conditions. 
Some authors use a basic medium with alcohol, others do not. 

produced and subsequently esterified with phytosterols 
through lipase-assisted alcoholysis (Figure 6). Ten enzymes 
were initially screened by the authors for their ability in cata-
lyzing the alcoholysis reaction between phytosterols and vinyl 
caffeate. Lipase from Candida rugosa was the only enzyme that 
successfully catalyzed that alcoholysis reaction.

Pang et al. [90] report the synthesis of propyl caffeate by 
an enzymatic method. �ey prepare this compound by trans-
esterification of methyl or ethyl caffeate and 1-propanol using 
different lipases in an ionic liquid. �e best yield was obtained 
using [Bmim][CF3SO3] as ionic liquid, Novozym 435 as cat-
alyst, 1 : 20 was the mass ratio methyl caffeate to lipase, and 
1 : 5 was the molar ratio methyl caffeate to 1-propanol. �e 
reaction temperature was 60°C.

Chyba et al. [91] report the enzymatic caffeoylation  
of methyl β-D-glucopyranoside using vinyl and 
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exogenous stimuli. However, cells are usually able to reduce 
the oxidative potential of ROS by activating several antioxidant 
systems. In plants, one of these defense systems are polyphenols, 
making this family of compounds a target for the search for 
applications in the food and pharmaceutical industries. In this 
context, it has been reported that some compounds such as 
caffeic acid (entry 1, Table 1) and its derivatives have 
antioxidant properties [114]. According to Chung et al. [115] 
caffeic acid has an antioxidant effect against the oxidative 
lesions that are produced in the gill cells of trout. A 
concentration-dependent inhibition of iron-catalyzed lipid 
peroxidation is, moreover, exerted by esters, as octyl caffeate 
(0.1–1.0 mM), in rat brain homogenates. It has been shown to 
have a potent antioxidant when the nitric oxide synthase 
(iNOS) expression is induced by means of lipopolysaccharides 
(LPS), and interferon-γ (IFN-γ) in cultured primary rat aortic 
smooth muscle cells (RASMC) in vitro, in addition to induced 
hypotension by means of LPS in vivo [116]. Recently, Kyselka 
et al. [117] have reported that caffeic acid and methyl caffeate 
(entry 2, Table 1) showed the highest reduction rate against 
the oxidation reaction with the 1,1-diphenyl-2-picrylhydrazyl 
radical (DPPH•) showing better results as an antioxidant than 
other phenolic compounds.

Chapado et al. [86] reported the synthesis of dihydroxy-
phenetyl caffeate (entry 10, Table 1), among others esters 
structurally related to rosmarinic acid (entry 11, Table 1), 
and evaluated their antioxidant activity against DPPH•. 
�ose compounds showed better antiradical activity than 
their precursors (dihydroxyphenetyl alcohol, caffeic, proto-
catechuic, and gallic acids) and rosmarinic acid. Taguchi et 
al. [118] also reported the ability of rosmarinic acid derivates 
as antioxidants (DPPH radical scavenging assay), along with 
that of certain esters (entries 1–9, Table 1) and amides 
(entries 15 and 16, Table 1) of caffeic acid. �ese authors 
found 61%–63% of DPPH radical scavenging activity for 
alkyl esters and 2-(3,4-dihydroxyphenyl)ethyl caffeamide, 
while ω-OH esters and pentyl amide showed 53%–55% of 
activity. �e results suggested that those compounds without 
catechol moiety (entry 17, Table 1) showed low inhibition 
percentages even at very high concentrations (<10% at 
500 µM concentration). �erefore, the presence of catechol 
ring is important in the scavenging action of ROS species. 
However, they could not find a specific structural feature of 
caffeic acid-type compounds, having an account that caffeic 
acid itself has significant antioxidant activity. Amoussa et al. 
[119] report the antioxidant activity of 3-caffeoylbetulinic 
acid (entry 12, Table 1), it showed significant antioxidant 
activity with an IC50 of 3.57  μg/mL compared to quercetin 
(control) 1.04  μg/mL.

Esters obtained from phenolic hydroxyl groups of caffeic 
acid also show antioxidant activity. Gandolfi et al. [120] 
report the radical scavenging activity (RSA) towards DPPH 
of 3-[(2E,4E,6E)-octa-2,4,6-trienoyl]caffeic acid and 
4-[(2E,4E,6E)-octa-2,4,6-trienoyl]caffeic acid (entry 13, 
Table 1) and 3,4-di-[(2E,4E,6E)-octa-2,4,6-trienoyl]caffeic 
acid (entry 14, Table 1). �ey show, in general, esterification 
with caffeic acid led to a higher increase in RSA, although 
the diester did not show higher activity than caffeic acid.

�e most used solvents are dichloromethane, 1,2-dimethox-
yethane (DME) and dioxane (Figure 8) [92–96].

Many authors prepare acetylated caffeoyl chloride from 
acetylated caffeic acid by the Vilsmeier–Haack adduct [62, 63, 
67, 97], obtained by reaction of thionyl chloride with a cata-
lytic amount of N,N-dimethylformamide (Figure 9). �at 
carboxylic chloride can be synthesized from the protected acid 
and thionyl chloride too [98] or using oxalyl chloride and 
DMF in dichloromethane [61].

Methylated caffeic acid is also used in the synthesis of 
esters. �ese esters can be synthesized by all methods already 
described [99].

Silylation is another method to protect phenolic hydroxyl 
groups in caffeic acid [57, 100,  101]. Rattanangkool et al. [100] 
use tert-butyldimethylsilyl chloride (TBDMSCl) to do that and 
deprotection was carried out in tetrahydrofuran with TBAF 
at room temperature for 3 h (Figure 10).

Xie et al. [102] report a convenient and practical catalytic 
method for the preparation of caffeic acid esters with high 
efficiency using ytterbium triflate in nitromethane without any 
other auxiliary reagents. �ey obtained between 40% and 60% 
isolated yields without water removal (Figure 11).

Synthesis methods that do not use caffeic acid or its  
protected derivatives as starting substrates use commonly 
3,4-dihydroxybenzaldehyde and by condensation or Wittig 
reactions obtain the desired compounds.

Wittig reaction can be used to obtain esters or amides [73, 
101, 103]. �e most commonly used reagents are esters and 
amides of α-haloacetic acid, which, by reaction with triphe-
nylphosphine, produce the corresponding phosphonium salt 
(Figure 12).

One of the most common condensation methods employs 
a monoester of malonic acid, which can be isolated or not. �is 
method involves two reactions; the first is the synthesis of 
malonic acid monoester from meldrum’s acid and desired alco-
hol. �e second is the Knoevenagel condensation of malonic 
acid monoester with 3,4-dihydroxybenzaldehyde in the pres-
ence of a base (pyridine and piperidine in most cases) at room 
temperature for 12–24 h (Figure 13) [68, 74, 94, 103–110].

Knoevenagel condensation of 3,4-dihydroxybenzalde-
hyde with other compounds can be performed to obtain 
other derivatives of caffeic acid, some of them substituted in 
vinylic carbons. Sechi et al. [111, 112] synthesized 2-azido-
3-(3,4-dihydroxy-phenyl)-acrylic acid methyl ester (methyl 2- 
azidocaffeate) as an intermediary to obtain 5,6-dihy-
droxy-1H-indole-2-carboxylic acid (Figure 14). Rodrigues et 
al. [113] synthesized cyanoacetic acid derivatives (esters, 
amides, and thioesters) and obtained the caffeic acid deriva-
tives by Knoevenagel condensation of these compounds with 
3,4-dihydroxybenzaldehyde under basic conditions 
(Figure 14).

3. Antioxidant Activity

�e reactive oxygen species (ROS) such as superoxide anion 
radical, hydrogen peroxide, and hydroxyl radical are generated 
in all cells due to both endogenous metabolic processes as 
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Table 1: Antioxidant activity of caffeic acid derivatives against DPPH•.

Entry Compound Structure DPPH radical scavenging 
activitya Reference

1 Caffeic acid 63% (500 μM) [118]
0.17 μmol/μmol DPPH [117]

0.17 mol/mol DPPH [86]
IC50 15.3 μM [123]

EC50 30.88 µM [41]
2 Caffeic acid methyl ester 62% (500 μM) [118]

0.17 μmol/μmol DPPH [117]

3 Caffeic acid allyl ester 64% (500 μM) [118]
IC50 12.3 µM [123]

4 Caffeic acid propyl ester 63% (500 μM) [118]

5 Caffeic acid butyl ester 62% (500 μM) [118]

6 Caffeic acid pentyl ester 62% (500 μM) [118]

7 Caffeic acid hexyl ester 61% (500 μM) [118]

8 Caffeic acid heptyl ester 63% (500 μM) [118]

9 Caffeic acid nonyl ester 61% (500 μM) [118]

10 Caffeic acid 3,4-dihydroxyphenetyl ester 0.09 mol/mol DPPH [86]

11 Rosmarinic acid 0.12 mol/mol DPPH [86]
61% (500 μM) [118]

12 3-Caffeoylbetulinic acid IC50 of 3.57 μg/mL [119]

13 3- and 4-[(2E,4E,6E)-octa-2,4,6-trienoyl]
caffeic acid

96.25% (5 mM) [120]

14 3,4-Dioctatrienoyl caffeic acid 100% (5 mM) [120]

HO

HO

O

OH

HO

HO

O

OCH3

HO

HO

O

O

HO

HO

O

OC3H7

HO

HO

O

OC4H9

HO

HO

O

OC5H11

HO

HO

O

OC6H13

HO

HO

O

OC7H15

HO

HO

O

OC9H19

HO

HO

O

O

OH

OH

HO

HO

O

O

OH

OH

O OH

H

H

H
O

OH

O

O
HO

HO

HO

O

O

OH

O

O

HO

O

OH

O

O

O

O

OH

O

O



9International Journal of Medicinal Chemistry

Table 1: Continued.

Entry Compound Structure DPPH radical scavenging 
activitya Reference

15 N-(3,4-Dihydroxyphenethyl) caffeamide 64% (500 µM) [118]

16 N-Pentyl caffeamide 53% (500 µM) [118]

17 2-Phenylethyl cinnamate <10% [118]

18 Caffeic acid phenetyl ester (CAPE) IC50 11.9 µM [123]

19 Caffeic acid propargylic esters R = H IC50 11.1 µM [123]

20 R = Ph IC50 12.7 µM [123]
21 R = 4-CH3-Ph IC50 11.5 µM [123]
22 R = 4-CH3O-Ph IC50 13.7 µM [123]
23 R = 4-NO2-Ph IC50 10.6 µM [123]
24 R = 4-F-Ph IC50 10.7 µM [123]
25 R = 1-naphthyl IC50 13.7 µM [123]
26 R = 4-Ph-Ph IC50 15.0 µM [123]
27 Bis-caffeoyl propargyl derivative IC50 5.6 µM [123]

28 Caffeic acid allyl esters R = Ph IC50 12.4 µM [123]

29 R = 4-CH3-Ph IC50 13.1 µM [123]
30 R = 4-CH3O-Ph IC50 11.6 µM [123]
31 R = 4-NO2-Ph IC50 12.3 µM [123]
32 R = 4-F-Ph IC50 12.31 µM [123]
33 R = 1-naphthyl IC50 13.0 µM [123]
34 R = 4-Ph-Ph IC50 12.03 µM [123]
35 Bis-caffeoyl allyl derivative IC50 6.1 µM [123]

36 N-(3,5-dichloro-4-hydroxyphenyl)-caf-
feamide

EC50 5.51 µM [41]

37 N-(4-nitrophenyl)-caffeamide EC50 7.21 µM [41]

38 N-(4-aminophenyl)-caffeamide EC50 36.01 µM [41]
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(ORAC-FL), the ferric reducing ability of plasma (FRAP), 
electronic spin resonance (ESR), and cellular antioxidant 
activity (CAA). �ese compounds showed better ORAC-FL 
values than Trolox, and two or three times more than cou-
marin moiety alone. �erefore, the polyphenol inclusion in 
the coumarin scaffold contributes to the antioxidant capacity. 
�e evaluation of •OH scavenging was done by ESR, and the 
radical-scavenging values indicated that the coumarin caffeic 
and gallic derivatives were similar and better than the cou-
marin moiety, and attained values of approximately 99%. �e 
FRAP assay showed that derivatives have values between two 
and three times higher than their coumarinic precursor, sug-
gesting that the inclusion of phenolic moieties in the original 
coumarinic scaffold increases the reducing capacity.

Doiron et al. [123] synthesized some propargyl and allyl 
esters of caffeic acid and assayed their antioxidant activity by 
employing 2,2-diphenyl-1-picrylhydrazyl (DPPH). All of 
them showed a good ability radical scavenging with most hav-
ing IC50 values in the range of 10–15 μM, being similar to the 
radical scavenging activity of caffeic acid (15.3 μM, entry 1 
Table 1) and CAPE (11.9 μM, entry 18 Table 1). �e authors 
found little differences in radical scavenging activity of mon-
ovalent esters of both series (propargyl and allyl esters; entries 
3, 19–26, and 28–34, Table 1; respectively). �ese findings 
indicate that the antioxidant activity of caffeic acid catecholic 
ring is practically insensitive to changes that do not directly 
alter it. Derivatives with two catechol rings (dimers of caffeic 
acid derivatives, entries 27 and 35, Table 1) have twice as much 
antioxidant activity as monoesters.

Rajan et al. [44] synthesized caffeic acid amides and studied 
their antioxidant properties as lipid peroxidation inhibitory 
activity. Caffeic acid anilides were very efficient antioxidants 
with IC50 of 0.3 µM (entries 1 and 2, Table 2). �e aliphatic 
amides also showed activity, and were slightly lower than the 
anilides (entries 3 and 4, Table 2). �ese amides showed anti-
oxidant activity comparable with standard antioxidants such 
as Trolox, caffeic acid, and quercetin (entries 5–7, Table 2). 
p-coumaric acid amides are 10 times less active, which sug-
gest that the catechol ring has influence on the antioxidant 
activity [44].

Lira et al. [121] studied in vitro oxidant and antioxidant 
activity of isopropyl caffeate in the presence of phenylhydra-
zine and Reactive Oxygen Species. �ey showed that no hemo-
globin oxidation was observed at concentrations lower than 
100 µg/mL (compared to the negative control), but it could 
not prevent the oxidation of hemoglobin in the presence of 
phenyl hydrazine. �erefore, there is not significant oxidant 
power in this substance. Furthermore, the authors noted that 
isopropyl caffeate was able to react with ROS at concentrations 
of 10, 50, 100, and 250 μg/mL. �ey also discovered that the 
hemolysis induced by hydrogen peroxide was reduced when 
compared to the positive control group (Hb + H2O2), and 
finally, isopropyl caffeate shows a greater antioxidant power 
than vitamin C.

On the other hand, Pérez-Cruz et al. [122] have reported 
the antioxidant activity of coumarin derivatives with phenolic 
acid moieties against the biologically relevant ROS using 
assays as oxygen radical absorbance capacity fluorescein 

Table 2: Lipid peroxidation inhibitory activity of caffeic acid amides and related compounds.

a�e antioxidant activity of each compound was expressed as IC50 value, i.e., the concentration in µM necessary to inhibit TBARS formation by 50%, and was 
calculated from the corresponding log-dose inhibition curve.

Entry Compound Structure IC50 (µM)a Reference
1 N-(2-Hydroxyphenyl) caffeamide 0.29 [44]

2 N-Phenyl caffeamide 0.38 [44]

3 N-(3,4-Dihydroxyphenethyl) caffeamide 0.59 [44]

4 N-Isopentyl caffeamide 1.4 [44]

5 Trolox 2.8 [44]

6 Caffeic acid 3.3 [44]

7 Quercetin 0.95 [44]
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Current Topics in Medicinal Chemistry, vol. 13, no. 17, pp. 
2171–2183, 2013.

  [8] � P. Jain, N. Kumar, and V. R. Josyula et al., “A study on the role of 
(+)-catechin in suppression of HepG2 proliferation via caspase 
dependent pathway and enhancement of its in vitro and in 
vivo cytotoxic potential through liposomal formulation,” 
European Journal of Pharmaceutical Sciences, vol. 50, no. 3–4, 
pp. 353–365, 2013.

  [9] � J. Teixeira, P. Soares, and S. Benfeito et al., “Rational discovery 
and development of a mitochondria-targeted antioxidant 
based on cinnamic acid scaffold,” Free Radical Research, vol. 
46, no. 5, pp. 600–611, 2012.

  [10] � C. Plaza, M. Pavani, and M. Faundez et al., “Inhibitory effect 
of nordihydroguaiaretic acid and its tetra-acetylated derivative 
on respiration and growth of adenocarcinoma TA3 and its 
multiresistant variant TA3MTX-R,” In Vivo, vol. 22, no. 3, pp. 
353–361, 2008.

  [11] � J. Monga, C. S. Chauhan, and M. Sharma, “Human 
breast adenocarcinoma cytotoxicity and modulation of 
7,12-dimethylbenz[a]anthracene-induced mammary 
carcinoma in balb/c mice by Acacia catechu (L.f.) wild 
heartwood,” Integrative Cancer �erapies, vol. 12, no. 4,  
pp. 347–362, 2013.

  [12] � M. Lang, R. Henson, C. Braconi, and T. Patel, “Epigallocatechin-
gallate modulates chemotherapy-induced apoptosis in human 
cholangiocarcinoma cells,” Liver International, vol. 29, no. 5, 
pp. 670–677, 2009.

  [13] � M. Saez-Ayala, M. P. Fernandez-Perez, S. Chazarra,  
N. McHedlishvili, A. Tarraga-Tomas, and J. N. Rodriguez-Lopez, 
“Factors influencing the antifolate activity of synthetic tea-
derived catechins,” Molecules, vol. 18, no. 7, pp. 8319–8341, 2013.

  [14] � F. Jana, F. Faini, and M. Lapier et al., “Tumor cell death induced 
by the inhibition of mitochondrial electron transport: the 
effect of 3-hydroxybakuchiol hydroxybakuchiol,” Toxicology 
and Applied Pharmacology, vol. 272, no. 2, pp. 356–364,  2013.

  [15] � I. Ali, F. G. Khan, and K. A. Suri et al., “In vitro antifungal 
activity of hydroxychavicol isolated from Piper betle L,” Annals 
of Clinical Microbiology and Antimicrobials, vol. 9, no. 1, p. 
7,  2010.

  [16] � B. Roy, A. Chakraborty, S. K. Ghosh, and A. Basak, “Design, 
synthesis and bioactivity of catechin/epicatechin and 
2-azetidinone derived chimeric molecules,” Bioorganic & 
Medicinal Chemistry Letters, vol. 19, no. 24, pp. 7007–7010, 2009.

  [17] � C. E. Maddox, L. M. Laur, and L. Tian, “Antibacterial activity 
of phenolic compounds against the phytopathogen Xylella 
fastidiosa,” Current Microbiology, vol. 60, no. 1, pp. 53–58, 2010.

  [18] � J. M. Silván, E. Mingo, M. Hidalgo, S. de Pascual-Teresa,  
A. V. Carrascosa, and A. J. Martinez-Rodriguez, “Antibacterial 
activity of a grape seed extract and its fractions against 
Campylobacter spp,” Food Control, vol. 29, no. 1, pp. 25–31, 
2013.

  [19] � R. Qin, K. Xiao, and B. Li et al., “�e combination of catechin 
and epicatechin gallate from fructus crataegi potentiates  
β-lactam antibiotics against Methicillin-resistant Staphylococcus 
aureus (MRSA) in vitro and in vivo,” International Journal of 
Molecular Sciences, vol. 14, no. 1, pp. 1802–1821, 2013.

  [20] � J. L. Pollock, L. A. Kogan, A. S. �orpe, and W. E. Holben, 
“(±)-catechin, a root exudate of the invasive Centaurea stoebe 
lam. (spotted knapweed) exhibits bacteriostatic activity against 
multiple soil bacterial populations,” Journal of Chemical 
Ecology, vol. 37, no. 9, pp. 1044–1053, 2011.

Finally, Misra et al. [41] report on the antioxidant and 
antibacterial activities of a new caffeamide series (entries 
36–38, Table 1). �ey observed that amides having electron 
withdrawing group attached had lower EC50 value than caffeic 
acid. �ey behave more potent antioxidant with respect to 
caffeic acid, whereas electron donating moiety attached with 
caffeamide had a higher EC50 value compared to caffeic acid, 
as expected.

4. Conclusions

In addition to extraction from natural sources, there are cheap 
and easy to make synthetic methods for obtaining caffeic acid 
derivatives. �ese methods, unlike the extractive ones, could 
provide enough quantity of caffeic acid derivatives for their 
multiple uses, besides guaranteeing the preservation of the 
plants as a natural resource. In this review, the alternatives for 
the synthetic obtaining of esters and amides of caffeic acid by 
simple synthetic methods are shown.
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