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Recessive mutations in POLR1C cause a
leukodystrophy by impairing biogenesis of RNA
polymerase III
Isabelle Thiffault1,2,3,*, Nicole I. Wolf4,*, Diane Forget5,*, Kether Guerrero1, Luan T. Tran1, Karine Choquet6,

Mathieu Lavallée-Adam7, Christian Poitras5, Bernard Brais6, Grace Yoon8, Laszlo Sztriha9, Richard I. Webster10,11,

Dagmar Timmann12, Bart P. van de Warrenburg13, Jürgen Seeger14, Alı́z Zimmermann9, Adrienn Máté15, Cyril Goizet16,

Eva Fung17, Marjo S. van der Knaap4, Sébastien Fribourg18,19, Adeline Vanderver20,21,22, Cas Simons23, Ryan J. Taft22,23,24,25,

John R. Yates III7, Benoit Coulombe5,26 & Geneviève Bernard1

A small proportion of 4H (Hypomyelination, Hypodontia and Hypogonadotropic Hypogo-

nadism) or RNA polymerase III (POLR3)-related leukodystrophy cases are negative for

mutations in the previously identified causative genes POLR3A and POLR3B. Here we report

eight of these cases carrying recessive mutations in POLR1C, a gene encoding a shared POLR1

and POLR3 subunit, also mutated in some Treacher Collins syndrome (TCS) cases. Using

shotgun proteomics and ChIP sequencing, we demonstrate that leukodystrophy-causative

mutations, but not TCS mutations, in POLR1C impair assembly and nuclear import of POLR3,

but not POLR1, leading to decreased binding to POLR3 target genes. This study is the first to

show that distinct mutations in a gene coding for a shared subunit of two RNA polymerases

lead to selective modification of the enzymes’ availability leading to two different clinical

conditions and to shed some light on the pathophysiological mechanism of one of the most

common hypomyelinating leukodystrophies, POLR3-related leukodystrophy.
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Correspondence and requests for materials should be addressed to B.C. (email: Benoit.Coulombe@ircm.qc.ca) or to G.B. (email: genevieve.bernard@mcgill.ca).

NATURE COMMUNICATIONS | 6:7623 | DOI: 10.1038/ncomms8623 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:Benoit.Coulombe@ircm.qc.ca
mailto:genevieve.bernard@mcgill.ca
http://www.nature.com/naturecommunications


L
eukodystrophies are a heterogeneous group of genetically
determined disorders characterized by abnormal white
matter on brain imaging1,2. They are classified as

hypomyelinating and non-hypomyelinating leukodystrophies
based on magnetic resonance imaging (MRI) characteristics2,
depending on whether the principal problem appears to be a lack
of myelin deposition during development or altered myelin
homeostasis. RNA polymerase III (POLR3)-related
leukodystrophy or 4H (Hypomyelination, Hypodontia and
Hypogonadotropic Hypogonadism) leukodystrophy (MIM
607694, 614381)3 was found to be caused by recessive
mutations in POLR3A (MIM 614258) or POLR3B (MIM
614366)4–9 and is characterized by an expanding spectrum of
clinical3,10 and radiological features10–12. POLR3A and POLR3B
are, respectively, the largest and second largest of the 17 subunits
that constitute POLR3. Together, they form the catalytic centre of
the enzyme. POLR3 synthetizes small non-coding RNAs,
including tRNAs, 5S RNA, 7SK RNA and U6 RNA, that are
involved in the regulation of essential cellular processes, including
transcription, RNA processing and translation13. A subset of
patients (B5%) presenting with compatible clinical and/or
radiological features of POLR3-related leukodystrophy have no
detectible mutations in either POLR3A or POLR3B, suggesting
that mutations in one or more additional genes may result in this
presentation. We hypothesized that genes coding for other
POLR3 subunits or for proteins interacting with POLR3 would
be strong candidates in these cases.

In this study, we identified recessive mutations in POLR1C, a
gene encoding for a subunit common to POLR1 and POLR3,
which has thus far been known only to be associated with
autosomal recessive Treacher Collins syndrome (TCS)14. We also
demonstrated that the leukodystrophy-causing mutations affect
POLR3, but not POLR1 assembly and nuclear import, leading to
decrease binding to POLR3 target genes, whereas one TCS
mutation leads to normal assembly of both polymerases, but
rather affects POLR1 targeting to the nucleolus, the site of POLR1
gene transcription.

Results
Whole-exome and Sanger sequencing for gene identification.
To investigate the genetic aetiology of these unexplained cases, we
performed exome sequencing in three cases with typical clinical
and/or radiological features of POLR3-related leukodystrophy
negative for POLR3A or POLR3B mutation. Genome coverage for
these three cases exceeded 56� (Supplementary Table 1)
and yielded more than 4.6 million variants per genome. Review
of the data using in-house filters revealed a homozygous
mutation in POLR1C (NM_203290; GRCh37/hg19) in two
patients (c.221A4G (p.Asn74Ser) and c.95A4T (p.Asn32Ile),
respectively), and compound heterozygous mutations in one
(c.436T4C (p.Cys146Arg) and c.883_885delAAG (p.Lys295-
del)), all consistent with autosomal recessive inheritance (Fig. 1,
Supplementary Table 1). These four variants were validated using
Sanger sequencing. Co-segregation analysis confirmed that the
mutations were inherited from heterozygous carrier parents.
These variants were not observed in over 6,500 individuals of
European and African American ancestry in the NHLBI Exome
Sequencing Project database, in the ExAc data set nor in our
internal variant databases. Furthermore, these variants were not
present in more than 300 Centre d’Etude du Polymorphisme
Humain (CEPH) control chromosomes. In silico analysis pre-
dicted those to be disease-causing (Supplementary Table 2c).
These variants were found to affect highly conserved amino-acid
residues (Fig. 1). To identify additional mutations, we sequenced
all exons, exon–intron boundaries and 30 and 50 untranslated
repeat of POLR1C (see Supplementary Table 3 for primers) in 16
other individuals selected on the basis of clinical (compatible
neurological features with at least one non-neurological feature
such as dental abnormalities or hypogonadotropic hypogonad-
ism, together with hypomyelination on MRI) and/or radiological
characteristics (typical MRI features of 4H leukodystrophy)3,10,11

but negative for POLR3A and POLR3B mutations and uncovered
five additional compound heterozygous or homozygous cases
(Supplementary Table 2, Fig. 1). Sequencing of the mutated exons
was performed in family members for whom DNA was available
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Figure 1 | POLR1C mutations in leukodystrophy and TCS cases. (a) Genomic organization of POLR1C in humans (UCSC Genome Browser hg19): mutations

and their positions within the POLR1C gDNA; in light blue are mutations that cause TCS, mutations in black cause POLR3-related leukodystrophy.

(b) POLR1C mutations in patients with leukodystrophy affect amino acids that are conserved through species.
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to confirm segregation. In total, 13 POLR1C mutations were
detected in eight cases (Supplementary Table 2a, Fig. 1). Similar
to what is observed in cases with the disease caused by mutations
in POLR3A or POLR3B, clinical and radiological characteristics of
these eight cases were compatible with POLR3-related
leukodystrophy; however, patients did not necessarily have all
clinical (that is, neurological, dental, ophthalmological and
endocrine abnormalities) and MRI features1,3,12 (Table 1, Fig. 2,
Supplementary Tables 4 and 5) of the disease.

Impact of POLR1C recessive mutations on POLR1 and POLR3.
To investigate the potential pathogenic role of these mutations,
we evaluated the impact of the two homozygous mutations
(Table 1) on the function of nuclear POLR1 and POLR3. FLAG-
tagged versions of the wild-type (WT) form of POLR1C and its
variants having the p.Asn32Ile (N32I) or p.Asn74Ser (N74S)
substitution were expressed in HeLa cells. Anti-FLAG affinity
purification was performed on cell extracts and the purified
proteins were analysed using shotgun proteomics. These experi-
ments were performed in triplicate. The expression level of the
various forms of POLR1C (that is, WT and mutants) were
equivalent and comparable (see Supplementary Fig. 2), and
protein expression levels were normalized by the expression level
of the bait in each purification (Supplementary Table 6). The
tagged WT POLR1C pulled down all subunits of both POLR1 and
POLR3 (Fig. 3a), a finding that was expected since POLR1C is a
shared subunit of both polymerases (see Fig. 3c for a schematic
representation). Both tagged mutated POLR1C (N32I and N74S)
pulled down amounts of POLR1-specific (POLR1A, 1B, 1E,
CD3EAP, TWISTNB and ZNRD1) and POLR1/POLR3-shared
subunits (POLR2E, 2F, 2H, 2K, 2L, 1C and 1D) that were not
significantly different from those pulled down by the WT (this is
especially true for the POLR1-specific subunits). However, both
mutated subunits pulled down lower amounts of POLR3 (most
specific subunits) relative to WT. This finding suggests that the
mutations lead to a selective defect in POLR3 assembly, and not
in POLR1. Indeed, assembly of nuclear RNA polymerases has
previously been shown to occur in the cell’s cytoplasm and defects
in RNA polymerase assembly caused by functional disruption of
the RNA Polymerase-Associated proteins was previously shown
to lead to cytoplasmic accumulation of polymerase subunits15–21.
Notably, the position of mutated residues in the proposed
structure of POLR3 is compatible with defects in enzyme

assembly and/or folding (see Supplementary Fig. 1). To further
confirm that mutated POLR1C variants (N32I and N74S) are
impaired in supporting enzyme assembly and nuclear import,
immunofluorescence studies were performed using anti-FLAG
antibodies. The results reveal an accumulation of both mutated
POLR1C subunits, but not the WT subunit, in the cytoplasm
(Fig. 3d). We then performed chromatin immunoprecipitation
(ChIP) of FLAG-tagged POLR1C followed by high-throughput
sequencing (ChIP-Seq), as a proxy of gene transcription
activity22–24, to investigate the impact of POLR1C mutations on
gene occupancy by POLR1 and POLR3. After alignment of the
reads to the human reference genome (hg19), we compared
occupancy of WT and mutated POLR1C variants over 659
POLR3-transcribed genes, including all transfer RNA (tRNA) and
5S ribosomal RNA genes (Supplementary Table 7). As expected,
mutated POLR1C variants displayed reduced binding to POLR3-
transcribed genes compared with WT POLR1C for all three
classes of POLR3-transcribed genes (classified according to their
regulatory elements; see legend to Fig. 4a). In contrast, there were
no differences in WT and mutated POLR1C occupancy over the
ribosomal RNA gene transcribed by POLR1 (Fig. 4c). Together,
these results indicate that the N32I and N74S substitutions in the
POLR1/POLR3-shared subunit POLR1C specifically interfere
with assembly, nuclear import and chromatin association of
POLR3. To compare the roles of leukodystrophy versus TCS-
causing mutations in the biogenesis of POLR1 and POLR3, we
expressed FLAG-tagged POLR1C with the p.Arg279Gln (R279Q)
mutation in HeLa cells, affinity-purified the tagged subunit and
identified the purified interactors using mass spectrometry.
Contrary to POLR1C (N32I) and POLR1C (N74S), none
of the subunits of POLR1 and POLR3 were pulled down by
tagged POLR1C (R279Q) in amounts that were statistically
significantly different from the WT (Fig. 5a,b, Supplementary
Table 6), suggesting that this TCS-causing mutation does not
affect the assembly of these polymerases. Notably, however,
immunofluorescence results indicate that POLR1C (R279Q)
targeting to the nucleolus is impaired as compared with the
WT subunit (Fig. 5c) and the N32I- and N74S-mutated subunits
(see Fig. 3d).

Discussion
With the advent of exome sequencing, it is becoming increasingly
apparent that allelic heterogeneity in genes encoding essential

Table 1 | Major clinical and MRI findings in index patients with mutations in POLR1C.

Patient
numbers

Family
nos

Gene Mutation 1 Mutation 2 Main clinical characteristics Main MRI characteristics

Neurological
abnormalities

Myopia Dental
abnormality

Hypogonadotropic
hypogonadism

Hypo-
myelination

Thin
corpus

callosum

Cerebellar
atrophy

1 I POLR1C c.95A4T;
p.Asn32Ile

c.95A4T;
p.Asn32Ile

þ � þ Too young þ þ �

2 II POLR1C c.221A4G;
p.Asn74Ser

c.221A4G;
p.Asn74Ser

þ � � Too young þ þ �

3 III POLR1C c.436T4C;
p.Cys146Arg

c.883_885delAAG;
p.Lys295del

þ � � Too young þ þ �

4 IV POLR1C c.77C4T;
p.Thr26Ile

c.326G4A;
p.Arg109His

þ � þ Too young þ þ þ

5 V POLR1C c.193A4G;
p.Met65Val

c.572G4A;
p.Arg191Gln

þ þ � Too young þ þ þ

6 VI POLR1C c.326G4A;
p.Arg109His

c.970G4A;
p.Glu324Lys

þ þ � � þ þ þ

7 VII POLR1C c.395G4A;
p.Gly132Asp

c.461_462delAA;
p.Lys154Argfs*4

þ þ � � þ þ þ

8 VIII POLR1C c.281T4C;
p.Val94Ala

c.785T4C;
p.Ile262Thr

þ � þ Too young þ þ þ

� , absent; þ , present; MRI, magnetic resonance imaging.
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proteins, such as those involved in transcription, results in highly
variable phenotypes. A previous report of mutations in POLR1C
(ref. 14) highlighted the discovery of the first cases of TCS with an
autosomal recessive mode of inheritance. TCS (MIM 154500,
613717, 248390) is characterized by an abnormal craniofacial
development and is caused, from most to least frequent, by
mutations in TCOF1 (dominant), POLR1D (dominant) or
POLR1C (recessive)14. TCS caused by mutations in POLR1D or
POLR1C has been proposed to arise as a consequence of a
decreased quantity of functional ribosomes in the
neuroepithelium and the neuronal crest cells during critical
points of embryogenesis14,25. We assessed the role of a TCS-
causing mutation (R279Q) in the biogenesis of POLR1 and
POLR3. Our results (see Fig. 5, Supplementary Table 6) indicate
that this mutation does not impair polymerase assembly, as
opposed to leukodystrophy-causing mutations (see Fig. 3), but
affect targeting to the nucleolus, the site for Pol I transcription.

Our findings suggest that improper assembly and nuclear
import of POLR3 resulting from leukodystrophy-causative
mutations lead to decreased availability of the complex at the
chromatin. As POLR3 binding is well correlated to tRNA

expression22–24, this decreased POLR3 occupancy is likely to
cause reduced transcription of tRNAs and other essential small
non-coding RNAs. One hypothesis is that mutations in POLR3A,
POLR3B or POLR1C lead to decreased levels of certain tRNAs
crucial for the synthesis of proteins essential for central nervous
system myelin development. tRNA function has also been
suggested to be impaired in other white matter disorders26–30

caused by mutations in tRNA-aminoacyl synthetases, including
hypomyelinating leukodystrophies such as RARS-associated
hypomyelination30 and Hypomyelination with Brain Stem and
spinal cord involvement and Leg spasticity29. Of note, tRNA
synthetases have not been found in our POLR3 purifications,
suggesting that tRNA aminoacylation is not coupled with POLR3
transcription. An alternative hypothesis would involve changes in
the expression of other essential small non-coding RNAs
synthesized by POLR3.

In conclusion, our sequencing study of 18 cases with
compatible clinical and/or radiological features with 4H or
POLR3-related leukodystrophy identified 13 different POLR1C
mutations in eight cases. POLR1C joins an emerging group of
genes with dual roles in pathogenesis of human diseases31,

a b c

d e f

g h i

Figure 2 | MRI characteristics of POLR3-related leukodystrophy caused by POLR1C mutations. Axial T2-weighted (a,b,d,e,g,h) and sagittal T1-weighted

(c,f,i) images of case 1 aged 6 years (a–c) and case 2 aged 4.5 years (d–f) compared with a healthy control aged 4 years (g–i). Diffuse hyperintense signal

of the supratentorial (red arrow, a,d) and cerebellar (blue arrow, b,e) white matter is visible on the T2-weighted images, indicating hypomyelination. There

is no cerebellar atrophy. As typical for POLR3-related leukodystrophy, the ventrolateral thalamus (white arrow, a,d), the optic radiation (thick arrowhead

blue, d) and the dentate nucleus (open red arrowhead, b) show a relative hypointense signal on the T2-weighted images resulting in an easily visible

dentate nucleus (b) as compared with the control (h) as well as a small dot in the posterior limb of the internal capsule (red arrowhead, d). The corpus

callosum is slightly thinned in case 1 and thinned in case 2 (open red arrowhead, c,f).
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expanding the clinical phenotype associated with constitutional
mutations in this gene and opening new aspects in the annotation
and assessment of pathogenicity of sequence variants.

Furthermore, our functional analyses on the mutational impact
of POLR1C bring the first insights into the pathophysiology of
POLR3-related disorders.
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Figure 3 | Impact of POLR1C mutations on polymerase assembly and nuclear import. (a) FLAG-tagged POLR1C variants, either the wild-type (1C)

polypeptide or mutated versions having a N32I or a N74S substitution, were expressed in HeLa cells and purified using anti-FLAG affinity chromatography.

The co-purified proteins were identified using LC-MS/MS mass spectrometry. The heatmap contains the log2-transformed average spectral count ratios

N32I or N74S/WT across all three replicates. Spectral counts were computed with Mascot (see Supplementary Table 6 for the complete data set). Specific

and shared POLR1 (Pol I) and POLR3 (Pol III) subunits are identified on the left. POLR1C (the bait) is identified by an asterisk. (b) Volcano plots of the log2-

transformed average spectral count ratios N32I or N74S/WT (x axis) and the –log10-transformed P values (adjusted with the Benjamini–Hochberg

procedure) resulting from the two-tailed one-sample t-tests of the high-confidence interactors of POLR1C. Red proteins show a level of differential

interaction with POLR1C that is statistically significant, while blue proteins do not. (c) Schematic representation of the subunit composition of POLR1 (Pol I)

and POLR3 (Pol III; see refs 53,54 for details). Shared subunits are in grey and POLR1C in black. (d) Immunofluorescence experiments showing the cellular

localization of tagged POLR1C variants. Nuclei are stained using TO-PRO-3 iodine. Scale bar, 20mm.
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Methods
Patients and exome sequencing. Informed consent was obtained from all
participants. The project was approved by the research ethics committee of the
Montreal Children Hospital (11-105-PED), the institutional review board of
the VU University Medical Center, Neuroscience Campus, Amsterdam, the
Netherlands, the Children’s National Health System as part of the Myelin
Disorders Bioregistry Project in Washington, DC and the University of
Queensland, Australia. Genomic DNA was extracted from peripheral blood
leukocytes of patients and family members using the Qiagen Gentra Puregene
Blood Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.
Exome sequencing was performed in two cases by PerkinElmer (Branford,
Connecticut, USA) and in a third case by the Institute for Molecular Biology at the
University of Queensland. Cases one and two were sequenced using PerkinElmer’s
sequencing service using the Agilent Sure Select Human All Exon Capture V4 Kit
and exome sequencing for these two cases was performed (two paired-end 100-bp
reads) with the Illumina HiSeq 2000 system. Reads were aligned to the reference
human genome (UCSC Genome Browser hg19) with the Genome Analysis Toolkit
(GATK)32,33, SAMtools32,34, Picard (see web resource) and CASAVA v1.8 (ref. 35)
and annotated using the snpEff software tool (http://snpeff.sourceforge.net/), as
well as visualization tools from PerkinElmer. Subsequent analyses were performed
using the Ingenuity software package (Qiagen, Redwood City, USA). Exome
enrichment for case three was performed using the Illumina Nextera Rapid
Capture kit and sequenced on an Illumina HiSeq 2000 (2� 100 bp paired-end).
Reads were aligned to the reference human genome (GRCh37) and pedigree-
informed variant calling was performed using the Real Time Genomics (RTG)
integrated analysis tool rtg Family v3.2 (ref. 36). Variants were annotated using
SnpEff v3.4 (ref. 37). In all cases, filtering queries were created as specific presets
that allowed in silico reduction of variant lists down to candidates with correlation
to phenotype, transmission mode of inheritance and alteration classification of
pathogenicity. Sanger sequencing and co-segregation analysis were performed on
genomic DNA using primer pairs designed with the primer3 software package and
the genomic sequence of POLR1C (NM_203290; GRCh37/hg19). PCR products
were forward- and reverse-sequenced at the McGill University and Genome
Quebec Innovation Centre using an ABI 3730xl DNA Analyzer (ABI; Applied
Biosystems, Foster City, CA, USA). Sequences were analysed using SeqMan 4.03
(DNAStar, Wisconsin, USA) and Chromas 1.62 (Technelysium Pty, Ltd, Australia).

Immunofluorescence and western blot analyses. Transfection experiments for
generating stable HeLa cell lines expressing FLAG-tagged versions of POLR1C
variants used lipofectamine, as described by the supplier (Invitrogen, Carlsbad, CA,
USA)18. The antibodies used in this study were obtained from the following
sources: anti-FLAG monoclonal primary antibody (Sigma-Aldrich, St Louis,

Missouri, USA), Alexa Fluor 488 fluorescence secondary antibody (Invitrogen) and
anti-GAPDH (FL-335; Santa Cruz Biotechnology, Santa Cruz, CA, USA).
Immunofluorescence studies used an anti-FLAG (dilution 1/300) antibody and the
secondary antibody Alexa Fluor 488 (1/200) to localize exogenously expressed
FLAG-POLR1C variants in HeLa cells. For western blot analysis, anti-FLAG
(dilution 1/3,000) was used to detect the FLAG-POLR1C variants and anti-
GAPDH (dilution 1/2,000;) for loading control18.

Protein affinity purification coupled to mass spectrometry. Generation of cell
lines stably expressing FLAG-tagged POLR1C subunits (WT and mutated) and
affinity purification from the soluble fraction were performed using standard
procedures38,39. The eluates were digested with trypsin and the resulting tryptic
peptides were purified and identified with tandem mass spectrometry (LC-MS/MS)
using a microcapillary reversed-phase high-pressure liquid chromatography-
coupled LTQ-Orbitrap (ThermoElectron) quadrupole ion trap mass spectrometer
with a nanospray interface, as recently described40. Protein database searching and
protein spectral count quantification were performed with Mascot (version
2.3.02)41. The NCBI_Human protein sequence database was downloaded on 20
February 2014. Known protein contaminants such as keratins, which are not
expressed in HeLa cells, were excluded from the data set. Undistinguishable protein
isoforms were considered as a single protein. For each LC-MS/MS analysis, protein
spectral counts were normalized by the spectral count of the FLAG-POLR1C in
order to allow the comparison of different purifications. To simulate the
background noise of the LC-MS/MS analysis of a given sample, spectral counts
reported as 0 by Mascot were replaced by randomly generated spectral count values
that are normally distributed with a mean and s.d. equal to those of the lowest 20%
spectral count values from the LC-MS/MS analysis. Each replicate LC-MS/MS
analysis of the affinity purifications of the FLAG-POLR1C mutants (MUT; N32I,
N74S and R279Q) was paired with a LC-MS/MS analysis of the WT FLAG-
POLR1C that was performed at the same time. The set of high-confidence
interactors of POLR1C for a given mutant analysis was identified by comparing the
spectral counts of the interactors obtained from the purifications of the paired WT
POLR1C and the MUT POLR1C to those of the proteins purified with an empty
vector (EV) of the FLAG tag (nonspecific interaction). A protein is labelled as a
high-confidence interactor if it was identified and quantified in all three replicates
of WT POLR1C or MUT POLR1C and that the ratio of the average spectral counts
across the three replicates (WT/EV or MUT/EV) was greater than 5. These
stringent criteria allow us to eliminate the vast majority of nonspecific interactors
of POLR1C for the analysis of the interactions of each mutant. For each high-
confidence interacting protein, a two-tailed one-sample t-test was performed on the
spectral count ratios (MUT/WT). The resulting P values were adjusted for multiple
hypothesis testing using the Benjamini–Hochberg procedure42. To maximize the
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specificity of our approach, a protein is deemed to show a level of differential
interaction with POLR1C that is statistically significant when its adjusted P value
is o0.05 and that its average spectral count fold-change (MUT/WT) is o0.�6
or 41.5.

ChIP-sequencing and data analysis. Stable HeLa cell lines expressing FLAG-
tagged POLR1C (WT or mutated) were cultured to 80% confluence and cross-
linked with 1% formaldehyde directly in the cell medium for 5 min followed by a
5-min quenching in 125 mM glycine. For ChIP experiments43, nuclei from 3� 106

cells were lysed and re-suspended in sonication buffer (10 mM Tris-HCl pH 8,
140 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.5% Triton, 0.5% SDS and protease
inhibitors). Chromatin was prepared by sonicating the nuclei in a Covaris E-Series
E22 for 6 min at Duty 2. This generated chromatin fragments of 500 bp on average.
Sonicated chromatin was immunoprecipitated using 25 ml of anti-FLAG M2
Magnetic beads (Sigma) for 4 h. The beads were then washed and eluted, followed
by phenol:chloroform-isoamyl (25:24:1 pH 8, Invitrogen) extraction and ethanol
precipitation. Sequencing libraries were prepared from input and ChIP eluates
(WT and mutated) using the TruSeq DNA library preparation kit (Illumina).
Libraries were sequenced on an Illumina HiSeq 2000 (2� 50 cycles paired-end).
Quality control of the sequencing data was performed with FastQC and low-quality
bases and adapter sequences were trimmed with Trimmomatic44. Unique reads
were aligned to the reference human genome (build hg19) or to the human rDNA
reference sequence (rDNA; NCBI accession number: HSU13369) with Bowtie
version 2.1.0 (ref. 45). Input DNA signal was subtracted from ChIP signal.
POLR1C peaks were called using MACS version 2.0.10 (ref. 46). Peaks were
annotated with HOMER version 4.5.0 (ref. 47) using GENCODE Genes V19
annotations48 and the tRNA Genes track of the UCSC Genome Browser49,50. Data
visualization was performed with the Integrative Genomics Viewer51. To compare
chromatin binding between WT and mutated POLR1C variants over all POLR3-
transcribed genes divided into three classes according to their regulatory elements

(see legend to Fig. 4), we used the annotation mode of the Versatile Aggregate
Profiler with the transcription start site as the only reference point and 100
windows of 10 base pairs each on both sides of the reference point52.
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