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OBJECTIVE — Fibroblast growth factor (FGF)-21 is highly expressed in the liver and regu-
lates hepatic glucose production and lipid metabolism in rodents. However, its role in the
pathogenesis of type 2 diabetes in humans remains to be defined. The aim of this study was to
quantitate circulating plasma FGF-21 levels and examine their relationship with insulin sensi-
tivity in subjects with varying degrees of obesity and glucose tolerance.

RESEARCH DESIGN AND METHODS — Forty-one subjects (8 lean with normal
glucose tolerance [NGT], 9 obese with NGT, 12 with impaired fasting glucose [IFG]/impaired
glucose tolerance [IGT], and 12 type 2 diabetic subjects) received an oral glucose tolerance test
(OGTT) and a hyperinsulinemic-euglycemic clamp (80 mU/m2 per min) combined with 3-[3H]
glucose infusion.

RESULTS — Subjects with type 2 diabetes, subjects with IGT, and obese subjects with NGT were
insulin resistant compared with lean subjects with NGT. Plasma FGF-21 levels progressively in-
creased from 3.9 � 0.3 ng/ml in lean subjects with NGT to 4.9 � 0.2 in obese subjects with NGT to
5.2 � 0.2 in subjects with IGT and to 5.3 � 0.2 in type 2 diabetic subjects. FGF-21 levels correlated
inversely with whole-body (primarily reflects muscle) insulin sensitivity (r � �0.421, P � 0.007)
and directly with the hepatic insulin resistance index (r � 0.344, P � 0.034). FGF-21 levels also
correlated with measures of glycemia (fasting plasma glucose [r � 0.312, P � 0.05], 2-h plasma
glucose [r � 0.414, P � 0.01], and A1C [r � 0.325, P � 0.04]).

CONCLUSIONS — Plasma FGF-21 levels are increased in insulin-resistant states and cor-
relate with hepatic and whole-body (muscle) insulin resistance. FGF-21 may play a role in
pathogenesis of hepatic and whole-body insulin resistance in type 2 diabetes.
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F ibroblast growth factors (FGFs) rep-
resent a group of peptides that regu-
late diverse biological functions,

including cell differentiation, cell growth,
and angiogenesis (1,2). Recently, a sub-
family of FGFs that interact with nuclear
receptors has been identified that plays an
important role in liver, bone, and adipose
tissue metabolism (3,4). This subfamily
contains FGF-19, which regulates energy
expenditure (5,6); FGF-23, which regu-
lates phosphate metabolism and excre-

tion (7); and the recently described FGF-
21, which regulates glucose homeostasis
(8,9).

FGF-21 is a novel protein that has
been implicated in the regulation of lipid
and glucose metabolism under fasting
and ketotic conditions (9,10). In murine
models, FGF-21 was reported to be ex-
pressed predominantly in liver (11), but
its expression has also been reported in
adipose tissue and pancreatic �-cells (12).
In a primate model of diabetes, Khari-

tonenkov et al. (9) reported a reduction in
plasma glucose, insulin, triglycerides,
LDL cholesterol, and HDL cholesterol
levels following 6 weeks of recombinant
FGF-21 administration. In diet-induced
obese mice, FGF-21 reversed hepatic ste-
atosis and improved insulin sensitivity
(13). In adipose tissue, FGF-21 was
shown to increase glucose uptake (9).
Based on these observations, FGF-21 has
been proposed as a potential therapeutic
agent for type 2 diabetes in humans (14).
However, few studies in humans have ex-
amined the relationship between FGF-21
and glucose/lipid metabolism. Chen et al.
(15) reported that patients with newly di-
agnosed type 2 diabetes had significantly
higher plasma FGF-21 concentrations
than nondiabetic control subjects, and
FGF-21 negatively correlated with fasting
plasma glucose. More recently, Zhang et
al. (16) found that FGF-21 concentra-
tions are elevated in obese nondiabetic in-
dividuals compared with lean healthy
control subjects and that the circulating
levels correlated positively with adiposity
and fasting insulin and negatively with
HDL cholesterol. Conversely, in patients
with anorexia nervosa, plasma FGF-21
concentrations are decreased and in-
creased following weight gain (17). In
the present study, we examined the rela-
tionship between plasma FGF-21 con-
centrations and direct measurements of
peripheral and hepatic insulin sensitivity
in subjects with varying degrees of obesity
and glucose tolerance.

RESEARCH DESIGN AND
METHODS — Forty-one subjects par-
ticipated in the study (8 lean subjects with
normal glucose tolerance [NGT], 9 obese
with NGT, 12 with impaired glucose tol-
erance (IGT), and 12 with type 2 diabe-
tes). All subjects were in good general
health based on medical history, physical
examination, screening blood chemistry
and hematologic tests, urinalysis, and
electrocardiogram. Weight was stable in
all subjects (�2 lb) for at least 3 months
before the study. None of the subjects
participated in any heavy exercise, and
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they were instructed not to engage in any
vigorous exercise for at least 3 days before
the study. None of the nondiabetic sub-
jects were taking medications known to
affect lipid and glucose metabolism. Sub-
jects who had ever received insulin or
thiazolidinediones were excluded. Each
study volunteer received 1) an oral glu-
cose tolerance test (OGTT) and 2) a hy-
perinsulinemic-euglycemic insulin clamp
with 3-[3H]glucose to examine both he-
patic and peripheral (primarily reflects
muscle) insulin sensitivity. The purpose,
nature, and potential risks of the study
were explained to all subjects, and written
voluntary consent was obtained before
their participation. All research proce-
dures were approved by the institutional
review board of the University of Texas
Health Science Center at San Antonio.

OGTT
Baseline blood samples for determination
of plasma glucose, free fatty acids (FFAs),
insulin, and C-peptide concentrations
were drawn at �30, �15, and 0 min. At
time zero, subjects ingested 75 g of glu-
cose in 300 ml orange-flavored water, and
plasma glucose, FFAs, and insulin were
measured at 15-min intervals for 2 h.

Hyperinsulinemic-euglycemic clamp
All studies were conducted in the general
clinical research center of the University
of Texas Health Science Center at San An-
tonio and began at 0700 h after a 12-h
overnight fast. A prime (25 �Ci)-
continuous (0.25 �Ci/min) infusion of
3-[3H]glucose was started, and 2 h (3 h
for diabetic subjects) were allowed for iso-
topic equilibration. In type 2 diabetes, the
priming dose of tritiated glucose was in-
creased in proportion to the increase in
fasting plasma glucose concentration. At
the end of the tracer equilibration period,
a primed-continuous insulin infusion (80
mU/m2 per min) was started, and plasma
glucose was measured every 5 min. Based
on the negative feedback principle, a vari-
able infusion of 20% glucose was adjusted
to maintain plasma glucose concentration
constant at each subject’s fasting glucose
level in the control group (18). In diabetic
subjects, plasma glucose concentration
was allowed to decrease to 100 mg/dl, at
which level it was maintained.

Analytical determinations
Plasma glucose was measured at bedside
with the glucose oxidase method (Beck-
man Instruments, Fullerton, CA). Plasma
insulin concentration was measured by

radioimmunoassay (Diagnostic Products,
Los Angeles, CA). Tritiated glucose spe-
cific activity was determined on depro-
teinized plasma samples as previously
described (19). Plasma FFA concentra-
tion was determined by an enzymatic cal-
orimetric quantification method (Wako
Chemicals, Nuess, Germany). Plasma
FGF-21 concentrations were measured
by radioimmunoassay (Phoenix Pharma-
ceuticals, Burlingam, CA) at baseline in
duplicate from plasma collected prior to
start of the euglycemic insulin clamp.
This assay has been reported to cross-
react specifically with human FGF-21
(100%). The intra- and interassay coeffi-
cients of variation were 3.6 and 3.9%,
respectively. Serum creatinine was mea-
sured with an automated enzymatic assay,
and glomerular filtration rate was esti-
mated with the Cockcroft-Gault formula
(20).

Calculations
Under steady-state postabsorptive condi-
tions, the rate of endogenous glucose
appearance (Ra) was calculated as the
3-[3H]glucose infusion rate (dpm/min)
divided by the steady-state plasma
3-[3H]glucose–specific activity (dpm/
mg). During the euglycemic insulin
clamp, the rate of whole-body glucose ap-
pearance (Ra) was calculated with Steele’s
equation (21), using a distribution vol-
ume of 250 ml/kg. Endogenous glucose
production (EGP) was calculated by sub-
tracting the exogenous glucose infusion
rate from Ra. The rate of insulin-mediated
whole-body glucose disposal (Rd) was de-
termined by adding the rate of residual
EGP to the exogenous glucose infusion
rate. In the postabsorptive state, fasting
plasma insulin is the primary determinant
of EGP (22). The hepatic insulin resis-
tance index was calculated as the prod-
uct of EGP and fasting plasma insulin
concentration (23). Similarly, since
fasting insulin concentration is the most
important regulator of fasting plasma
FFA concentration, adipocyte insulin
resistance was calculated as the product
of fasting plasma FFAs and fasting
plasma insulin concentration (24).

Statistical analysis
Data were expressed as means � SE, un-
less otherwise specified. SPSS version 15
statistical package (Chicago, IL) was used
for all calculations. Pearson’s or Spear-
man’s correlations were used to examine
the relationship between plasma FGF-21
levels and markers of insulin sensitivity,

as well as with anthropometric parame-
ters. ANOVA with post hoc analysis with
Bonferroni correction was used to com-
pare significant differences between
groups.

RESULTS

Study population and clinical
characteristics
Type 2 diabetic subjects were slightly, but
not significantly, older than subjects with
NGT. BMI was similar in obese subjects
with NGT, IGT, and type 2 diabetes. Type
2 diabetic individuals had significantly
higher fasting plasma glucose, plasma in-
sulin and triglycerides, and A1C com-
pared with lean subjects; NGT (Table 1).
Type 2 diabetes had significantly lower
HDL cholesterol concentration compared
with NGT. Subjects with IGT and type 2
diabetes had significantly lower whole-
body (primarily muscle) glucose uptake
compared with lean subjects with NGT
(Table 1). Hepatic insulin resistance
(EGP � fasting insulin) in obese subjects
with NGT was slightly, but not signifi-
cantly, elevated compared with NGT sub-
jects. However, subjects with IFG/IGT
and type 2 diabetes displayed signifi-
cantly greater hepatic insulin resistance
(P � 0.05). Similarly, the adipocyte insu-
lin resistance (FFA � fasting insulin) was
significantly higher in subjects with IFG/
IGT and type 2 diabetes.

Plasma FGF-21 changes in relation
to glucose tolerance
Plasma FGF-21 was higher in obese sub-
jects with NGT versus lean subjects with
NGT (4.92 � 0.17 vs. 3.88 � 0.30 ng/ml,
P � 0.04). Subjects with IGT (5.22 �
0.23 ng/ml, P � 0.05 vs. lean subjects
with NGT) and type 2 diabetes (5.27 �
0.23, P � 0.05 vs. lean subjects with
NGT) also had increased plasma FGF-21
levels (Fig. 1). Plasma FGF-21 concentra-
tion correlated with A1C (r � 0.325, P �
0.04), fasting plasma glucose (r � 0.312,
P � 0.05), and 2-h glucose (r � 0.414,
P � 0.01). There was also a direct associ-
ation between plasma FGF-21 and BMI
(r � 0.456, P � 0.001) in the entire
group. A recent report (25) demonstrated
elevated plasma FGF-21 levels in patients
with chronic kidney disease. We did not
observe any correlation between plasma
FGF-21 and either glomerular filtration
rate (r � 0.089, P � NS) or serum creat-
inine (r � 0.277, P � 0.08).

Chavez and Associates

DIABETES CARE, VOLUME 32, NUMBER 8, AUGUST 2009 1543



Relationship between FGF-21 and
whole-body and hepatic insulin
resistance
The insulin-stimulated rate of glucose dis-
posal (Rd) correlated inversely with
plasma FGF-21 concentration (�0.421,
P � 0.01) (Fig. 2). A positive correlation
also was observed between FGF-21 level
and hepatic insulin resistance index
(0.344, P � 0.034) (Fig. 3) and adipocyte
insulin resistance index (0.318, P �
0.045).

CONCLUSIONS — FGF-21 was dis-
covered during a high-throughput assay
for secreted proteins that increased glu-
cose uptake in 3T3L-1 adipocytes (9).
Subsequent studies (4,9,13) showed that
administration of recombinant FGF-21 in
rodent models of diabetes and in diabetic
rhesus monkeys improved blood glucose
and the lipid profile. However, in none of
these studies were the plasma levels of
FGF-21 compared between diabetic and
nondiabetic animals.

In the present study, we demonstrate
that plasma FGF-21 levels are elevated in
insulin-resistant states (obesity, IGT/IFG,
type 2 diabetes) and are inversely corre-
lated with both peripheral and hepatic in-
sulin sensitivity. This is consistent with
two other reports (15,16) in humans that
demonstrated elevated plasma FGF-21
concentration in obesity, IGT, and type
2 diabetes. The novelty of our study is
that we demonstrate for the first time in
humans that the increase in plasma
FGF-21 levels are strongly correlated
with the severity of whole-body (pri-
marily reflects muscle) and hepatic in-
sulin resistance.

Our study is in agreement with two
previous studies in Asians, in which in-
creased plasma FGF-21 levels were ob-
served in newly diagnosed, drug-naïve
diabetic subjects and in treated type 2
diabetic subjects (26). In a Chinese
population, plasma FGF-21 levels cor-
related with markers of the insulin re-
sistance (metabolic) syndrome (16).
However, this later study did not mea-
sure either hepatic or peripheral insulin
sensitivity.

In rodent models, FGF-21 stimulates
glucose uptake in 3TL3 adipocytes and
increases GLUT4 expression in adipo-
cytes. Arner et al. (27) demonstrated that
FGF-21 inhibits lipolysis in human adi-
pocytes and suggested that this may con-
tribute to the protein’s insulin-sensitizing
effect in humans. A synergistic interaction
has been described between FGF-21 and
rosiglitazone to stimulate glucose uptake
(28). Contrary to these observations, in
the present study plasma FGF-21 concen-
trations were positively correlated with
adipocyte insulin resistance. With regard
to the liver, in animal models FGF-21 has
been shown to be expressed primarily in
liver, and its glucose-lowering effects
of FGF-21 have been suggested to be me-

Table 1—Clinical characteristics

Lean subjects
with NGT

Obese subjects
with NGT

Subjects with
IFG/IGT

Type 2 diabetic
subjects

n 8 9 12 12
Age (years) 40 � 5 45 � 2 44 � 3 54 � 2
BMI (kg/m2) 24 � 1 32 � 2* 31 � 2* 34 � 1*
Systolic blood pressure

(mmHg) 119 � 3 129 � 5 127 � 4 140 � 4*
Diastolic blood pressure

(mmHg) 69 � 3 77 � 3 76 � 3 80 � 3
A1C (%) 5.1 � 0.2 5.4 � 0.1 5.5 � 0.4 7.4 � 1*
Fasting plasma glucose

(mg/dl) 92 � 5 96 � 3 105 � 2* 152 � 12*†
2-h glucose (mg/dl) 98 � 4 102 � 7 140 � 6* 244 � 23*†
Fasting plasma insulin

(�U/ml) 2.6 � 0.7 3.8 � 1 9.8 � 2*† 11.3 � 2*†
Fasting free fatty acids

(�Eq/l) 477 � 39 510 � 48* 585 � 36* 639 � 27*†
Triglycerides (mg/dl) 84 � 16 103 � 25 133 � 17 202 � 53*†
Total cholesterol (mg/dl) 173 � 11 198 � 20 181 � 11 170 � 7
HDL cholesterol (mg/dl) 54 � 4 46 � 4 43 � 4* 35 � 2*†
LDL cholesterol (mg/dl) 103 � 20 131 � 19 111 � 10 96 � 6
HOMA-IR 0.6 � 0.4 0.9 � 0.3 2 � 1* 4.5 � 2*†
Rd (mg/kg � min�1) 10.7 � 2 8.6 � 0.5* 7.5 � 1* 4.7 � 0.3*†
Hepatic insulin resistance

index 5.6 � 1 9 � 2.5 18 � 4† 28 � 6*†
Adipocyte insulin resistance

index 1.2 � 0.3 2.04 � 0.6 5.4 � 1.2*† 7.4 � 1.3*†

Data are means � SE. HOMA-IR, homeostasis model assessment of insulin resistance. *P � 0.05 vs. lean
subjects with NGT; †P � 0.05 vs. obese subjects with NGT.

Figure 1—Plasma FGF-21 concentration in
lean subjects with NGT and obese subjects with
NGT, IGT, and type 2 diabetes (T2DM). Data
are means � SE. *P � 0.05 vs. lean NGT.

Figure 2—Correlation between plasma
FGF-21 concentration and insulin-stimulated
glucose disposal during the hyperinsulinemic-
euglycemic clamp.

Figure 3—Correlation between plasma
FGF-21 concentration and hepatic insulin re-
sistance index.

FGF-21 and muscle and hepatic insulin resistance
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diated by its actions on liver (9,11). In
contrast, in the present study, we demon-
strate a positive correlation between ele-
vated FGF-21 levels and hepatic insulin
resistance.

The apparently divergent results of
the current study in humans and previous
studies in animals could reflect a true spe-
cies difference in the metabolic effects of
FGF-21 in humans versus animals or may
be less contradictory than they appear.
Thus, the elevated plasma FGF-21 levels
in insulin-resistant states may simply re-
flect a compensatory response to offset
the peripheral and/or hepatic insulin re-
sistance and not be a cause of the insulin
resistance. Since our observations are
cross-sectional in nature, it is not possible
to establish a cause-and-effect relation-
ship (i.e., what is primary and what is sec-
ondary). It also is not possible to
distinguish whether the increased plasma
FGF-21 levels in obese subjects and sub-
jects with IGT/IFG and type 2 diabetes are
related to insulin resistance or obesity,
since all three groups had similarly ele-
vated FGF-21 levels. Further studies will
be required to further elucidate the role of
FGF-21 in glucose homeostasis and
whether FGF-21 will sensitize target is-
sues (liver, adipocytes, muscle) to insulin,
as has been reported in animal models of
diabetes.

Recent studies have suggested that
plasma FGF-21 concentrations are af-
fected by the glomerular filtration rate
and therefore may be related to the level
of renal function (25). Patients undergo-
ing dialysis have significantly increased
plasma FGF-21 levels compared with
control subjects, and this is independent
of the glucose/lipid metabolic status (25).
Although none of the participants en-
rolled in our study had impaired renal
function, glomerular filtration rate
spanned a wide range. Nonetheless, we
did not find a significant relationship be-
tween plasma FGF-21 concentration and
estimated glomerular filtration rate. Thus,
in our sample, FGF-21 concentrations are
unlikely to be affected by this parameter.

In summary, elevated plasma FGF-21
concentrations in humans appear to be
related to the presence of hepatic and pe-
ripheral insulin resistance. Whether the
increase in plasma FGF-21 represents a
compensatory effect to offset insulin resis-
tance or is a causative factor in the devel-
opment of insulin resistance is yet to be
determined.
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