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Efficient Scheme for Perfect 
Collective Einstein-Podolsky-Rosen 
Steering
M. Wang1,2, Q. H. Gong1,2, Z. Ficek3 & Q. Y. He1,2

A practical scheme for the demonstration of perfect one-sided device-independent quantum secret 
sharing is proposed. The scheme involves a three-mode optomechanical system in which a pair of 
independent cavity modes is driven by short laser pulses and interact with a movable mirror. We 
demonstrate that by tuning the laser frequency to the blue (anti-Stokes) sideband of the average 
frequency of the cavity modes, the modes become mutually coherent and then may collectively 
steer the mirror mode to a perfect Einstein-Podolsky-Rosen state. The scheme is shown to be 
experimentally feasible, it is robust against the frequency difference between the modes, mechanical 
thermal noise and damping, and coupling strengths of the cavity modes to the mirror.

Quantum steering1,2 is currently attracting considerable theoretical and experimental interest. The term 
steering was introduced by Schrödinger3 for the fact that entanglement would allow an experimentalist to 
remotely steer or pilot the state of a distant system as considered in the original Einstein-Podolsky-Rosen 
(EPR) paradox4. The distinctive feature of quantum steering is its directionality in a sense that if two 
parties, Alice and Bob, share an entangled state then the measurements made on the Bob’s system can 
remotely affect, i.e. steer the Alice’s system to a specific state. This makes quantum steering an essential 
resource for a number of applications, such as quantum key distribution5,6, secure quantum teleportation7 
and performing entanglement assisted subchannel discrimination8. Quantum steering allows two parties 
to verify the shared entanglement even if one measurement device is untrusted9. The idea of quantum 
steering has been theoretically investigated10–24 and also experimentally tested for several systems25–34.

Recently, the concept of collective steering has been introduced in multipartite systems35, where the 
steering of a system i by a group of N −  1 parties cannot be demonstrated by the measurement of N −   2 
or fewer parties. This means the measurements made on N −  1 parties enable them collectively steer the 
quantum state of a given party i, i.e. can infer the position and the momentum of the mode i with higher 
precision than that allowed by the level of quantum standard limit, whereas a measurement on N −  2 
or fewer modes cannot infer this information. This feature thus opens the possibility for the realization 
of more secure multi-mode quantum cryptography, such as quantum secret sharing (QSS)36. QSS aims 
at protecting a highly important message, by demanding that all receivers must collaborate to decrypt 
the secret sent by the sender. Unlike the conventional QSS protocols, the usage of the collective steering 
as quantum resource need not assume the collaborating parties are trustworthy5, where the security of 
this process relies on the intrinsic nature of collective steering. Thus, it significantly reduces the device 
requirements in the network, and may provide unique conceptual tools for one-sided, device-independent 
quantum secret sharing (1SDI-QSS)20,34.

In this report, we propose a practical scheme to create the perfect collective steering of a macro-
scopic object in the context of pulsed cavity optomechanics37,38. The scheme does not involve any exter-
nal sources of squeezed light and networks of beam splitters used in the linear optical schemes20,34. 
The scheme consists of a pair of nondegenerate cavity modes driven by detuned short laser pulses 
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and interacting collectively with a bosonic mode associated with the movable mirror, as illustrated in 
Fig. 1(a). We show that the action of measuring the output of the two cavity fields can steer the quantum 
state of the oscillator and thus enable error-free predictions for its position and momentum given some 
type of measurement on the cavity modes. The fundamental significance of observing the “steering” of 
the quantum state of the oscillator can address the original EPR paradox for a macroscopic and massive 
object, which is more useful for insights about quantum effects with matter.

Notice that a pulsed scheme does not require a steady state to be applicable, and entanglement can 
be achieved without stability requirements37,38. The existing proposals for the generation of tripartite 
entangled states and quantum steering have generally been based on the two-mode coupling with the 
laser frequency tuned to the blue (anti-Stokes) sideband of one of the modes and to the red (Stokes) 
sideband of the other mode39–43. The coupling results in the presence of both tripartite and bipartite 
steering of a given mode and as such it rules out the aspect of collective steering. We find that by put-
ting the driving laser to the blue sideband of the average frequency of the cavity modes, (Fig. 1(b), one 
can create a tripartite steering without creating the bipartite steering of the mirror mode, as illustrated 
in Fig. 1(c). The only requirement for the absence of the bipartite steering is a uniform coupling of the 
cavity modes to the mirror mode. We then have a prototype of the collective steering experiment in 
which the macroscopic mirror and the collective mode of the two optical fields could be in a perfect EPR 
state. By analyzing realistic conditions including the mechanical thermal noise and damping, we estimate 
that collective steering can be readily achieved with existing experimental parameters44,45. This offers an 
efficient scheme for the realization of a perfect one-sided device-independent quantum secret sharing or 
more secure multi-mode quantum cryptography.

Results
Dynamics of the system.  We model the system by using the the standard Langevin formalism in 
which we include photon losses in the cavity and the Brownian noise acting on the mirror46,47. We focus 
on the case where the laser frequency ωL is on resonance with the blue sideband of the average frequency 
of the cavity modes, i.e., ωL =  ω0 +  ωm, with ω0 =  (ω1 +  ω2)/2. Then, we introduce fluctuation operators 
of the cavity modes and the mirror mode, and following the standard linearization method we find that 
under the rotating-wave approximation the operators satisfy coupled equations

Figure 1.  Schematic diagram of a three-mode optomechanical system for realization of perfect EPR 
collective steering. (a) The system consists of two nondegenerate cavity modes of frequencies ω1 and 
ω2, separated by 2Δ  =  ω1 −  ω2, and a single mode of frequency ωm associated with the oscillating mirror. 
The cavity modes are driven by a pulse laser with duration time τ and are damped with rates κ1 and κ2, 
respectively. The damping rate of the vibrating mirror is γ. (b) The laser frequency ωL =  ω0 +  ωm is tuned to 
the blue (anti-Stokes) sideband of the average frequency ω0 of the cavity modes. (c) Two cavity modes can 
collectively steer the quantum state of the oscillator (indicated by green arrow), i.e. can infer the amplitude 
of the mirror to below the level of quantum standard limit in both position and momentum, while the cavity 
modes cannot steer the mirror individually (indicated by red stop sign).
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where δaj (j =  1,2) and δbm are slowly varying parts of the fluctuation operators, κj is the damping rate 
of the cavity mode j, assumed the same for both modes, κ1 =  κ2 =  κ, gj is the effective coupling strength 
of the jth cavity mode to the mirror, Δ  =  (ω1 −  ω2)/2, and γ is the damping rate of the mirror. aj

in and 
bm

in are Langevin noise terms which are taken to be statistically independent with nonzero δ correlated 
functions, a t a t t tj j

in in δ( ) ( ′) = ( − ′)†  and b t b t n t t1m m
in in δ( ) ( ′) = ( + ) ( − ′)† , where n is the mean 

number of thermal phonons. To simplify the notation, we will drop the label δ on the fluctuation 
operators.

The solution of equation (1) is in general complicated. A simple analytical solution arises, however, 
in two cases, the bad cavity limit, g1 2κ ,
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where φ =  arctan(Δ /κ). Then the equation of motion for the mirror mode becomes
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Collective cavity modes.  In order to calculate the fluctuation operators at an arbitrary pulse dura-
tion time τ, we introduce normalized temporal pulse-shape amplitudes
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and find that the output amplitude of the mirror mode Am
out is only affected by the collective “symmetric” 
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This indicates that the cavity modes interact collectively rather than individually with the mirror 
mode. Note that the called “output” mode for the mirror is the amplitude of the mirror mode at the 
final time τ.

We then define the normalized pulse-shape amplitudes of the modes
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and use the input-output relation for the optical modes a a a2j j j
out in κ= +  to show from equa-

tions (2–5) that the output cavity modes behave collectively and satisfy the following relations
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Clearly, the dynamics of the cavity modes involves only the collective “symmetric” mode W. The col-
lective “antisymmetric” mode U decouples from the remaining modes and does not evolve in time, i.e. 
U is a constant of motion48,49. Thus even though the system is composed of three modes, the dynamics is 
fully determined in terms of only two modes, the mirror mode Am and the collective mode W. In other 
words, the cavity modes act collectively on the mirror mode.

Coherence between the cavity modes.  We first demonstrate that there is generally mutual coher-
ence between the output cavity modes, crucial for the collective steering of the mirror. We assume that 
the cavity modes are in the ordinary vacuum state, the mirror mode is initially in a thermal state with 
the mean number of phonons n0, and the oscillations of the mirror are subjected to the damping γ and 
to the Brownian noise n. The mutual coherence between the output cavity modes is measured by the 
cross correlation A A1

out
2
out†  and with the help of equations (7) and (8) we find
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where r =  Gτ represents an effective “squeezing parameter”. The cross correlation function is nonzero  
for r >  0 indicating that the cavity modes, when driven by laser pulses tuned to the blue sideband of 
their average frequency, are generally mutually coherent. Notice a constructive role of the thermal noises 
present at the mirror, as well as the spontaneous decay γ on the creation of the coherence.

The appearance of mutual coherence can be readily understood in terms of the phase relationship 
between the fields reflected and transmitted by the oscillating mirror. As illustrated in Fig. 2, the system 
is equivalent to two single-mode two-sided cavities with the common oscillating mirror. We see that the 
mirror not only reflects but also transmits a part A j

in∼  of the incident amplitude to the other mode. The 
phase reversal associated with reflection thus creates a phase difference between the reflected and trans-
mitted amplitudes, hence fulfills the condition required for mutual coherence.

Tripartite steering of the mirror mode.  We now turn to examine conditions for tripartite and 
collective steering of the mirror mode by the cavity modes. Quantum steering of mode i by mode j is 
normally identified by inferred quadrature variances defined as X X u Oj i i j jinf

2 out 2 out out( )Δ = Δ +,  and 
P P u Oj i i j jinf

2 out 2 out out( )Δ = Δ +, , where Oj
out is an arbitrary quadrature for system j and uj is a gain factor, 

both selected such that they minimize the inference (conditional standard deviation) product, 
E X Pi j j i j iinf

out
inf

out= Δ Δ, , . The observation of E 1 2i j < /  (with Heisenberg uncertainty relation satisfy-
ing Δ XiΔ Pi ≥  ħ/2, ħ =  1) is an criterion that i can be steered by j, implying an EPR paradox50,51. Recent 
work of Wiseman, Jones, and Doherty1 revealed that the EPR paradox is a realization of quantum steer-
ing. The correlation of Xi, Pi with Xj, Pj is strongest when Ei|j =  0. This presents a perfect EPR state where 
measuring the position and momentum on system j would provide a prediction, with 100% accuracy, of 
the position and momentum of system i50,51. The quadratures are directly measurable in schemes involv-
ing homodyne or heterodyne detection.

Figure 2.  Schematic diagram of the input and output modes of the system. The two cavity modes a1 
and a2 exert a strong dynamical influence on one another via phase locking by the oscillating mirror which 
effectively acts as a partly reflecting and partly transmitting mirror.
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Tripartite steering of the mirror by two cavity modes is determined by Em W= 
Δ Δ = Δ − , /Δ, ,X P X X P PW m W m m m W Winf
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out out= ( − )/† . A 
value of Em|W smaller than 1/2 indicates steering of the mirror mode m by the collective mode W of  
two optical fields, and the maximum EPR correlation presented by Em|W =  0 demonstrates a perfect  
EPR state, as explained above.

The tripartite steering parameter Em|W can be calculated analytically and in the limit of Gγ   is given 
by a simple analytical expression
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This shows that Em|W is affected only by the initial thermal noise n0 present at the mirror and Em|W 
is always smaller than 1/2 when n0 =  0. Even if n0 ≠ 0, Em|W <  1/2 if r >  rth, where rth =  ln[(2n0 +  1)/
(n0 +  1)]/2 is a temperature-dependent minimal squeezing parameter which approaches to the limiting 
value of ln2/2 as n0 →  ∞. We see from equation (10) that even if n0 ≠ 0, one can always achieve a perfect 
EPR state, Em|W →  0, if r →  ∞, In other words, the mirror is always steered by the collective action of 
the cavity modes. We emphasize that the steering formula (10) is very general, it is independent of the 
frequency difference Δ , the ratio G1/G2, and the Brownian noise n.

Collective steering of the mirror mode.  To examine the occurrence of collective steering we must 
evaluate the bipartite steering parameter E X P X X P Pm j j m j m m m j jinf
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The expression for Em|2 can be obtained by simply interchanging G1 ↔  G2. It is easily seen from equa-
tion  (11) that the bipartite steering of the mirror by either cavity modes is impossible when G1 =  G2. 
There is a simple physical interpretation of this feature by referring to the monogamy condition that 
two modes cannot simultaneously steer an another mode52. When G1 =  G2 the two cavity modes are 
unresolved at the mirror. Then, it is impossible to tell which of the modes steers the mirror mode. Since 
Em|1 =  Em|2 ≥  1/2 over the entire range of r, there are no restrictions on steering of the mirror collec-
tively by the cavity modes. We therefore conclude that the system can be considered as an example of a 
practical system where the secure multimode protocol can be realized. The mirror mode (Alice) can be 
collectively steered by the cavity modes (Bob and Charlie).

Effect of losses and experimental feasibility.  We consider the effect of losses, the thermal noises 
n0 and n, as well as the damping γ on the tripartite steering. From Fig.  3(a,b), we see that in general 
the thermal noise has a destructive effect on the steering. However, a near perfect steering can still be 
observed for a relatively large n ~ 100. For even larger n below a threshold, collective steering can still 
occur over the entire range of r. As shown in the inset of Fig. 3(b), this threshold can be as high as n ~ 600 
for γ/G =  0.1, and decreases with increasing damping. As n further increases, collective steering can only 
take place in a restricted range of r.

The robustness of the collective steering against the damping γ is illustrated in Fig. 4. From this result, 
we notice that collective steering is present in a large parameter regime except for the up right corner 
where both r and γ/G are large. It is interesting and somewhat surprising that in the presence of the mir-
ror damping, the collective steering is preserved at small r rather than at large r. This can be understood 
by recalling that a strong squeezing results in a large sensitivity of the variances to the external noise.

We emphasize that the requirements for thermal noise and damping rate to achieve collective steering 
in the present system are attainable in existing experiments. In particular, in a recent experiment on 
nanoscale optomechanics44, the mechanical oscillator was cooled down to a temperature corresponding 
to n0 =  n =  0.85, with frequency ωm/2π =  3.68 GHz and damping rate of γ/2π =  35 kHz. A typical driv-
ing pulse laser of λL =  1537 nm corresponds to an optical line width of κ/2π =  500 MHz. The effective 
opto-mechanical coupling constant g/2π =  40.7 MHz. These give G1 =  G2 =  g2κ/(κ2 +  Δ 2) =  2π ×  1.66 MHz 
(assumed Δ  =  κ), and γ/G ≈  1.05 ×  10−2. The effect of the thermal noise and the damping on the col-
lective steering is therefore expected to be small in general. In an another experiment in which the EPR 
entanglement between mechanical motion and a microwave field has been demonstrated45, the noises 
and the damping rate were estimated as n0 =  0.5, n =  37.8, and γ/G ≈  1.75 ×  10−3, respectively. These val-
ues are also well within the safety zone for a successful collective steering. Therefore, the perfect collective 
EPR steering we have been discussing should be observable with current experiments.
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Discussion
We have proposed an efficient scheme for the preparation of a perfect EPR state of the macroscopic mir-
ror and the collective mode of two optical fields in an optomechanical cavity. By tuning the laser pulses 
to the blue sideband of the average frequency of cavity modes, we have demonstrated that the oscillating 
mirror has the effect of inducing a coherence between the modes which is crucial for collective steer-
ing of the mirror. We also demonstrate the robustness of the collective steering against thermal noises 
and mechanical damping, and conclude that our scheme can be readily implemented with the existing 
experimental techniques. The collective steering is a newly encountered feature which opens promis-
ing perspective for the realization of secure multi-mode quantum cryptography and perfect one-sided 
device-independent quantum secret sharing.

Methods
The derivation of Langevin equation (1).  The full Hamiltonian for the system in the interaction 
picture, including the laser driving term and the nonlinear radiation pressure interaction, is given by

H a a a a b b g a a b b g a a b b

iE a a iE a a 12

I m m m m m m m01 1 1 02 2 2 01 1 1 02 2 2

1 1 1 2 2 2

    ω= Δ + Δ + + ( + ) + ( + )

+ ( − ) + ( − ), ( )

† † † † † † †

† †

where Δ 0j =  ωj −  ωL(j =  1, 2) is the detuning (for the case of a cavity with fixed length) of the laser fre-
quency from the frequency of the jth cavity mode, g0j is the single-photon coupling strength of the jth 
cavity mode to the mirror.

Figure 3.  The robustness of the collective steering against thermal noises. Collective steering parameter 
Em|W as a function of r for different values of n0 and n. Parameters used here are γ/G =  0.1, (a) n0 =  n =  0 
(solid), n0 =  n =  0.5 (dashed), n0 =  n =  5 (dotted); (b) n0 =  0 and n =  100 (solid), n =  600 (dashed), n =  1000 
(dotted). The inset of (b) shows the threshold of n for each γ/G, below that collective steering can occur over 
the entire range of r.

Figure 4.  The effect of mechanical damping. Collective steering parameter Em|W as a function of r and γ/G 
for n0 =  n =  0.
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The quantum Langevin equations for the annihilation operators of the cavity modes aj, the position 
xm and momentum pm operators of the mirror, are given by
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where x b b p b b i2 2m m m m m m= ( + )/ , = ( − )/† †  are the position and momentum operators of the 
mechanical oscillator, κj and γ are, respectively, the damping rate of the cavity mode j and the mirror. 
aj

in and ξ are Langevin noise terms which are taken to be statistically independent with nonzero corre-
lated functions a t a t t tj j

in in δ( ) ( ′) = ( − ′)†  (in the optical vacuum state), and 
t t t t n t t2 1ξ ξ ξ ξ δ( ) ( ′) + ( ′) ( ) = ( + ) ( − ′), where n is the mean number of the thermal phonons of 

the mechanics.
Next, we write each operator in equation (13) as a c-number plus a fluctuation operator, aj =  αj +  δaj, 
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are the mean amplitudes of the cavity fields, the momentum and position of the mirror. g x2j j j s0 0Δ = Δ +  
is the effective detuning including the radiation pressure effects, α= | |g gj j j0

 is the effective coupling 
strength of the jth cavity mode to the mirror. We then arrive to the following linearized Langevin equa-
tions for the fluctuation operators
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Denoting the average frequency of the cavity modes by ω0 =  (ω1 +  ω2)/2 and the frequency difference 
by Δ  =  (ω1 −  ω2)/2, we focus on the case of ωL =  ω0 +  ωm, i.e. the laser frequency ωL on resonance with 
the blue sideband of the average frequency ω0 of the cavity modes. Consider a frame rotating with ωm 
by substituting δ δ→ ω−a a ej j

i tm , a a ej
in

j
in i tmδ δ→ ω− , b b em m

i tmδ δ→ ω , in the limit gj ≪  κj ≪  ωm, we then 
obtain the Langevin equation (1) for the fluctuation operators within rotating-wave approximation.

The solutions for the variances of the output modes.  The expressions for the bipartite and tri-
partite steering parameters are in terms of the variances and correlation functions. Here, we give out the 
quadrature components of the output fields in terms of the quadrature components of the input fields. 
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