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Inflammation is a key characteristic of kidney disease, but this immune response is

two-faced. In the acute phase of kidney injury, there is an activation of the immune cells

to fight against the insult, contributing to kidney repair and regeneration. However, in

chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious

role, actively participating in disease progression, and contributing to nephron loss and

fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients

present sub-clinical inflammation, activation of immune circulating cells and therefore,

anti-inflammatory strategies have been proposed as a common therapeutic target for

renal diseases. Recent studies have highlighted the plasticity of immune cells and the

complexity of their functions. Among immune cells, monocytes/macrophages play an

important role in all steps of kidney injury. However, the phenotype characterization

between human and mice immune cells showed different markers; therefore the

extrapolation of experimental studies inmice could not reflect human renal diseases. Here

we will review the current information about the characteristics of different macrophage

phenotypes, mainly focused on macrophage-related cytokines, with special attention to

the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage

marker CD163, and their role in kidney pathology.
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INTRODUCTION: ROLE OF IMMUNE CELLS IN THE ONSET AND
PROGRESSION OF KIDNEY DISEASE

Renal inflammation arises as a protective response after kidney injury to fight against the
initial insult and to establish tissue repair. However, if the reparative processes fail, this
inflammatory response could be deleterious, participating in the kidney disease progression
(1). This inflammatory response involves many different populations of immune infiltrating
cells, including monocytes/macrophages, neutrophils, CD8+ and CD4+ lymphocytes, dendritic
cells, mast cells and natural killer cells (2). Importantly, in chronic kidney disease (CKD),
regardless of the underlying etiology, there is a persistent activation of the inflammatory response,
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characterized by immune cell recruitment throughout the
kidney, leading to a local overproduction of growth factors
and pro-fibrotic cytokines. This altered environment could
activate different cellular and molecular processes, which cause
progressive nephron loss and glomerular and interstitial fibrosis,
leading to end-stage kidney disease and/or premature death
(1–3). CKD is emerging as an important health problem due
to the absence of early diagnostic biomarkers and effective
treatments. Although many in vitro and experimental studies
have extensively characterized the distinctive macrophage
phenotypes in physiological and pathological conditions, the
differences between human and murine macrophages complicate
the extrapolation of preclinical results into human kidney disease,
being a limitation on approaching macrophages as a therapeutic
target to treat human CKD. Now, we review the macrophage
characteristics and phenotypes, comparing human and mice
data, and focused on novel macrophage-related cytokines as
biomarkers or therapeutic targets for kidney disease. We will
focus in two interesting candidates, the macrophage derived
chemokine CCL18, as well as its murine functional homologCcl8,
and the macrophage marker CD163.

MACROPHAGE CHARACTERISTICS AND
PHENOTYPES

Macrophages are innate immune cells and the main component
of the mononuclear phagocyte system. Therefore, they are crucial
in host defense against pathogens. Furthermore, macrophages
are present in almost every organ in adult mammals, where
they participate in multiple cellular processes and play a major
role in the maintenance of tissue homeostasis (4). Macrophages
are considered as tissue sentinels that maintain tissue integrity
by eliminating senescent and dead cells, and debris (5).
Moreover, they also participate in extracellular matrix (ECM)
remodeling, mainly through matrix metalloproteinases (MMPs)
release (6), and in the restoration of lost cells and intercellular
matrices through the production of various regenerative growth
factors (4).

Tissue resident macrophages (TRMs) can be classified into
two different subtypes depending on their origin; one derived
from circulating monocytes (7–9), and the other from embryonic
precursors that are able to locally proliferate and self-renew (10,
11). Monocytes are limited to the blood compartment, the spleen
and the bone marrow (12), but in response to inflammation,
and guided by the cytokine milieu and/or interactions with other
cells and microbial products, monocytes are quickly recruited
into injured tissues and then differentiate into several specific
macrophage phenotypes depending on micro-environmental
signals (8, 13).

Macrophage Polarization: M1 and M2
Phenotypes
Plasticity is the hallmark feature of macrophages. The term
“macrophage polarization” is used to refer to an estimate of
macrophage activation status and phenotype (11). The M1/M2
polarization axis was originally defined in the 1990s (14) to

describe the dichotomy in macrophage function regardless of
cytokines: classically activated macrophages/M1 microbicidal
macrophages and alternatively activated macrophages/M2
macrophages (Figure 1). M1 macrophages participate in the
infection clearance and act as an initial defense barrier. The
M1 phenotype is generated in response to pro-inflammatory
stimuli, such as pathogen/danger-associated molecular patterns
(PAMPs or DAMPs) in the presence of interferon gamma
(IFN-γ) (14, 15). M1 cells are characterized by their ability
to secrete significant amounts of pro-inflammatory cytokines
including tumor necrosis factor alpha (TNF-α), interleukin-1β
(IL-1β), interleukin-6 (IL-6), interleukin-12 (IL-12), interleukin-
15 (IL-15), interleukin-18 (IL-18), and interleukin-23 (IL-23)
(16–18). M2 macrophages can be a “two-edged sword.” On one
side, the anti-inflammatory phenotype is essential for adequate
tissue repair; on the other side, it is a potential mediator of
fibrosis and scarring (15). These M2 macrophages can release a
different cytokine profile, such as transforming growth factor-β1
(TGF-β1), interleukin-10 (IL-10), C-C Motif Chemokine Ligand
17 (CCL17), C-C Motif Chemokine Ligand 18 (CCL18) and
C-C Motif Chemokine Ligand 22 (CCL22) (Figure 2) (19–24).
The macrophage population is currently thought to represent
a continuous phenotype ranging between M1/M2 extremes
and including other ill-defined populations, as commented
above (Figure 1). Moreover, the M1/M2 classification is not
representative of in vivo events, given that M1 and M2 stimuli
do not exist alone in tissues. While a much broader spectrum of
innate immune responses has been characterized, the M1/M2
axis remains the main macrophage polarization axis in vivo (25).

Most of the earliest studies on macrophage polarization were
based on in vitro stimulation with different combination of
cytokines. One of the most important regulators of macrophage
differentiation is the colony-stimulating factor 1 receptor
(CSF1R). This is a transmembrane tyrosine kinase receptor
expressed on almost all mononuclear phagocytic cells (26).
Csf1r gene deletion depleted macrophages in several tissues.
Although this study demonstrates its key role in macrophages
development, it also showed that some macrophages were still
present, indicating the involvement of other growth factors
in macrophage differentiation (27), including Granulocyte-
macrophage colony-stimulating factor (GM-CSF), interleukin-3
(IL-3), vascular endothelial growth factor (VEGF), and fms-like
tyrosine kinase 3 ligand (Flt3L) (28–30). Macrophages respond in
different ways to macrophage colony-stimulating factor (M-CSF)
and GM-CSF with substantial polarizing effects. These factors
have been used to study in vitro differentiation/polarization
of macrophages (31–33). In this sense, GM-CSF activates the
inflammatory program and extensive DNAmethylation changes,
while M-CSF-polarized cells (less differentiated state) show
characteristics of anti-inflammatory repairing macrophages (33).
Further research led to a sub-classification of M2 macrophages
into M2a, M2b, and M2c described as wound-healing, immune
complexes-related or regulatory macrophages, respectively (11,
16, 34). M2a activation induced by IL-4 or IL-13 was associated
to changes in surface markers, including decreased CD14
expression, and upregulation of mannose receptor (CD206),
CD209, and CD23. In M2a macrophages, pro-inflammatory
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FIGURE 1 | Macrophage polarization. Macrophages (Mθ) have a great plasticity and have different functional activation states and phenotypes that allow different

specialized functions. The macrophage population represents a continuous phenotype ranging between M1/M2 extremes, characterized by a specific secretome

(mainly cytokine and chemokines) and surface markers.

cytokine expression is lower than in M1, but they release several
factors, including CCL18 and vascular Endothelial Growth
Factor (VEGF) (35). M2a can also secrete ECM components,
like soluble fibronectin, and therefore their primary function is
thought to be related to wound healing and tissue remodeling
and repair (36). M2b cells are elicited in vitro by stimulation with
LPS or IL-1β plus high concentrations of immune complexes.
M2b macrophages are considered as functional converter of M1
cells with low IL-12 and high IL-10 production. Interestingly,
they selectively produce the C-C Motif Chemokine Ligand
(CCL1) (37). The M2c category includes cells stimulated with
IL-10, TGF-β1 and glucocorticoids, being a heterogeneous
group, but characterized by high expression of the surface
marker CD163 (38). RNAseq studies have identifiedM2c-specific
genes associated with angiogenesis, matrix remodeling, and
phagocytosis, including CD163 (39). Accordingly, the analysis
of the M2c macrophage-conditioned media revealed elevated
production of MMPs (39). Due to the controversies in the

field, a specific nomenclature for cytokine-induced macrophage
polarization in vitroM (cytokine) have been proposed (40).

Originally, the distinction between M1 and M2 phenotypes
was also based on differences in arginine metabolism (14),
but recent research has unraveled the metabolic differences
associated with macrophage phenotype switching (41). As an
overview, and based on the premise that M1 macrophages kill
pathogens and M2 resolve inflammation and tissue repair, M1
are more likely to be involved in catabolic pathways, and M2
in anabolic ones (42). Therefore, M1 tend to rely on working
aerobic glycolysis likewise fatty acid biosynthesis, because of the
speed of producing ATP, but it also have impaired oxidative
phosphorylation (43). Moreover, in M1 macrophages, nitric
oxide synthase is highly expressed, playing an essential role in the
M1 function of killing pathogens, being nitric oxide the source
of reactive oxygen species (ROS) with antimicrobial properties
(36, 44). On the other hand, M2 are more suitable to trigger
fatty acid oxidation as energy-production pathway (42). These
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FIGURE 2 | Macrophages derived cytokines can contribute to kidney damage. Macrophages can secrete a large array of molecules, including producing

pro-inflammatory mediators, including IL1, Il6, and TNF, anti-inflammatory cytokines, such as IL-10, and profibrotic factors, like TGF-β. Among the M2 macrophage

related factors CCL18 is a recent described cytokine and a potential biomarker of disease progression.

macrophages secrete insulin-like growth factor 1 (IGF-1) (45),
TGF-β1, and VEGF (46), as well as use arginine to produce
precursors of collagen (47), thereby dampening inflammation.

Though we are aware that it may represent an
oversimplification, since most of the previous literature has
used the M1/M2 classification nomenclature, this terminology
has been maintained in some parts of this review.

Comparison of Human and Mammalian
Macrophages: Limitations, Similarities, and
Future Perspectives
A limitation in the field of macrophage research is the
extrapolation of preclinical studies to humans. Macrophages play
a key role in the inflammatory response, but the pathogen type
that infects humans can be different from other species, including
rodents, as well as the molecules released by macrophages to
control infections.

The studies investigating M1/M2 macrophage polarization,
some of them included in the previous section, were done using
mouse or humanmacrophages of different cell sources; including
isolated circulating monocytes, bone marrow-derived cells or

peritoneal macrophages, as well as established cell lines (such
as THPs or RAW 264.7). A macrophage comparative study
evaluating different cell sources depicted similarities between
mouse and human cytokine profiles stimulated with a specific
combination of cytokines, such as CXCL-10 and CXCL-11 for
M (LPS,IFN) and CCL17 and CCL22 for M (IL4, IL13)-induced
macrophage polarization (48). Although murine M1/M2-
polarized macrophage subsets can be distinguished on the basis
of combinatorial gene expression profiles, the identification of
equivalent subsets in humans is still unresolved. Another key
point is the specific M1/M2 macrophage subsets markers. In
humans, similarly to mice, three monocyte subsets have been
described according to differential expression of CD14 and CD16
on HLA-DR+ cells (49). In human macrophages, CD68 is a
general marker, whereas HLA-DR and CD163 are M1 and M2
markers, respectively (49, 50). Murine and human macrophages
express the antigens CD68, CD11b, CSF1R, and CD163 (5).
F4/80 is expressed on most tissue macrophages in the mouse
and it has been extensively studied by immunohistochemistry,
but has limited usefulness in humans as F4/80 is predominantly
expressed on eosinophils (51). Recent research is focused on
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the search of additional markers. The early growth response
protein 2 (Egr2) and c-Myc have been described in murine
models to identify in vivo polarized M2 cells. One the other
hand, some in vivo pro-inflammatory factors have been shown
to be M1 macrophage markers, such as G-protein-coupled
receptor 18 (Gpr18), formyl peptide receptor 2 (Fpr2), CD40,
and CD38 (52, 53). Among them, CD38 could be also a
marker of M1 pro-inflammatory macrophages in humans (54).
Comparative biology, together with omics technologies, such
as transcriptomics, metabolomics, proteomics, and epigenomics
could potentially be employed to assess similarities between
mouse and human macrophages (4). Recently, the single-cell
RNA sequencing across multiple mammalian species has led
to the identification of CD74 and CD81 as surface markers
for kidney resident macrophages (55). Future studies in human
biopsies of different pathologies using cutting edge technologies
will reveal human macrophages characteristics in each state of
the disease.

MACROPHAGES IN RENAL DISEASES:
PHENOTYPES AND FUNCTIONS

Macrophages participate in immune surveillance and in the
regulation of kidney homeostasis. The macrophage response
to kidney injury varies enormously depending on the nature
and duration of the insult (23). Macrophages participate in the
inflammatory response, both in acute kidney injury (AKI) and in
CKD. They can promote kidney repair or contribute to the AKI-
to-CKD transition and fibrosis, highlighting their remarkable
plasticity (2, 56).

Macrophages in AKI: From Preclinical Data
to Human Studies
Macrophages can actively participate in all AKI-related
processes, including cell death, resolution/regeneration phase
or progression to kidney fibrosis (57). Importantly, macrophage
phenotypes can change along AKI, depending on disease
stage and evolution. Circulating classical monocytes (CD11b+
Ly6Chigh in the mouse or CD14highCD16low in humans) are
recruited into the kidney, where they differentiate to pro-
inflammatory M1 macrophages during the early phase of
renal injury, in response to infection or cell damage (23).
Many preclinical data suggest that M1 macrophages play a
pathogenic role in the early phases of AKI. Studies done in
the model of folic acid in mice showed an upregulation of
cytokines and chemokines, such MCP-1/CCL2 (the main
macrophage chemotactic factor) associated to the presence of
M1 macrophages in the injured kidney at 48 h (58). Moreover,
in ischemia-reperfusion injury (IRI) in mice M1 macrophages,
identified by their high expression of iNOS, IL-12, IL-23,
and Ly6C, were detected also at 48 h (59). Accordingly,
depletion of kidney macrophages by liposomal clodronate
(LC) at the early stages of IRI reduces AKI and improves renal
repair. Furthermore, adoptive transfer of IFN-γ-stimulated
macrophages in LC-treated IRI mice worsens AKI (49).
Following AKI, once pathogens or injured cells are cleared up,

a rapid polarization of macrophage phenotypes is necessary
for tissue regeneration. During the regeneration process
there is a restoration of the polarized tubular epithelium and
basement membrane integrity, together with neovascularization,
ensuring the recovery of tissue oxygenation by the injured
microvasculature, leading to the reestablishment of the tubular
cell functionality (60, 61). Therefore, a decrease in infiltrating
M1 macrophages is essential to minimize injury of surrounding
cells, since macrophages release cytotoxic compounds that
do not distinguish self from exogenous pathogens (62, 63).
Preclinical studies have described high levels of IL-4, IL-10,
and IL-13, leading to a macrophage switch to M2 phenotype
characterized by high expression of arginase-1 (Arg1), mannose
receptor (MR, also termed CD206), chitinase-like protein
(e.g., Ym1), resistin-like protein (Fizz1) and CD36 (fatty acid
translocase), associated with down-regulated expression of
proinflammatory markers (i.e., IL-12 and iNOS) (49). On the
other hand, the prolonged presence of infiltrating macrophages
in the kidney might be associated with persistent release of
wound-healing growth factors, such as TGF-β1. This may turn
the initial wound healing process to pathological one, resulting
in further tissue damage, and contributing to the AKI-to-CKD
progression, and irreversible fibrosis (64). Nevertheless, data
on human macrophage phenotypes and related cytokines in
healthy and AKI kidneys have been scarcely studied, limiting
the translation of preclinical studies to humans. Moreover, the
mechanisms enabling macrophage switch from the M1 to M2
subset remain unclear (49). Studies of human AKI biopsies have
identified macrophages as the main cell type infiltrating the
kidney that persist during tissue repair, being CD163 expressing
-macrophages the predominant phenotype in the late phase of
AKI (50, 61). Future studies in human AKI at different disease
stages are needed.

Macrophages in CKD
Kidney infiltration by macrophages is common in human
CKD. The magnitude of macrophage infiltration correlates
with the severity of kidney injury suggesting an effector
function of macrophages in CKD (19). However, the role
of M1/M2 macrophages in human CKD progression is still
poorly understood. In experimental progressive CKD, M1
macrophages are present in the early phases of inflammation (23)
and, as this process progresses, M2 macrophages predominate
to encourage repair and/or fibrosis (65), as described in
unilateral ureteral obstruction (UUO) model (57, 66, 67).
Some studies have suggested that the M1/M2 macrophage
balance could influence CKD development (68, 69). Both
M1 and M2 responses coexist during CKD (68). Indeed, M2
macrophages could originate from M1 macrophages or from
proliferation/differentiation of monocytes (23, 65, 68). Some
evidences suggest that macrophages can directly promote kidney
fibrosis. The CD206+ subset of M2 macrophages is strongly
associated with kidney fibrosis in both human and experimental
diseases (23). Indeed, bone marrow-derivedM2-type pro-fibrotic
macrophages are highly proliferative, which may contribute to
promote kidney fibrosis in experimental models such as UUO
and the Adriamycin nephropathy (70–72).
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Macrophages in Hypertension and Related
Kidney Damage
In experimental hypertension, M2 macrophages expressing
Mouse Chitinase 3-like 3(Chi3l3)/YM1were associated with renal
fibrosis (73). Macrophages may promote hypertension through
the generation of M1 cytokines, such as TNF-α, IL-6, and IL-
1β, and reactive oxygen species (ROS) resulting in enhanced
renal sodium retention and organ damage (74, 75). In this sense,
recent studies suggest that the pro-inflammatory cytokine IL-
17A, produced by CD4+/T and γδ-lymphocytes, but by not
macrophages, plays a key role in the onset of hypertension and
in hypertensive end-organ damage, such as the heart, vessels
and kidneys (76, 77). However, the Th17 phenotype is sustained
by interleukin-23 (IL-23), produced mainly by M1 macrophages
(16), showing an interplay between macrophages and immune
cells in hypertension.

NOVEL MACROPHAGE-DERIVED
FACTORS AS POTENTIAL BIOMARKERS
IN CKD

Macrophages can release a wide array of cytokines, which varies
depending on pathological conditions. One well-known product
of macrophages is MCP-1/CCL2, a chemokine driving their
recruitment into injured tissues (78). Some clinical data suggest
that MCP-1/CCL2 could be a biomarker of kidney fibrosis and
function decline (79, 80). As commented above,M1macrophages
can produce TNF-α, IL-1β, IL-6, IL-12, IL-15, IL-18, and IL-
23 whereas M2 macrophages release TGF-β1, IL-10, CCL17,
CCL18, and CCL22 (Figure 2). Therefore, macrophage-derived
biomarkers in blood and other biological fluids can reflect
the activation of macrophage populations in tissues. In this
sense, IL-6 is now considered an important cardiovascular risk
biomarker (81). Some of these macrophage-derived cytokines
can be relevant as biomarkers of kidney disease progression.
Additionally, in the AKI-to-CKD transition, the evaluation of
M1/M2 macrophage markers or secretome-derived factors can
be used to monitor disease progression and/or remission (23).
We will now focus in two interesting candidates, the macrophage
derived cytokine CCL18, and the macrophage marker CD163.

CCL18 and Macrophage Functions
Chemokine (C-C motif) ligand 18 (CCL18) regulates several
inflammatory and immunological processes, participating in
cell recruitment (82, 83) and in phenotype transformations in
cancer cells (84). This chemokine is constitutively expressed
in the lung and in antigen presenting cells, such as dendritic
cells and keratinocytes (83). CCL18 is one of the most
highly expressed chemokines in human chronic inflammatory
diseases, including allergies, fibrotic disorders and certain
cancers (83). As commented before, M2 macrophages secrete
high amounts of CCL18 (35). Moreover, stimulation of
monocyte/macrophages with CCL18 induces an M2 spectrum
macrophage phenotype (20).

CCL18 as Biomarker of Disease Progression
In some diseases, CCL18 levels are used as a biomarker
of disease progression, for instance in Gaucher disease (85)
idiopathic pulmonary fibrosis (86), and chronic periaortitis (87),
as well as in several proliferative disorders, including breast (88)
and lung (89) cancer, glioblastoma (90), bladder cancer (91),
osteosarcoma (92), and prostate cancer (93, 94). However, there
is scarce information in kidney diseases. Serum CCL18 levels
were proposed as a biomarker of disease activity in ANCA-
associated crescentic glomerulonephritis (95). In patients with
CKD undergoing peritoneal dialysis treatment, CCL18 levels
in peritoneal effluent correlated with progressive ultrafiltration
failure and peritoneal fibrosis, suggesting that CCL18 could also
be a biomarker of peritoneal damage (96).

Mouse CCL8 Is the Functional Analog of Human

CCL18 and Shares CCR8 as Functional Receptor
The human CC chemokine receptor 8 (CCR8) is a seven-
transmembrane-spanning G protein–coupled receptor, whose
canonical ligand is Chemokine (C-C motif) ligand 1 (CCL1/I-
309) (97). CCL18 was recently discovered as another CCR8
agonist with less affinity than CCL1 (98). CCR8 is expressed
mostly in monocytes and thymus and acts as chemoattractant
receptor for Th2 cells (99). Moreover, this receptor was found
in lymphocytes in human healthy skin for preserving tissue
homeostasis (100). However, CCR8 is not expressed in human
kidneys in normal or pathological conditions, such as renal
transplant rejection (101). In contrast, CCR8 expression was
detected mainly in tumor renal cells of human renal cell
carcinoma (102). Accordingly, upregulated expression of CCR8
has been described in circulating cells of patients with bladder
and renal carcinoma (103).

Human CCL18 and mouse chemokine (C-C motif) ligand
8 (CCL8), named here as mCCL8, have been proposed to be
functional analogs (98). The CCL18 gene has only orthologs in
primates (104), whereas mouse Ccl8 gene (also known asMcp-2)
lacks a human ortholog as showed by phylogenetic analysis and
synteny mapping, but binds to CCR8 (105), and shares functions
with CCL18 (98). Importantly, human CCL8/MCP2 is a different
cytokine, exerting chemotactic actions for macrophages, and
signaling through CCR1 and CCR5 (106). Therefore, to avoid
confusion along the manuscript we have named mouse CCL8
here as mCcl8.

Human CCL18 and Mouse CCL8 in Human and

Murine Kidney Disease, Respectively
A microarray analysis of renal biopsy samples of patients
with newly diagnosed ANCA-associated crescentic
glomerulonephritis identified CCL18 as the most upregulated
gene (95). Immunohistochemical analysis identified myeloid
dendritic cells and CD68+ macrophages as CCL18-producing
cells, and determined that the density of CCL18+ cells
correlated with interstitial inflammation, crescent formation
and impairment of renal function at the time of biopsy. Serum
CCL18 levels also correlated with kidney disease activity, being
lower in patients with immunosuppressive rescue therapy and
higher in relapsing kidney disease (95). In accordance to these
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data, we found that CD163+/CCL18 expressing macrophages
colocalized with Gremlin protein expression in another cohort
of patients with ANCA-associated crescentic glomerulonephritis
(107). In this study, we proposed urinary Gremlin levels
as a potential biomarker of disease progression, showing a
parallelism to CCL18. Despite these comprehensive studies,
there are no published data on CCL18 in other human kidney
diseases. In cultured human tubular cells, CCL18 increased the
production of fibronectin in diabetic conditions (108). On the
other hand, there is scarce information about the role of mCCL8
in preclinical kidney disease. In murine renal artery stenosis,
kidney mCcl8 gene expression was higher than in control mice
(109). However, in cultured murine tubular cells, we have found
that these cells lack Ccr8 expression and were not responsive to
mouse recombinant CCL8 protein (110). In experimental folic
acid-induced AKI, kidney mCcl8 expression was unchanged in
the acute phase (24–72 h). However, kidney mCcl8 expression
was upregulated at 7 days, a time point associated to the
AKI-to-CKD transition. In UUO, kidney mCcl8 expression was
already increased at 5 days (111), and increased progressively
over time (Figure 3). The evaluation of M1/M2 cytokine profiles
showed that kidney mCcl8 expression correlates to M1-related
cytokine downregulation and M2 cytokine overexpression.
Therefore, these data suggest a potential role of mCcl8 in mouse
macrophage polarization toward the M2 phenotype, helping to
maintain chronic inflammation and favoring kidney fibrosis.

We previously showed that increased M2 macrophage
numbers associated to peritoneal CCL18 effluent concentrations
in patients with CKD undergoing peritoneal dialysis (96).
Moreover, in a murine model of exposure to peritoneal dialysis
fluids (112) we have found that mCcl8 expression was increased
associated to macrophage infiltration (113), supporting the
concept of mouse Ccl8 as a functional analog of human CCL18.

CD163 in Kidney Injury
CD163 is a glycosylated membrane protein, member of the
scavenger receptor cysteine-rich family, also known as the
hemoglobin scavenger receptor (13, 114, 115). CD163 is
expressed nearly exclusively by cells of monocytic origin (e.g.,
monocytes, macrophages, some dendritic cells, and some tumor
cells) presenting high expression levels in macrophages (13,
114, 115). By ectodomain shedding, the extracellular portion of
CD163 can be released from the cell surface into circulation, in
a process regulated by ADAM17/TACE (tumor necrosis factor
α-converting enzyme) (116). Soluble CD163 (sCD163) is stable
and measured easily in serum, and has been investigated as
potential biomarker of macrophage activation in various disease
contexts (117–119).

CD163 functions have been extensively reviewed (120, 121).
Early studies described that CD163 expression is a hallmark of
the wound healing macrophage, related to the resolution phase
of inflammation after cardiopulmonary bypass surgery (122) and
in human inflammatory skin disease induced by Cantharidin
(123). Some studies in animal models of renal damage pointed
out the key role of CD163 in the beginning and progression
of renal disease (124–126). In AKI induced by experimental
rhabdomyolysis increased levels of M1 macrophages were

observed in the early pathological stages. These macrophages
suffer a partial differentiation to M2 phenotype characterized by
CD163 overexpression via HO-1 activation and IL-10 release.
Moreover, peritoneal macrophages stimulated by myoglobin can
induce fibrosis through the regulation of profibrotic mediators,
such as TGF-β and CTGF/CCN2 (124). In cisplatin-induced
nephrotoxic damage in rats increased levels of CD163 M2
macrophages associated to fibrosis were found (126). Other
study in Lupus nephritis (LN) in mice described an increased
CD163+/CD68+cell ratio. In addition, Cd163 gene expression
was increased in LN mice while Ho-1, levels were reduced, the
last one associated to elevated Bach1 and Il-6 expression. The
gene blockade of Bach1 in mice (Bach1-deficient MRL/lpr mice)
improved the loss of renal function in experimental LN assessed
by BUN levels (125).

In vitro studies in human macrophages found that CD163
overexpression induces a change on the cytokine profile
secretion from pro-inflammatory M1-related cytokines to
M2-cytokines (127). Importantly, CD163+/CD68+ macrophages
may be involved in the pathogenesis of proliferative glomerular
crescents, such as in ANCA-associated glomerulonephritis
or active LN. CD163+/CD68+ macrophages were found in
glomerular crescents and were correlated to proteinuria and
to estimated glomerular filtration rate (eGFR) (positively
and negatively, respectively) (128). Moreover, two different
M2 macrophages populations, CD163+ and CD206+, were
mainly expressed in fibrous crescents and were more common
in Lupus nephritis (LN) and ANCA-associated vasculitis
than in IgA nephropathy and Henoch Schönlein purpura
glomerulonephritis (129, 130). Patients with early stage of
idiopathic membranous nephropathy had higher levels of
circulating CD14+/CD163+, CD14+/CD163+/CD206+,
and CD14+/CD163+/CD206+/CD115+ macrophages in
comparison with healthy controls (131). M2-macrophages
were considered the dominant subpopulation in human
LN and M2a subpopulations were associated with disease
progression (132). In ANCA glomerulonephritis, urinary
CD11b+ and CD163+ correlated with leukocyte recruitment
in the kidney (133). Indeed, urinary sCD163 is a marker of
human glomerulonephritis (118, 134) and active renal vasculitis
(135, 136). On the other hand in LN (119), sCD163 in the urine
is considered as a marker of disease activity and treatment
response (137, 138). Interestingly, CD163+ cells in crescents
of ANCA glomerulonephritis patients colocalized with CCL18
(95) and Gremlin (107). Both CCL18 and Gremlin levels
have been independently proposed as potential biomarkers of
disease progression (95, 107). These two independent studies
suggest that the M2 macrophage secretome could be a source of
biomarkers of kidney disease progression, mainly in crescentic
glomerulonephritis. Accordingly, in peritoneal dialysis patients,
CD163+ macrophages were present in peritoneal effluents
and increased during peritonitis. Moreover, peritoneal CCL18
effluent concentrations correlated with decreased peritoneal
function, showing the contribution of macrophage-derived
cytokines to peritoneal damage and fibrosis (96). Despite there
are few data about sCD163 in human diabetic nephropathy
some studies described that sCD163 levels were also strongly

Frontiers in Medicine | www.frontiersin.org 7 July 2021 | Volume 8 | Article 688060

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Cantero-Navarro et al. Macrophages in Kidney Diseases

FIGURE 3 | Kidney Ccl8 gene expression is associated to M2 cytokines in experimental kidney injury. Kidney Ccl8 expression and M1 and M2-related factors were

evaluated in CKD models: unilateral ureteral obstruction (UUO) and the acute and chronic phase of folic acid (FA) nephropathy mice [data from Cantero-Navarro et al.

(110)].

associated with later development of type 2 diabetes in both lean
and obese subjects, likely reflecting macrophage recruitment in
the adipose tissue (117, 139–143) and in the liver (144–146),
an effect associated to ADAM17/TACE-mediated shedding
of TNF-α and sCD163 (116). Diabetic patients had higher
numbers of circulating CD163+ monocytes (147). In addition,
sCD163 was also identified as a good risk biomarker of
diabetic nephropathy and/or diabetic retinopathy (148). Anti-
inflammatory CD163+ macrophages were elevated in glomeruli
from diabetic patients and were associated with pathological
features such as tubular atrophy, interstitial fibrosis and
glomerulosclerosis (149). In murine RAW264.7 macrophages
preincubated with high glucose, calcitriol (1,25(OH)2D3)
treatment blockaded M1 macrophage activation and M2
phenotype differentiation. The same result was observed in
streptozotocin (STZ)-diabetic rats treated with calcitriol (150).
Moreover, the uremic toxins that are accumulated in the last
stage of renal disease have a role in M2 induction. A study in
THP-1 cells showed that indoxil sulfate (IS) induced CD163
expression and transition to macrophages through AhR/Nrf2
activation (151). Finally, other study linked the increase of fat
mass with elevated levels of sCD163, suggesting that adipose
tissue macrophages play a key role in CKD proinflammatory
state (140).

sCD163 was also been found in heme-related human
kidney injury, such IgA nephropathy (152), intravascular
hemolysis (e.g., paroxysmal nocturnal hemoglobinuria)
(153), favism (154), and rhabdomyolysis AKI (124).
In macrophages of patients with IgA nephropathy and
macroscopic hematuria-related AKI, CD163 was associated
with incomplete recovery of kidney function (152, 155)
describing as the predominant subpopulations in kidney
tissues, the M2a (CD206+/CD68+) and M2b (CD86+/CD68+)
macrophages (130).

TARGETING MACROPHAGE RELATED
PRO-INFLAMMATORY CYTOKINES AS
THERAPEUTIC APPROACH FOR KIDNEY
DISEASE

There have been multiple attempts to inhibit or modulate the
inflammatory response to prevent or retard CKD progression.
The most widely used approaches to modulate macrophage levels
and/or phenotypes have been directed to M1-related cytokines,
such as IL1, IL-6, and TNF-α. We now discuss preclinical
studies targeting those inflammatory mediators and the key

Frontiers in Medicine | www.frontiersin.org 8 July 2021 | Volume 8 | Article 688060

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Cantero-Navarro et al. Macrophages in Kidney Diseases

monocyte/macrophage chemotactic factor MCP-1/CCL2, and
the potential translation to humans.

Interleukin-1 Blockade in Experimental and
Human Kidney Disease
The earliest studies targeting macrophage related cytokines
tested IL-1 strategies. Treatment with an IL-1 receptor (IL-1R)
antagonist (IL-1Ra) ameliorated experimental anti-glomerular
basement membrane antibody-associated glomerulonephritis
(anti-GBM) in rats (156) as well as spontaneous IgA nephropathy
in ddYmice (157). Gene deletion of IL-1 Type 1 Receptor (IL1R1)
or IL-1β demonstrated that IL-1β but not IL-1α contributed to
crescent formation and inflammatory cell recruitment in murine
anti-GBM crescentic glomerulonephritis (158). Similarly, genetic
IL1R1 deletion modestly improved survival and attenuated
cyst volume in experimental murine ADPKD (159). The IL-
1R1 antagonist anakinra prevented nephropathy in diabetic
mice (160). Accordingly, anti-IL-1β antibody attenuated the
progressive loss of kidney function and preserved podocytes in
murine loss of kidney mass in diabetic db/dbmice (161). Human
studies also showed beneficial effects, including improved
vascular endothelial function in patients with non-dialysis-
dependent CKD after 12 weeks of treatment with the IL-1
inhibitor rilonacept, whereas no changes in kidney function
were observed nor expected in such a short follow-up (162).
A clinical trial of the canakinumab (neutralizing antibody
against IL-1β) observed a reduction in the cardiovascular
event rates in atherosclerosis patients with CKD without
modifying kidney function (163). However, a clinical trial of
gevokizumab (antibody against IL-1β) in diabetic kidney disease
was terminated prematurely, based on company priorities (164).

TNF-α Blockade
There are multiple preclinical examples of kidney protection
afforded by anti-TNF strategies. Administration of a pegylated
form of the soluble TNF type 1 receptor (PEG-sTNFR1)
reduced renal fibrosis in experimental rat CKD induced
by renal mass reduction (165) and kidney inflammation
and tubular cell apoptosis in rat UUO (166). Similarly,
TNF-α gene deletion or silencing attenuated kidney injury
induced by high fat diet in mice by reducing fibrosis and
glomerulosclerosis (167). A neutralizing anti-TNF-α antibody
reduced glomerular inflammation, crescent formation, and
tubulointerstitial scarring, and preserved kidney function in
rat anti-GBM crescentic glomerulonephritis (168). An anti-
TNF-α antibody decreased albuminuria, plasma creatinine,
histopathologic changes, and kidney macrophage recruitment
in an experimental type I diabetes in B6-Ins2Akita/MatbJ
mice (169). Moreover, macrophage-specific TNF-α-deficient
mice (CD11bCre/TNF-αFlox/Flox; C57BL/6) presented the same
beneficial effects after streptozotocin-induced diabetes (169).
In high fat diet-induced kidney injury, TNF-α deletion
reduced kidney fibrosis, glomerulosclerosis, oxidative stress,
inflammation and apoptosis (167). Despite promising preclinical
results, targeting TNF-α in human kidney disease for kidney
protection is controversial. A clinical trial of infliximab in
LN failed in the recruitment phase (NCT00368264). However,

anti-TNF-α monoclonal antibodies are used routinely to treat
rheumatoid arthritis (RA), ankylosing spondylitis (AS) or
psoriasis. Thus, there is mixed information on such patients and
kidney disease. Some reports observed that in RA patients with
CKD, anti-TNF-α drugs (adalimumab, etanercept, or infliximab)
had no deletereous effect on kidney function (170) or presented
slower loss of renal function (171). However, cases of AKI, focal
segmental glomerulosclerosis (FSGS) or IgA nephropathy have
been reported in AS, RA, or inflammatory Bowel Disease patients
treated with anti-TNF-α drugs (172–176).

IL-6 Blockade in Experimental and Human
Kidney Disease
Due to the key role of IL-6 in kidney diseases (177), the impact
of targeting IL-6 has been studied. However, preclinical results
differed for some kidney diseases. Neutralizing IL-6 (178), IL-6
receptor (IL-6R) (179) or genetic IL-6 deletion (180) decreased
disease severity in different experimental models of LN in MRL-
Faslpr and NZB/WF1 mice. However, anti-IL-R6 or anti-IL-6
strategies increased the severity of murine anti-GBM nephritis,
while selective inhibition of IL-6 trans-signaling by sgp130Fc
did not (181). Similarly, genetic IL-6 deletion did not decrease
fibrosis in murine UUO (182), whereas treatment with Fc-gp130
reduced inflammation, immune cell infiltration and fibrosis in
both murine UUO and IRI (65). These findings fit well with
the concept that IL-6 classic signaling is anti-inflammatory and
protective, whereas IL-6 trans-signaling is pro-inflammatory.

In addition to inflammation, IL-6 controls glucosemetabolism
and the hypothalamic-pituitary-adrenal axis among other
processes which could result in deleterious effects when IL-
6 is modulated (183). Therapies modulating IL-6 (olokizumab
or clazakizumab) or the α subunit of its receptor (tocilizumab
or sarilumab) have been used clinically to treat inflammatory
diseases, such as RA, systemic lupus erythematous (SLE), diabetes
and, more recently, coronavirus disease 2019 (COVID-19) (184,
185) that may develop kidney disease, but no clinical trial
studied kidney function or renal injury as primary outcome.
An ongoing trial is exploring the efficacy of clazakizumab to
preserve kidney function in highly sensitized patients awaiting
kidney transplantation (NCT03380962) or in kidney transplant
receptors with late antibody-mediated rejection (NCT03444103).

MCP-1/CCL2 Blockade
MCP-1/CCL2 is the main factor driving monocyte recruitment
and differentiation during inflammatory response. Therefore,
MCP-1/CCL2 has been targeted in preclinical kidney disease
(186). Both genetic deficiency of the MCP-1 receptor (CCR2)
or MCP-1/CCL2 antagonism improved LN and vasculitis in
MRL/lpr mice (187, 188). Likewise, MCP-1/CCL2 neutralizing
antibody reduced glomerular macrophage infiltration and
decreased crescent formation in experimental rat and murine
crescentic glomerulonephritis (189, 190). Targeting MCP-
1/CCL2/CCR2 was also protective in experimental diabetic
nephropathy. A CCR2 antagonist (propagermanium) protected
the kidneys in type 1 diabetic mice overexpressing type
2 nitric-oxide synthase (191), MCP-1/CCL2 gene deletion
decreased glomerular and interstitial macrophage accumulation
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and fibrosis in murine STZ-induced diabetic nephropathy
(192), and the MCP-1/CCL2 antagonistic Spiegelmer mNOX-
E36 (emapticap pegol) reduced the number of glomerular
macrophages and improved glomerular filtration rate (GFR)
in uninephrectomized db/db mice (193) and in STZ- diabetic
ApoE knockout mice (194). However, in experimental murine
Alport nephropathy (Col4a3-deficient mice), mNOX-E36
administration reduced glomerular and interstitial macrophage
recruitment, but did not improve glomerular or interstitial
histopathology or survival (195).

In humans, phase 2 clinical trials were promising in diabetic
kidney disease. A selective inhibitor of CCR2 (CCX140-B)
added to standard care (196) and the Spielgelmer NOX-E36
showed evidence of kidney protection in patients with type
2 diabetes and kidney disease (197). However, there are no
current ongoing phase 3 trials. In this regard, the standard
of care has been changed by the efficacy of sodium-glucose
cotransporter-2 (SGLT2) inhibitors and any future trial should
test the efficacy of new drugs on top of SGLT2 inhibition and
renin-angiotensin system (RAS) blockade (198). On the other
hand, there are ongoing phase 2 trials of CCX140-B (Ilacirnon)
for FSGS (NCT03536754, NCT03703908).

POLARIZATION OF M1 TO M2
MACROPHAGES IN EXPERIMENTAL
KIDNEY DISEASE

Inducing macrophage polarization has been also proposed
as a potential approach to reduce the kidney inflammatory
response (21, 199). Strategies to induce macrophage polarization,
that include stimulation with cytokines, miRNAs regulation or
genetic manipulation (199), have been extensively investigated
in preclinical studies to reduce the inflammatory response in
kidney diseases.

Cytokine-Induced Polarized Macrophages
Cell stimulation with different cytokines has been used to
induce macrophage phenotype polarization and polarized cells
were subsequently administered to treat experimental kidney
disease (199). Administration of spleen derived macrophages
(SPDM) polarized to M2 phenotype by IL-4/IL-13 stimulation
ex vivo decreased histological and functional kidney injury
as compared to M1 macrophages in experimental adriamycin
nephropathy (AN) in immunodeficient mice (200). Likewise,
transference of M2 macrophages generated ex vivo by incubation
of SPDM with IL-10/TGF-β1 decreased kidney inflammation,
structural injury and functional decline in the same model
(201). Similarly, the administration of M1 macrophages induced
by incubation with INF-γ increased tubular injury in murine
IRI while M2 macrophages induced by incubation with IL-
4 did not (59). In STZ-induced diabetic mice, transfusion of
SPDM polarized to M2 by incubation with IL-4/IL-13 decreased
tubular atrophy, glomerular hypertrophy, interstitial expansion
and kidney fibrosis (202). In murine nephrotoxic nephritis,
the transfusion of bone marrow-derived macrophages (BMDM)
polarized to M2 phenotype (CD206+) by ex vivo incubation with

IL-4/IL-13 reduced kidney injury, proteinuria, and glomerular
inflammatory cell infiltration (203). Treatment with both BMDM
polarized ex vivo to M2 macrophages by IL-4/IL-13 as well as in
vivo M2 polarization induced by IL-4/IL-13 injections, reduced
renal crystal formation in murine experimental kidney stone
disease (204). A more recent study corroborated the beneficial
effects of M2 transplantation in AKI. Peritoneal macrophages
isolated frommice under peritoneal dialysis were polarized toM2
by incubation with IL-4/IL-13 and then injected into the renal
cortex of mice with experimental ischemia reperfusion injury
(IRI). M2 macrophages administration improved kidney injury
and decreased inflammation compared to those injected with
non-activated (M0) macrophages (205). Finally, the intrarenal
administration of an Elastin-like Polypeptide (ELP-VEGF)
construct induced a clear polarization to M2 macrophage
phenotype in CKD in pigs and improved renal hemodynamics
and fibrosis, despite no differences in renal macrophage
infiltration were found compared to control (206).

Polarized Macrophages Induced by
Genetic Manipulation
Macrophages have been used successfully in cell therapy to
deliver targeted therapeutic genes in models of inflammatory
kidney disease. The adoptive transfer of bone-marrow-derived
macrophages (BMDM) genetically modified with adenoviral
particles encoding the anti-inflammatory cytokine interleukin
1 receptor antagonist (IL-1Ra) reduced kidney injury in
murine anti-GBM (207). Similar results were observed using
the same approach in unilateral ureteral obstruction (UUO)
mice: the transference of macrophages encoding IL-1Ra after
ureter obstruction reduced kidney interstitial macrophage
infiltration, overall inflammation and fibrosis (208). In the
same way, rat alveolar macrophages (NR8383) transfected
with an adenovirus encoding IL-4 reduced albuminuria and
glomerular macrophage infiltration (209). The delivery of IL-
10-expressing macrophages or a dominant-negative I-KB in
rat nephrotoxic nephritis also reduced kidney injury (210,
211). In murine kidney ischemia reperfusion injury (IRI), the
transference of adenoviral transduced BMDM encoding Heme
oxygenase-1 (HO-1)preserved kidney function (212). Similar
results were observed in a rat kidney IRI. Herein, transference
with adenoviral-IL-10-transduced BMDM markedly reduced
albuminuria, the number of pro-inflammatory macrophages and
fibrosis (210).

Macrophage Polarization Induced by
miRNAs
MicroRNAs (miRNAs) are small, single-stranded non-coding
RNAs (20–24 nucleotides) that regulate post-transcriptional
gene expression (213). Since their discovery, multiple potential
roles have been attributed to these molecules, including their
participation in the inflammatory response by regulating
multiple processes, including macrophage phenotype
polarization (214). The miRNA expression profiles in M1
and M2 macrophages have been characterized both in human
and in murine macrophages (215–217) (Table 1). A recent
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TABLE 1 | MicroRNA and macrophage polarization.

MicroRNA Polarization References

miR-9 M1 (214)

miR-127 (214)

miR-155 (214)

miR-125b (214)

miR-9-5p (214, 218)

pre-miR21 (219)

miR-199a-5p (220)

miRNA-19b-3p (221)

miR-124 M2 (214)

miR-223 (214)

miR-34a (214)

miR-132 (214)

miR-125a-5p (214)

miR-146a (214, 222,

223)

mature miR-21 (219)

review highlighted that miR-9, miR-127, miR-155, and miR-125b
promote M1 polarization while miR-124, miR-223, miR-34a,
let-7c, miR-132, miR-146a, and miR-125a-5p induce the M2
phenotype in both species (214). The relevance of some of
these miRNAs in the macrophage phenotype context has been
also corroborated in kidney disease with different results.
miR-146a regulated local chronic inflammation in autoimmune
glomerulonephritis in B6.MRLc1 mice, suggesting that it is a
potential therapeutic target (224). However, genetic miR-146a
deletion increased proteinuria, renal macrophage infiltration,
glomerular hypertrophy and fibrosis in murine streptozotocin-
induced diabetes (225). The anti-inflammatory effect of miR-146
through regulation of IL-6 expression was also demonstrated
in macrophages derived from cystic fibrosis patients (222).
Similarly, a transwell assay using glomerular mesangial cells
from LN patients stimulated with a miR-146 mimic showed a
reduction in macrophage migration (223). In the same way,
although miR-9 has been reported to promote pro-inflammatory
macrophage phenotype, mice transfected with lentiviral vectors
expressing miR-9-5p were protected from UUO-induced kidney
fibrosis through decreased infiltrating monocytes/macrophages
and induction of metabolic reprogramming (218).

miR-21 is a key mediator of the anti-inflammatory response
in macrophages and has been proposed to exert a dual role. Pre-
miR21 polarizes macrophages to the M1 phenotype while mature
miR-21 polarizes to M2 and upregulates anti-inflammatory
targets, such as IL-10 (219). However, although miR-21 has
been widely studied in inflammatory conditions, its role in
experimental kidney disease reported controversial results. Thus,
while genetic deletion of miR-21 reduced kidney fibrosis in
murine UUO, IRI, Alport syndrome (226, 227) and polycystic
kidney disease (228), miR-21 was also reported to protect from
murine kidney IRI (229). Lademirsen sodium (RG 012), an
anti–miR-21, is currently undergoing phase 2 clinical trials for
Alport syndrome (NCT02855268).

Apart from the miRNAs expressed directly in macrophages,
miRNAs from extracellular vesicles also influence the
macrophage polarization process. For example, miR-199a-
5p present in extracellular vesicles from albumin-induced
tubular epithelial cells promoted the M1 macrophage phenotype
in mice with high fat diet (HFD)/STZ-induced diabetes
(220). Similar results were obtained in another recent study
demonstrating that miRNA-19b-3p from tubular epithelial-
derived exosomes promotes M1 macrophage activation in a
murine endotoxemia-induced AKI (221).

CONCLUSION

Macrophages actively participate in the initial phases on kidney
injury, as well as in kidney damage resolution and progression.
Current pharmacological treatments that present beneficial
effects in human CKD diminish macrophages infiltration
in the kidney (1), including the SGLT2 inhibitors (230).
Future investigations targeting macrophage polarization, and
macrophage-derived cytokines could provide novel therapeutic
approaches to further reduce the inflammatory response in
kidney diseases.

In spite of the intensive research done, the lack of
consistent nomenclature, and reliable polarization markers that
are conserved between species and between in vivo and in
vitro models of macrophage polarization has delayed progress
in the field and complicates the extrapolation of preclinical
results into human kidney disease (53). Moreover, it is necessary
to develop preclinical models that truly resemble the human
situation, something specially relevant in human kidney diseases
due to the complex etiology of CKD (1). Some studies
have been focused on comparative biology approaches on
macrophages to accelerate the translation into the clinic (231).
Moreover, individual variation in cytokine production in the
human population has been reported (232). Novel data on
transcriptional machinery of different macrophage subtypes have
increased the knowledge about macrophage functions (233,
234). However, the mechanisms of genetic regulation remains
unraveled. Future studies using cutting-edge technologies,
including single-cell RNA sequencing, genomics, and proteomics
approaches, as well as spatial transcriptomics in human
biopsies are needed to improve the understanding of cytokine
profiles, macrophage phenotypes and functions in different
human diseases, including AKI, AKI-to-CKD transition, and
CKD progression.
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