
Dopamine reward prediction errors reflect hidden state inference 
across time

Clara Kwon Starkweather1, Benedicte M. Babayan1,2, Naoshige Uchida1, and Samuel J. 
Gershman2

1Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 
Divinity Avenue, Cambridge, MA 02138, USA

2Center for Brain Science, Department of Psychology, Harvard University, 52 Oxford Street, 
Cambridge, MA 02138, USA

Abstract

Midbrain dopamine neurons signal reward prediction error (RPE), or actual minus expected 

reward. The temporal difference (TD) learning model has been a cornerstone in understanding 

how dopamine RPEs could drive associative learning. Classically, TD learning imparts value to 

features that serially track elapsed time relative to observable stimuli. In the real world, however, 

sensory stimuli provide ambiguous information about the hidden state of the environment, leading 

to the proposal that TD learning might instead compute a value signal based on an inferred 

distribution of hidden states (a ‘belief state’). In this work, we asked whether dopaminergic 

signaling supports a TD learning framework that operates over hidden states. We found that 

dopamine signaling exhibited a striking difference between two tasks that differed only with 

respect to whether reward was delivered deterministically. Our results favor an associative learning 

rule that combines cached values with hidden state inference.

Introduction

Midbrain dopamine neurons are thought to drive associative learning by signaling the 

difference between actual and expected reward, termed reward prediction error (RPE)1-4. In 

particular, dopaminergic responses bear a striking resemblance to the error signal in a simple 

machine learning algorithm known as temporal difference (TD) learning1,5. Several 

observations support this hypothesis1-3. Unexpected reward delivery elicits a large phasic 

burst of spikes from dopamine neurons. After an animal learns that a sensory cue predicts 

reward, dopamine neurons burst following the reward-predictive cue and their phasic 
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response is reduced following reward delivery. If a predicted reward is omitted, dopamine 

neurons pause at the time when the animal usually receives reward.

Some of the theoretical assumptions in the original TD model are not realistic. For one, the 

TD learning model assumes that the agent assigns values to “states”—representations of 

environmental conditions at any given time, which are classically specified in terms of 

observable stimuli. However, in the real world, stimuli often provide ambiguous information 

about states; the true underlying states are “hidden” and must therefore be inferred6,7. For 

example, a lion crouching in the savannah might be indistinguishable from the tall grass, but 

these two objects carry very different consequences for an antelope. A principled way to 

incorporate hidden states into the TD learning framework is to replace the traditional 

stimulus representation with a “belief state”, which tracks the probability of being in each 

state given the trial history. This revised TD framework generates a value prediction that is 

computed on an inferred belief state. While this idea has been explored theoretically8,9, the 

empirical evidence remains sparse.

In the present study, we designed two tasks to test whether dopaminergic RPEs provide 

evidence for a value prediction computed on a belief state. In both tasks, the cue-reward 

interval (ISI) was varied across trials. In the first task, reward was delivered deterministically 

(100% rewarded). Our first task resembles other studies that examined dopamine signaling 

in tasks with variable ISIs10-12. This previous work, particularly Fiorillo et al, 2008, 

described a mathematical framework for how temporal expectation influences dopamine 

RPEs. This work demonstrated that a hazard function, or a temporally blurred ‘subjective’ 

hazard function, describes temporal expectancy in the case of 100% reward delivery. 

Expanding upon this previous work, we also included a second task in which reward was 

occasionally omitted (90% rewarded). In the second task, the animal cannot initially be sure 

whether the absence of reward means that it was delayed or omitted entirely. As time elapses 

following cue onset, the animal's belief that reward will arrive gradually yields to the belief 

that an omission trial occurred. Our results showed striking differences in dopamine 

signaling between these two tasks, which can be accounted for by incorporating hidden state 

inference into the value prediction generated by the TD model. These results provide novel 

evidence that dopaminergic RPEs are shaped by state uncertainty.

Results

Behavioral task and electrophysiology

We trained mice on either of two tasks (Fig. 1a,b) (separate sets of 3 and 4 mice in Task 1 

and 2, respectively). In Task 1, reward-predicting odors A-C forecasted reward delivery in 

100% of trials. In Task 2, odors A-C forecasted reward delivery in 90% of trials. In both 

tasks, the ISI following odor A was drawn from a discretized Gaussian distribution (mean: 

2s, S.D.: 0.5s) defined over 9 timepoints ranging from 1.2s to 2.8s (Fig 1c,d). Odor B and C 

trials had constant ISIs of 1.2s and 2.8s, respectively. We included odors B and C to examine 

the effect of temporal delay on dopamine RPEs. On odor D trials, reward was never 

delivered. In a subset of mice trained on Task 2 (Supplementary Fig. 1a, ‘Task 2b’), we 

included an odor followed 2s later by reward in order to compare dopamine RPEs in 

omission trials for constant versus variable ISIs. Mice learned to lick in anticipation of water 
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reward following reward-predicting odors in Tasks 1 and 2 (anticipatory licking in odor A-C 

≠ baseline; F1,50 > 150, P < 6 × 10-17 for odors A-C in Task 1, 1-way ANOVA; F1,16 > 60, P 
< 1 × 10-6 for odors A-C in Task 2, 1-way ANOVA; F1,42 > 100, P < 5 × 10-13 for odors A-C 

in Task 2b, 1-way ANOVA; Supplementary Fig. 2a-c). Mice ramped up their licking rates 

sooner and more steeply for odor B (ISI = 1.2s) overodor C (ISI = 2.8s) (Fig 1e,f), and for 

100% rewarded odors over 90% rewarded odors (Fig 1e,f, Supplementary Figs. 2d-e, 3). In 

both Tasks 1 and 2, licking patterns for odor A trials (average ISI = 2.0s) fell in between 

licking patterns for odor B and odor C. Lick rates following odor D, which never predicted 

reward, did not change significantly from baseline (F < 2.5, P > 0.10 for both tasks, 1-way 

ANOVA), demonstrating that mice learned the odor-outcome association.

We recorded the spiking activity of neurons in the VTA (387 neurons in 7 animals, see 

Supplementary Fig. 4 for recording sites) while animals performed Task 1 or 2. To 

unambiguously identify dopamine neurons, we expressed the light-gated cation channel 

channelrhodopsin-2 (ChR2) in dopamine neurons. We delivered pulses of blue light through 

an optic fiber positioned near our electrodes, and classified units as dopaminergic when they 

responded to light reliably with short latency (Supplementary Fig. 5; see Methods)3,4,13.

Dopamine RPEs show opposing patterns of modulation across time in Tasks 1 and 2

We recorded optogenetically-identified dopamine neurons in Tasks 1 and 2 (Fig. 2). In Task 

1 (100% reward probability), reward delivery elicited a phasic burst in dopamine firing 

(‘post-reward firing’) that was significantly modulated by ISI length (n = 30 neurons; F8,232 

= 5.56, P = 1.9 × 10-6, 2-way ANOVA; factors: ISI, neuron). Post-reward firing was greatest 

for the shortest ISI and smallest for longer ISIs (Fig. 2a). We quantified post-reward as the 

firing rate between 50-300ms following water-valve opening, minus the firing rate 1000-0ms 

prior to odor onset. We quantified post-reward firing beginning at 50ms post-water valve 

opening to distinguish between temporal modulation of pre-reward firing and post-reward 

firing, because the dopaminergic phasic response began 50ms after valve-opening 

(Supplementary Fig. 6). Furthermore, a recent study showed that intra-trial changes in 

dopamine firing may signal information distinct from pure RPEs, prompting us to choose a 

single pre-cue baseline rather than an intra-trial baseline14. Our quantification of post-reward 

firing revealed that, on average, post-reward firing was modulated negatively by time (Fig. 

2g). In addition to post-reward firing, we also found that the firing rate just prior to reward 

delivery (‘pre-reward firing’) was modulated over time (F8,232 =4.76, P = 2.0 × 10-5, 2-way 

ANOVA; factors: ISI, neuron). We computed pre-reward firing as the firing rate 400-0ms 

prior to reward onset, minus the firing rate 1000-0ms prior to odor onset. We found that pre-

reward firing mirrored the post-reward pattern of negative modulation by time (Fig. 2a,g). 

Therefore, in the case of 100% reward probability, both pre- and post-reward dopamine 

firing decreased as a function of time. This result is consistent with other studies that have 

examined the effect of variable ISI length on dopaminergic RPEs in the case of 100% reward 

delivery (or reward-predicting event occurrence)10-12.

We next explored how manipulating the certainty of reward delivery would alter the pattern 

of RPE modulation across time. In Task 2, odor A's ISI was drawn out of the same Gaussian 

distribution as before, but reward was given in only 90% of trials. Pre- and post-reward 
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firing in Task 2 was calculated as described above for Task 1. We found that post-reward 

firing was significantly modulated by ISI length (n = 43 neurons, F8,336 = 8.23, P = 3.48 × 

10-10, 2-way ANOVA; factors: ISI, neuron). Strikingly, we observed the opposite trend of 

modulation over time, compared to Task 1. On average, reward delivery elicited a phasic 

response that was smallest for shorter ISIs and greatest for the longest ISI (Fig. 2b,h). Pre-

reward firing in Task 2 was also significantly modulated by ISI length (F8,336 = 7.86, P = 1.0 

× 10-9, 2-way ANOVA; factors: ISI, neuron), and tended to decrease throughout the variable 

ISI interval (Fig 2b,h). In sum, in the case of 90% reward probability, pre-reward firing 

decreased as a function of time, and post-reward firing increased as a function of time.

We asked whether these trends of temporal modulation could be seen at the level of 

individual neurons. In each Task, and for each neuron, we plotted the post-reward firing rate 

versus ISI on every trial and drew a best-fit line through the data (Fig. 3a-f). Based on the 

slopes of these best-fit lines, we found that 23/30 neurons tended towards negative 

modulation by time in Task 1 (95% CI < 0 for 11/30 neurons; Fig. 3g). In Task 2, we found 

that post-reward RPEs for 33/43 neurons tended to be positively modulated by time (95% CI 

> 0 for 14/43 neurons; Fig. 3h). We repeated the same analysis for pre-reward firing in both 

Tasks. In Task 1, pre-reward firing for 19/30 individual neurons tended towards negative 

modulation by time (95% CI < 0 for 14/30 neurons). In Task 2, pre-reward firing for 32/43 

neurons tended towards negative modulation by time (95% CI < 0 for 9/43 neurons). 

Therefore, individual neurons recorded in each Task tended to reflect the trends of temporal 

modulation described above.

To summarize, in Tasks 1 and 2, we found that dopaminergic RPEs were modulated over 

time for various ISI lengths. Pre-reward firing in both tasks tended to decline throughout the 

variable ISI interval. However, post-reward firing showed opposite trends of temporal 

modulation in these two tasks. In Task 1, post-reward firing showed negative temporal 

modulation, and in Task 2, post-reward firing showed positive temporal modulation.

Dopaminergic RPEs in Task 2 cannot be explained by ISI length

Previous studies have demonstrated that phasic dopamine RPEs are sensitive to ISI 

length10,15,16. Specifically, post-reward firing is greater for longer ISIs, suggesting that 

growing temporal uncertainty increases the dopamine reward response. We asked whether 

the positive temporal modulation of post-reward firing in Task 2 could be attributed to ISI 

length alone. If this were true, we would expect the difference between post-reward firing 

for odor B trials (ISI = 1.2s) and odor C trials (ISI = 2.8s) to account for the difference 

between post-reward firing for the earliest and latest rewards for odor A trials (ISI = 1.2s and 

2.8s, respectively; Fig. 2h). In Task 2, we found that the average post-reward firing rate for 

odor C was about 1Hz higher than for odor B. This modest difference was not significant (n 

= 14 neurons; F1,13 = 0.85, P = 0.37, 2-way ANOVA; factors: odor, neuron). Moreover, the 

latest possible reward delivery following odor A (ISI = 2.8s) elicited post-reward firing 

significantly higher than odor C post-reward firing (n = 14 neurons; F1,13 = 7.15, P = 2 × 

10-2, 2-way ANOVA; factors: odor, neuron). These results indicate that the positive temporal 

modulation of post-reward firing observed in Task 2 cannot be attributed to ISI length alone.
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TD learning with a complete serial compound representation cannot explain dopamine 
RPEs in Tasks 1 and 2

Dopaminergic RPEs are believed to signal the error term in TD learning models1. We 

therefore examined whether previously proposed TD learning models can account for the 

dopamine signals observed in Tasks 1 and 2.

In reinforcement learning models, including TD learning models, value is typically defined 

as the expected discounted cumulative future reward17:

(1)

where E[·] denotes an average over randomness in reward delivery, and γ is a discount factor 

that down-weights future rewards. The goal of reinforcement learning models is to learn 

correct value estimates so as to maximize future rewards.

The original application of TD learning to the dopamine system1 assumed a “complete serial 

compound” (CSC) representation x(t) = {x1(t), x2(t), …} as stimulus features for value 

computation (Fig. 4a). The onset of a reward-predictive stimulus initiates a ballistic 

sequence of sub-states marking small post-stimulus time-steps. At a given time after the 

stimulus, only one of the sub-states xi(t) becomes active. In other words, xi(t) = 1 exactly i 
time-steps following stimulus onset and xi(t) = 0 in other time steps. The value function 

estimate is modeled as a linear combination of stimulus features:

(2)

where wi is a predictive weight associated with feature i. The weights are updated according 

to the following learning rule:

(3)

where α is a learning rate and δ(t) is the RPE, computed according to:

(4)

We first tested whether TD learning with the CSC can explain our experimental results.

For both Tasks 1 and 2 we found that TD learning with the CSC produced RPEs that were 

most suppressed for rewards delivered at the center of the Gaussian ISI distribution, and 
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least suppressed for rewards delivered at the tails of the distribution (Fig. 4b). The pattern of 

RPEs across different ISIs resembled a flipped distribution of experienced ISIs. Moreover, 

the modulation of RPEs across ISIs was identical between Tasks 1 and 2, indicating that this 

model cannot explain our data.

We next asked whether a simple modification of the original model could better account for 

our results: a ‘reset’ feature that sets the RPE to zero after reward arrives18-19. This model 

rectifies one key inconsistency between data and a simple CSC TD model: when a reward is 

delivered unexpectedly early, the ‘pause’ predicted by the CSC TD model at the usual time 

of reward does not occur20. When we trained a TD model with the CSC and reset on our 

tasks, the model produced a pattern of RPEs suggestive of a hazard function, that is, reward 

expectation that grows over time, increasingly suppressing excitation towards the end of the 

variable ISI interval (Fig. 4c). A pattern of decreasing RPEs over time matches our Task 1 

data. However, in Task 2, this model also produced RPEs that generally decreased 

throughout the variable ISI interval, deviating from the trend of our data. Therefore, this 

proposed modification to the original model cannot explain our results. Our data do not 

completely rule out other reset devices, such as resetting the stimulus trace following 

reward21. However, as pointed out by Daw and colleagues9, such a reset device assumes an 

inferred state change, and may not generalize gracefully to more complex scenarios with 

multiple rewards.

TD learning with belief states explains dopaminergic RPEs in Tasks 1 and 2

Another way to approach these data is to reconsider the computational problem being solved 

by the animal. One potentially important problem for the animal in the above tasks is 

knowing whether it is in one of the two states: the ISI state during which the animal expects 

reward, and the ITI state during which no reward is expected. In Task 1, these two states are 

fully observable, since cue onset unambiguously signals a transition to the ISI state, and 

reward onset unambiguously signals a transition to the ITI state; no transitions occur without 

one of these events (Supplementary Fig. 7a). Thus, the states are fully observable, and the 

only computational problem is predicting reward. In Task 2, omission trials cause the ITI 

state to self-transition (while still emitting a cue). This means that both ITI-to-ISI and ITI-to-

ITI generate the same observation, rendering the states partially observable or “hidden” 

(Supplementary Fig. 7b). Thus, Task 2 introduces an additional computational problem: 

hidden state inference.

In this framework, a critical computation is to assign a probability of being in ITI or ISI at a 

given moment. To incorporate this process in our model, here we assume that the ISI and ITI 

comprise temporal “sub-states” with the analogy to the CSC model (Fig. 5a,b). The 

normative solution to the hidden state inference problem is given by Bayes' rule, which 

stipulates how an animal's probabilistic beliefs about states should be updated over time:

(5)
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where bi(t) is the posterior probability that the animal is in sub-state i at time t, p(o(t)|i) is the 

likelihood of the observation o(t) ∈ {cue, reward, null} under hypothetical sub-state i, and 

p(i|j) is the probability of transitioning from sub-state j to sub-state i (Supplementary Fig. 

7c-f).

The vector b(t) functions as a “belief state” that can substitute for the CSC in learning 

equations (2) and (3) shown above (Fig. 5c,d). In Task 1, where the observations are 

unambiguous, the belief state is identical to the CSC. In Task 2, the belief state departs from 

the CSC by representing subjective uncertainty about the current sub-state (the posterior 

probability of being in the ISI or ITI state can be computed from this representation by 

summing the belief state vector over all sub-states within a particular state).

While we have formulated the model in terms of probabilities over sub-states, the model 

could have alternatively been formulated in continuous time using semi-Markov dynamics9, 

where sub-states are replaced by dwell-time distributions in each state. These models are 

mathematically equivalent; we chose the sub-state formulation in order to draw clearer 

connections to other models (a point to which we return in the Discussion).

A belief state TD model produced error signals that resembled dopamine RPEs in our Tasks 

(Fig. 5e,f). In Task 1, the states are fully observable and thus the belief state is uniform 

throughout the variable ISI interval (Fig. 5c, Fig. 6a,b): as soon as the cue comes on, the 

belief state encodes a 100% probability of being in one of the ISI sub-states, and a 0% 

probability of being in the ITI sub-state. Because the momentary probability of receiving 

reward is greater at later ISIs than at sooner ISIs, later sub-states accrue higher weights than 

earlier sub-states, producing a ramping value signal (Fig. 6a,b). This ramping value signal 

results in RPEs that are increasingly suppressed towards the end of the variable ISI interval 

(Fig. 5e, Fig. 6a,b; see Supplementary Fig. 8a,c for quantification), producing a pattern of 

negative modulation by time similar to our Task 1 data.

In Task 2, the belief state takes into account the possibility of an unobservable state 

transition. Therefore, unlike in Task 1, the belief state was not uniform throughout the 

variable ISI interval. As time elapses and reward fails to arrive, the belief state progressively 

shifts in favor of the ITI over the ISI (Fig. 5d, Fig. 6d). Rewards sometimes arrive at the 

latest ISIs, increasing the weights for the corresponding sub-states. However, the belief state 

for these late timepoints is so skewed towards the ITI that the value signal actually decreases 

relative to earlier timepoints (Fig. 6c,d). This decreasing value signal results in pre-reward 

RPEs that are most suppressed, and post-reward RPEs that are least suppressed, at the end of 

the variable ISI interval (Fig. 5f, Fig. 6c,d; see Supplementary Fig. 8b,d for quantification). 

Post-reward RPEs towards the end of the interval were nearly as large as unpredicted 

rewards, both in our model results (Supplementary Fig. 8d) and our data (Supplementary 

Fig. 9). Therefore, our model captures the pattern of pre- and post-reward RPEs in our Task 

2 data. Importantly, the belief state model captures the striking opposing trends of temporal 

modulation for post-reward dopamine RPEs in Tasks 1 and 2.

One additional empirical result that we compared with our belief state TD model was Task 

2b reward omission responses. For Odor A omission trials (2s variable ISI), we found that 
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the trough of the dip in dopamine firing occurred slightly later than the trough for Odor B 

trials (2s constant ISI). This shift in the trough of the omission response was also reproduced 

by our belief state TD model (Supplementary Fig. 1b,c).

One assumption of our model was that animals had perfectly learned the Gaussian 

distribution of ISIs. We lacked any behavioral indication that the animals had truly learned 

the probability distribution, so we tried relaxing this assumption of our model by instead 

training it on a uniform distribution of ISIs. We found that our model produced the same 

‘flip’ in the temporal modulation of post-reward RPEs between Tasks 1 and 2, when trained 

on a uniform distribution (Supplementary Fig. 10). Therefore, our modeling result is 

relatively agnostic to the precise shape of the learned ISI distribution.

Finally, while our model captures the trends of pre- and post-reward temporal modulation in 

both Tasks 1 and 2, the overall dopamine firing in Task 1 is much larger than predicted by 

our model. What could cause the discrepancy in post-reward RPE magnitude between our 

Task 1 data and model? Because our mice are trained on an odor-outcome association, the 

exact time when the animals sniff and detect ‘odor ON’ is jittered from trial to trial. This 

temporal jitter limits how precisely the animal can anticipate reward timing. Therefore, 

because our model does not incorporate this trial-by-trial jitter, it suppresses RPEs more 

effectively, particularly in Task 1 conditions that allow reward timing to be predicted 

perfectly by the end of the interval. Furthermore, our mice are trained for a relatively short 

length of time (∼1-2 weeks) prior to recording, potentially limiting the extent to which RPEs 

can be suppressed. Indeed, training our model on fewer trials increases the magnitude of 

post-reward RPE's.

Previous accounts of ‘hazard-like’ expectation signals cannot explain our data

Previous work has described ‘hazard-like’ expectation signals that shape neural firing and 

animal behavior22-25. A hazard function is defined as the probability function divided by the 

survival function, or in other words, the likelihood that an event will occur, given that it has 

not yet occurred. In other studies that analyzed dopaminergic RPEs in tasks with variable 

ISIs10-12, the variably timed event always occurred (100% event probability) and the ISI was 

drawn from a uniform distribution. With respect to both pre- and post-reward dopamine 

firing, all of these studies found a pattern of decreasing excitation over elapsed time, thought 

to correspond to a rising hazard function that increasingly suppressed later RPEs. 

Furthermore, a functional magnetic resonance study provided evidence that blood-oxygen-

level dependent (BOLD) signals in VTA track hazard signals in humans26. However, one 

aspect of previous work could not be explained using a hazard function: when animals were 

trained on an exponential distribution of ISIs, post-reward RPE's were still negatively 

modulated over time despite the flat hazard function of the ISI distribution10. Intriguingly, 

when we trained our belief state TD model on an exponential distribution similar to this 

previous work, our model was able to reproduce the negative temporal modulation of post-

reward RPEs (Supplementary Fig. 11d,e).

Our data in Task 1, which utilized a Gaussian ISI distribution and 100% reward probability, 

also revealed a pattern of decreasing pre- and post-reward dopamine firing, which matches 

the proposal that a hazard function may describe the trend of temporal expectancy reflected 
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by dopamine RPEs (Fig. 7). However, our data in Task 2 cannot be explained by a hazard 

function, nor can they be explained by a temporally-blurred subjective hazard function, 

computed by blurring the probability distribution function with a Gaussian whose standard 

deviation scales with elapsed time (see 23,24, Methods) (Fig. 7). Plotting the hazard function 

and subjective hazard functions for Task 2 reveals that both of these functions find a 

minimum for the earliest rewards. However, our data indicates that temporal expectation is at 

its maximum for the earliest rewards, because the earliest post-reward RPE's are most 

suppressed (Fig. 2b). We illustrated this contrast by plotting the value function from our 

belief state TD model alongside the hazard function for Task 2 (Fig. 7a). In sum, a hazard 

function may describe temporal expectancy for 100% rewarded conditions. However, 

temporal expectancy is dramatically altered in conditions involving uncertainty about 

whether the event will occur at all.

Discussion

In this work, we examined how dopaminergic RPE signals change with respect to reward 

timing and probability. Our experimental results showed that, depending on whether or not 

reward is delivered deterministically, dopaminergic RPEs exhibited opposite patterns of 

temporal modulation. Furthermore, our modeling result showed that these data are well 

explained by a TD model incorporating hidden state inference9. Because dopaminergic 

RPEs are proposed to signal the error term in TD learning, these findings deepen our 

understanding of how TD learning may be implemented in the brain. TD learning uses RPEs 

to update the weights of task-related features, which were classically represented as a 

cascade of sub-states (the “complete serial compound” or CSC) that track elapsed time 

following stimulus onset1,5. Our findings support an alternative “belief state” model that 

tracks a posterior distribution over sub-states.

A long-standing idea in modern neuroscience is that the brain computes inferences about the 

outside world rather than passively observing its environment27,28. This is accomplished 

through the inversion of a generative model that maps hidden states to sensory observations. 

For example, the hidden state of a lion crouching in the grass could be mapped to sensory 

cues such as a faint rustling or a nearby pawprint. By conditioning its belief state on 

observations of its environment, the antelope may predict the lion's presence. Following 

earlier theoretical work8,9,29, we argue that this inferential process is at play in the dopamine 

system. In particular, inferences about hidden states furnish the inputs into the reward 

prediction machinery of the basal ganglia, with dopamine signaling errors in these reward 

predictions.

This work follows two recent empirical studies that explored a state-based framework in the 

striatum and the VTA30,31. In the first of these studies, the authors found that individual 

striatal cholinergic interneurons preferentially fire for certain ‘states’, which mapped onto 

different blocks of a behavioral task30. In the second of these studies, a state-based model 

was used to capture the effect of a striatal lesion, which selectively impacted the temporal 

specificity of dopaminergic prediction errors but spared value-related prediction errors31. 

These two studies support our claim that a belief state representation may be at play in the 

basal ganglia reward-processing circuitry.
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Previous studies have shown a pattern of decreasing RPE's over time during tasks in which 

ISIs are drawn from a uniform probability distribution10-12. Can our model account for the 

temporal modulation of dopamine RPEs in these previous studies? Upon training the belief 

state TD model on a uniform distribution of reward timings, our model elicited negative 

temporal modulation of RPE signals (Supplementary Fig. 11a-b), indicating that our model 

is compatible with the data in these studies. However, we found that the belief state TD 

model was not the only model that produced decreasing RPE's over time. TD learning using 

the complete serial compound and reset also produced a pattern of decreasing excitation over 

time when trained on a flat probability distribution (Supplementary Fig. 11c). Because a 

100% rewarded condition fails to distinguish between these two models, it was critical that 

our experiments included both ‘100% Rewarded’ and ‘90% Rewarded’ tasks for 

comparison. Comparing RPEs in both of these task conditions allowed us to distinguish 

between the predictions of various associative learning models, thereby expanding upon 

these previous studies.

The belief state model provides a framework that is separate from, and entirely compatible 

with, previous work that examined the effect of temporal delay on dopamine RPEs10,15,16. 

These works showed that dopamine RPEs are less suppressed for lengthier ISIs, likely due to 

scalar timing uncertainty. For simplicity, our belief state model omitted the effect of 

temporal uncertainty in order to clearly demonstrate the effect of belief state inference on the 

value function and dopamine RPEs. However, we can incorporate scalar temporal 

uncertainty into our model by blurring the belief state distribution with a Gaussian kernel 

whose standard deviation is proportional to elapsed time31 (see Supplementary Fig. 12). To 

create this ‘blurred’ belief state model, we fit a scalar timing noise parameter to account for 

post-reward RPE's for 1.2s and 2.8s constant delays (Odors B and C). This temporally 

blurred belief state model still captured our data well in Tasks 1 and 2.

Although we have focused on the belief state TD model, another prominent account replaces 

the CSC with “microstimulus” features—temporally diffuse versions of the discrete time 

markers in the CSC32. The microstimulus model incorporates neural timing noise that 

accrues for longer intervals by representing each sub-state's temporal receptive field as a 

Gaussian function whose standard deviation increases and amplitude decreases with the 

post-stimulus interval. Although the microstimulus and belief state models are typically 

thought of as alternatives [see33 for a review], they can be conceived as realizations of the 

same idea at different levels of analysis.

Examining the belief state over time, we can see that the posterior over each sub-state peaks 

at a specific moment during the trial (Fig. 6). In Task 2, the peaks become progressively 

lower as a function of time, due to the increased probability of a state transition. This 

decrease in amplitude mirrors the decrease in amplitude of microstimuli as a function of 

time. If we take into account noise and autocorrelation in neural signaling, then we expect 

these functions to become more temporally dispersed, further increasing the resemblance to 

microstimuli. This suggests that microstimuli might be viewed as a neural realization of the 

abstract state representation implied by the belief state model.
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The key difference between microstimuli and belief states is that the shape of belief states is 

sensitive to task structure (e.g., the omission probability), whereas microstimuli have been 

traditionally viewed as fixed. However, if we view microstimuli as being derived from belief 

states, then we expect the microstimulus shape to change accordingly. Indeed, evidence 

suggests that microstimulus-like representations adapt to the distribution of ISIs, ‘stretching’ 

to accommodate distributions with a wider range of ISIs34. This is precisely what we would 

expect to see if the transition function in the belief state model is adapted to the ISI 

distribution.

In summary, our data provide support for a TD learning model that operates over belief 

states, consistent with the general idea that the cortex computes probability distributions 

over hidden states that get fed into the dopamine system. While belief states are cognitive 

abstractions, they could be realized in the brain by neurons with temporal receptive field 

structure resembling microstimuli.

Methods

Animals

We used 7 adult male mice, hetereozygous for Cre recombinase under the control of the 

DAT promoter (B6.SJL-Slc6a3tm1.1(cre)Bkmm/J, The Jackson Laboratory) and backcrossed 

for >5 generations with C57/BL6J mice36. 3 animals were used in Task 1 (Fig. 1a), 1 animal 

was used in Task 2 (Fig. 1b), and 3 animals were used in Task 2b (Supplementary Fig. 1). 

Animals were housed on a 12-h dark/12-h light cycle (dark from 7AM to 7PM). We trained 

animals on the behavioral task at approximately the same time each day. All experiments 

were performed in accordance with the National Institutes of Health Guide for the Care and 

Use of Laboratory Animals and approved by the Harvard Institutional Animal Care and Use 

Committee.

Surgery and viral injections

We performed all surgeries under aseptic conditions with animals under isoflurane (1-2% at 

0.5-1.0L/min) anesthesia. Analgesia (buprenorphine, 0.1mg/kg, intraperitoneal) was 

administered pre-operatively and at 12-h checkpoints post-operatively. We performed two 

surgeries, both stereotactically targeting the left VTA (from bregma: 3.1mm posterior, 

0.6mm lateral, 4.2mm ventral). In the first surgery, we injected 500nL of adeno-associated 

virus (AAV, serotype 5) carrying an inverted ChR2 (H134R) fused to the fluorescent reporter 

eYFP and flanked by double loxP sites3,37. We previously showed that the expression of this 

virus is highly selective and efficient in dopamine neurons3. After 2 weeks, we performed 

the second surgery to implant a head plate and custom-built microdrive containing 6-8 

tetrodes and an optical fiber.

Behavioral paradigm

After 1 week of post-surgical recovery, we water-restricted mice in their cages. Weight was 

maintained above 85% of pre-restriction body weight. We habituated and briefly head-

retrained mice for 2-3 days before training. Odors were delivered to animals with a custom-

made olfactometer38. Each odor was dissolved in mineral oil at 1/10 dilution. 30uL of 
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diluted odor was placed into glass fiber filter-paper, and then diluted with filtered air 1:20 to 

produce a total 1L/min flow rate. Odors included isoamyl acetate, (+)-carvone, 1-hexanol, p-

cymene, ethyl butyrate, 1-butanol, limonene, dimethoxybenzene, caproic acid, 4-heptanone, 

and eugenol. The combination of these odors differed for different animals. We 

automatically detected licks by measuring breaks of an infrared beam placed in front of the 

water spout.

For both tasks, rewarded odor A trials consisted of 1s odor presentation followed by a delay 

chosen from a Gaussian distribution defined over 9 points ([1.2s 1.4s 1.6s 1.8s 2.0s 2.2s 2.4s 

2.6s 2.8s]; mean = 2s; SD = 0.5s), prior to reward delivery. For both Tasks 1 and 2, rewarded 

odor B and odor C trials consisted of 1s odor presentation followed by either 1.2s or 2.8s 

delay from odor onset, respectively, prior to reward delivery (Fig. 1a,b). In Task 2b, 

rewarded odor B trials consisted of 1s odor presentation followed by 2s delay from odor 

onset; odor C was not given (Supp. Fig. 1). In all tasks, odor D trials were unrewarded. In 

Task 1, reward was given in 100% of trials. In Tasks 2 and 2b, reward was given in 90% of 

trials. For all tasks, reward size was kept constant at 3uL. Trial type was drawn 

pseudorandomly from a scrambled array of trial types, in order to keep the proportion of 

trial types constant between sessions. The ITI between trials was drawn from an exponential 

distribution (mean = 12-14s) in order to ensure a flat hazard function. Animals performed 

between 150-300 trials per session.

Electrophysiology

We based recording techniques on previous studies3,4,13. We recorded extracellularly from 

the VTA using a custom-built, screw-driven Microdrive (Sandvik, Palm Coast, Florida) 

containing 8 tetrodes glued to a 200μm optic fiber (ThorLabs). Tetrodes were glued to the 

fiber and clipped so that their tips extended 200-500μm from the end of the fiber. We 

recorded neural signals with a DigiLynx recording system (Neuralynx) and data acquisition 

device (PCIe-6351, National Instruments). Broadband signals from each wire were filtered 

between 0.1 and 9000 Hz and recorded continuously at 32kHz. To extract spike timing, 

signals were band-pass-filtered between 300 and 6000Hz and sorted offline using 

MClust-3.5 (A.D. Redish). At the end of each session, the fiber and tetrodes were lowered 

by 75um to record new units the next day. To be included in the dataset, a neuron had to be 

well-isolated (L-ratio < 0.05)39 and recorded within 300um of a light-identified dopamine 

neuron (see below) to ensure that it was recorded in the VTA. We also histologically verified 

recording sites by creating electrolytic lesions using 10-15s of 30μA direct current.

To unambiguously identify dopamine neurons, we used ChR2 to observe laser-triggered 

spikes3,40,41. The optical fiber was coupled with a diode-pumped solid-state laser with 

analog amplitude modulation (Laserglow Technologies). At the beginning and end of each 

recording session, we delivered trains of 10 473nm light pulses, each 5ms long, at 1, 5, 10, 

20, and 50Hz, with an intensity of 5-20mW/mm2 at the tip of the fiber. Spike shape was 

measured using a broadband signal (0.1-9,000Hz) sampled at 32kHz. To be included in our 

dataset, neurons had to fulfill 3 criteria3,4,13:
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1) Neurons' spike timing must be significantly modulated by light pulses. We tested this by 

using the Stimulus-Associated spike Latency Test (SALT)41. We used a significance value of 

P < 0.05, and a time window of 10ms after laser onset.

2) Laser-evoked spikes must be near-identical to spontaneous spikes. This ensured that light-

evoked spikes reflect actual spikes instead of photochemical artifacts. All light-identified 

dopamine neurons had correlation coefficients > 0.9 (Supplementary Fig 3b,g).

3) Neurons must have a short latency to spike following laser pulses, and little jitter in spike 

latency (Supplementary Fig. 3c,e,f). While others have used a latency criteria of 5ms or less 

(‘short latency’)3,4,13, we found that the high laser intensity required to elicit this short 

latency spike sometimes created a mismatched waveform, due to 2 neurons near the same 

tetrode being simultaneously activated. For this reason, we often decreased the laser 

intensity and elicited a spike 5-10ms (‘longer latency’) after laser onset. We separately 

analyzed neurons in both the ‘short latency’ and ‘longer latency’ categories, and found 

qualitatively similar results in each group. Therefore, we pooled all dopamine neurons with 

latencies below 10ms in our analyses.

Data analysis

We focused our analysis on light-identified dopamine neurons (n = 30 for Task 1; n = 43 for 

Task 2). To measure firing rates, PSTHs were constructed using 1ms bins. Averaged PSTHs 

shown in figures were smoothed with a box filter of 100-150ms. Average pre-reward firing 

rates were calculated by counting the number of spikes 0-400ms prior to reward onset. We 

also attempted using window sizes ranging from 200-500ms, and these produced similar 

results. Average post-reward firing rates were calculated by counting the number of spikes 

50-300ms after reward onset in both Tasks 1 and 2. Both pre- and post-reward responses 

were baseline-subtracted, with baseline taken 0-1s prior to odor onset.

We further examined the licking behavior on each day of recording. We fit a logistic 

function to each day's data, for each animal, which takes the following form:

Where t is time relative to odor onset, L is the curve's maximum value, k is the steepness of 

the curve, and t0 is the time of the sigmoid's midpoint.

We plotted a subjective hazard rate by blurring the probability distribution function p(t) by a 

normal distribution whose standard deviation scales with elapsed time. Similar to previous 

work23-24, we used a Weber fraction ϕ = 0.25:
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Statistics

No statistical methods were used to pre-determine sample sizes but our sample sizes are 

similar to those reported in previous publications3,4,13. Data collection and analysis were not 

performed blind to the conditions of the experiments. Animals were chosen at random for 

Tasks 1 or 2. All trial types were randomly interleaved within a single recording session. We 

verified that all groups of data (including both electrophysiology and behavior) compared 

using ANOVAs did not deviate significantly from a normal distribution, using a chi-square 

goodness of fit test. To test whether dopamine RPEs were modulated by ISI length, we used 

a 2-factor ANOVA, with neuron and ISI as factor. To test whether licking was modulated by 

odor identity, we used a 1-factor ANOVA, with Odor identity as a factor. To test whether 

individual neurons' RPEs were modulated by factors such as ISI length or lick rates, we fit a 

line to the data (dopamine RPEs versus ISI) and reported the slope. We also displayed the 

95% confidence interval of the slope (Supplementary Fig. 3) or a summary of whether or not 

the 95% confidence interval included 0 (shaded in Fig. 3g,h).

Code Availability

Code used to implement the computational modeling in this manuscript can be found in a 

Supplementary Software section and at this GitHub link: https://github.com/cstarkweather

Immunohistochemistry

After 4-8 weeks of recording, we injected mice with an overdose of ketamine/medetomidine. 

Mice were exsanguinated with saline and perfused with 4% paraformaldehyde. We cut 

brains in 100um coronal sections on a vibrotome and immunostained with antibodies to 

tyrosine hydroxylase (AB152, 1:1000, Millipore) in order to visualize dopamine neurons. 

We additionally stained brain slices with 49,6-diamidino-2-phenylindole (DAPI, 

Vectashield) to visualize nuclei. We confirmed AAV expression with eYFP fluorescence. We 

examined slides to verify that the optic fiber track and electrolytic lesions were located in a 

region with VTA dopamine neurons and in a region expressing AAV (see Supplementary 

Fig. 7)

Computational modeling

Temporal difference (TD) Model—We first simulated TD error signaling in our Tasks 

by using Temporal Difference learning with a complete serial compound representation, 

identical to the algorithm presented by Schultz and colleagues1. We set stimulus onset at t = 

20, and set 9 possible reward times at t = 26, 27, 28, 29, 30, 31, 32, 33, 34. In our Task 1 

simulation, reward was always delivered. In our Task 2 simulation, reward was delivered in 

90% of trials. The results presented in the text were obtained by running 10× simulations of 

each task, with 5000 trials per simulation. The ‘TD with reset’ variant was simulated by 

setting the error term to 0 at any timesteps after reward was delivered.

Belief state TD Model—We next simulated TD error signaling in our Tasks by using a 

belief state TD model, similar to that proposed by Daw and colleagues, as well as Rao8,9. To 

capture the discrete dwell times in our Tasks (1s odor presentation, followed by nine discrete 

possible reward delivery timings at 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, and 2.8s after odor 
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onset), we coded a Markov equivalent of a Semi-Markov model (see 9). This Markov 

equivalent contained 15 total hidden sub-states (see Supplementary Fig. 7a,b). Sub-states 1-5 

corresponded to the passage of time during the 1s odor presentation; sub-states 6-14 

corresponded to the passage of time preceding the 9 possible reward delivery time. Sub-state 

15 corresponded to the ITI. If reward was received at the earliest possible time (1.2s), this 

would correspond to the model proceeding through sub-states 1-6, and then transitioning to 

sub-state 15. If reward was received at the latest possible time (2.8s), this would correspond 

to the model proceeding through sub-states 1-14, and then transitioning to sub-state 15.

In the belief state TD model, it is assumed that the animal has learned a state transition 

distribution, encoded by matrix T. We captured the dwell-time distribution in the ISI state by 

setting elements of T to match either the hazard function or the inverse hazard function of 

receiving reward at any of the 9 discrete timepoints. For example, the hazard rate of 

receiving reward at 1.2s would correspond to T(6,15), or the probability of transitioning 

from sub-state 6→15. 1 minus the hazard rate of receiving reward at 1.2s would correspond 

to T(6,7), or the probability of transitioning from sub-state 6→7. We captured the 

exponential distribution of dwell-times in the ITI state by setting T(15,15) to 64/65, and 

T(15,1) = 1/65. An exponential distribution with a hazard rate (ITI_hazard) of 1/65 has an 

average dwell time of 65. This average ITI dwell time was proportionally matched to the 

average ISI dwell time to be comparable to our task parameters. The only difference in T 

between Task 1 and Task 2 was as follows:

Task 1:

T(15,15) = 1 - ITI_hazard

T(15,1) = ITI_hazard

Task 2:

T(15,15) = 1 - ITI_hazard * 0.9

T(15,1) = ITI_hazard * 0.9

This difference in T between Task 1 and 2 captured the probability of undergoing a hidden 

state transition from ITI back to the ITI, in the case of 10% omission trials. In the belief state 

TD model, it is also assumed that the animal has learned a probability distribution over 

observations given the current state, encoded by observation matrix O. There were 3 

possible observations: null, cue, and reward. The likelihood of a particular observation given 

that the hidden state underwent a transition from i→j, was captured as follows:

O(i,j,1) = likelihood of observation of ‘null’, given i→j transition

O(i,j,2) = likelihood of observation of ‘cue’, given i→j transition

O(i,j,3) = likelihood of observation of ‘reward’, given i→j transition

In order to switch from sub-state 15 (ITI) to sub-state 1 (first state of ISI), the animal must 

have an observation of the cue: O(15,1,2) = 1. In order to switch from sub-state 10 (middle 

of ISI) to sub-state 15 (ITI), the animal must have an observation of reward: O(10,15,3) = 1 

The only difference in O between Task 1 and Task 2 was as follows:
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Task 1:

O(15,15,1) = 1 (null observation)

Task 2:

O(15,15,1) = 1-ITI_hazard*0.1 (null observation)

O(15,15,2) = ITI_hazard*0.1 (cue in a small percentage of cases)

This difference in O between Task 1 and 2 captures the fact that in 10% omission trials the 

animal will observe a cue, but in fact be in the hidden ITI state rather than a hidden ISI state.

The results presented in the text were produced by training the belief state TD model on 

either Task 1 (100% rewarded) or Task 2 (90% rewarded), for 5000 trials each. We found 

that the model yielded asymptotic results after about 1000 trials. For this reason, the results 

shown in the text are taken from trials 2000-5000. In all simulations, we used a learning rate 

of α = 0.1 and a discount factor of γ = 0.98.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Task design
a, In Task 1, rewarded odors forecasted a 100% chance of reward delivery. Odors B and C 

trials had constant ISIs, while odor A trials had a variable ISI drawn from a discretized 

Gaussian distribution defined over 9 timepoints. b, In Task 2, rewarded odors forecasted a 

90% chance of reward delivery. ISIs for each odor were identical to Task 1. c, Histogram of 

ISIs for odor A trials during an example Task 1 recording session, showing 9 possible 

reward delivery times. d, Histogram of ISIs for odor A trials during an example Task 2 

recording session. e-f, Averaged non-normalized PSTH for licking behavior across all Task 1 

(e) and Task 2 (f) recording sessions. Animals lick sooner for Odor B (ISI = 1.2s) than for 

Odor C (ISI = 2.8s) trials. Licking patterns for Odor A (variable ISI centered around 2.0s) 

fall in between licking patterns for Odor B and Odor C.
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Figure 2. Averaged dopamine activity in Tasks 1 and 2 shows different patterns of modulation 
over variable ISI interval
a, Average non-normalized PSTH for all 30 dopamine neurons recorded during Odor A 

trials in Task 1. Average pre- and post-reward dopamine RPE's were negatively modulated 

by time (post-reward firing: F8,232 = 5.56, P = 1.9 × 10-6, 2-way ANOVA; factors: ISI, 

neuron; pre-reward firing: F8,232=4.76, P = 2.0 × 10-5, 2-way ANOVA; factors: ISI, neuron). 

b, Average PSTH for all 43 dopamine neurons recorded during Odor A trials in Task 2 

(includes neurons from Task 2b). Pre-reward dopamine RPE's (400-0ms prior to reward 

onset) tended to be negatively modulated by time, while post-reward RPE's (50-300ms 

following reward onset) tended to be positively modulated by time (post-reward firing: 

F8,336 = 8.23, P = 3.48 × 10-10, 2-way ANOVA; factors: ISI, neuron; pre-reward firing: 

F8,336 = 7.86, P = 1.0 × 10-9, 2-way ANOVA; factors: ISI, neuron). c-f, Average PSTHs for 

odor B and C trials in Tasks 1 and 2. g-h, Summary plots for average pre- and post-reward 

firing (mean ± s.e.m.).
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Figure 3. Individual dopamine neurons show opposing patterns of post-reward firing in Tasks 1 
and 2
a,b,PSTH for two example dopamine neurons during odor A trials of a single recording 

session in Task 1 (a) or Task 2 (b), respectively. c,d, Raster plots for the first 100 odor A 

trials of a single recording session in Task 1 (c) or Task 2 (d). e,f, Examples of single-unit 

analysis. A best-fit line was drawn through a plot relating the ISI to the post-reward firing 

rate (50-300ms following reward onset) for each odor A trial in Task 1 (e) or Task 2 (f). g,h, 
Slopes of best-fit lines in Task 1 (g) or Task 2 (h), as shown in (e) and (f), for all dopamine 

neurons recorded. Purple shading indicates P < 0.05, or a 95% confidence interval for the 

slope coefficient that does overlap with 0.
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Figure 4. TD with CSC model, with or without Reset, is inconsistent with our data
a, Schematic adapted from1. The CSC temporal representation comprises features x(t) = 

{x1(t), x2(t), …} that are weighted to produce an estimated value signal V̂(t). δ(t) reports a 

mismatch between value predictions, and is used to update the weights of corresponding 

features. b, TD with CSC produces a pattern of RPEs that resembles a flipped probability 

distribution, for both Tasks 1 and 2. c, TD with CSC and Reset produces a pattern of RPEs 

that decreases over time, for both Tasks 1 and 2.
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Figure 5. Belief state model is consistent with our data
a,b, In our model, the ISI and ITI states comprise sub-states 1-15 c,d, The CSC temporal 

representation is swapped for a belief state. Expected value is the linear sum of both weight 

and belief state V̂(t) = Σiwibi(t). In Task 1 (c), the belief state sequentially assigns 100% 

probability to each ISI sub-state as time elapses after odor onset. In Task 2 (d), the belief 

state gradually shifts in favor of the ITI as time elapses and reward fails to arrive. e,f, Belief 

state model captures the opposing post-reward firing patterns between Task 1 (e) and Task 2 

(f) (see Supplementary Fig. 8 for quantification). This model also captures negative temporal 

modulation of pre-reward firing in both Tasks.
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Figure 6. Belief state model shapes value signals that differ between Tasks 1 and 2, leading to 
opposite patterns of post-reward modulation over time
a,b, As time elapses following odor onset in Task 1, the belief state proceeds through ISI 

sub-states (i1-i14) by sequentially assigning a probability of 100% to each sub-state. Later 

ISI sub-states accrue greater weights. Estimated value is approximated as the dot product of 

belief state and weight, producing a ramping value signal that increasingly suppresses δ(t) 
for longer ISIs. c,d, As time elapses following odor onset in Task 2, the belief state 

comprises a probability distribution that gradually decreases for ISI sub-states (i1-i14) and 

gradually increases for the ITI sub-state (i15). This produces a value signal that declines for 

longer ISIs, resulting in the least suppression of δ(t) for the latest ISI.
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Figure 7. Hazard and subjective hazard functions cannot explain the trend of our data
a, Hazard and subjective hazard functions deviate substantially from the trend of value 

expectation over time in our belief state TD model, particularly in Task 2. Note the value 

functions are scaled versions of those shown in Fig. 6b,d to aid visual comparison of trends 

over time. b, Illustration of how RPEs would appear in our data, if the reward expectation 

signal corresponded to hazard or subjective hazard functions.
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