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Abstract

Understanding the link between community composition and function is a major challenge in

microbial population biology, with implications for the management of natural microbiomes

and the design of synthetic consortia. Specifically, it is poorly understood whether commu-

nity functions can be quantitatively predicted from traits of species in monoculture. Inspired

by the study of complex genetic interactions, we have examined how the amylolytic rate of

combinatorial assemblages of six starch-degrading soil bacteria depend on the separate

functional contributions from each species and their interactions. Filtering our results

through the theory of biochemical kinetics, we show that this simple function is additive in

the absence of interactions among community members. For about half of the combinatori-

ally assembled consortia, the amylolytic function is dominated by pairwise and higher-order

interactions. For the other half, the function is additive despite the presence of strong com-

petitive interactions. We explain the mechanistic basis of these findings and propose a

quantitative framework that allows us to separate the effect of behavioral and population

dynamics interactions. Our results suggest that the functional robustness of a consortium to

pairwise and higher-order interactions critically affects our ability to predict and bottom-up

engineer ecosystem function in complex communities.

Introduction

Microbial communities carry out critical biochemical functions throughout the biosphere:

from nitrogen fixation and photosynthesis to the recycling of nutrients and the decomposition

of organic matter [1,2]. In host-associated communities, the metabolic activity of the micro-

biota can also profoundly affect the host’s health, modulating life-history traits such as flower-

ing timing in plants [3,4] or the life span and reproductive behavior of animals [5,6]. In more
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applied settings, microbial consortia are being designed for the processing of undesirable

materials into valuable products [7–11], to protect valuable crops from pathogens [12,13] and

other stressors [14,15], or to increase crop yields [16]. The specific effects that microbial com-

munities have on their environment or their hosts can be termed the “functions” of these com-

munities. These functions depend on community composition—i.e., on which species are

present and their abundance. Thus, manipulating community composition to accomplish

desirable functional outcomes has become a major goal in fields as diverse as medicine, envi-

ronmental engineering, and biotechnology [15].

To accomplish this goal, it is imperative to develop a predictive understanding of the rela-

tionship between microbial community composition and function [17–21]. This is widely rec-

ognized as one of the main challenges in the field [7,17,18,22,23], but many fundamental

questions remain. Importantly, it is still unclear to what extent one can predict the function of

a large multispecies community from low-dimensional information, such as the functional

contributions of single species and their pairwise interactions [24–28]. The answer to this

question has important implications: if predicting community function in such a bottom-up

manner were generally feasible, this would encourage synthetic approaches to designing com-

plex communities in a rational manner, by mixing and matching components with known

functional traits [7,18,27,29]. However, the contribution of a given species or pair of species to

a community function may also depend on the presence or absence of other taxa, for instance,

through ecological interactions that modulate species abundance, or by modulating the expres-

sion of functionally relevant genes. This can easily lead to higher-than-pairwise functional

interactions. If community functions were generally complex and enriched in nonlinear or

high-order functional interactions, bottom-up prediction would be significantly more chal-

lenging, and top-down approaches such as community-level selection [30] might be a more

viable strategy for the manipulation and design of complex consortia [4,14,30–34].

The crux of the problem is thus the contribution of pairwise and high-order interactions

(HOIs) to community functions. In spite of a growing appreciation of the role that HOIs may

play in community assembly [28,35–40], we still know little about their quantitative contribu-

tion to specific processes and community-level functions [6,20]. To tackle this question, one

would need to disentangle the functional contributions of all of the single species in isolation

from the effects of pairwise and higher-order interactions. This is a notoriously challenging

problem, particularly for complex functions for which “first principles” mechanistic models

are hard to produce [41].

A similar problem has been encountered many times before in other areas of biology, most

notably in the study of genetic interactions among mutations in fitness landscapes [42–44]. To

detect interactions, one compares the quantitative phenotype of multiple mutations with the

expectation from a null model that assumes that the effects of mutations are independent. In

practice, this often is taken to mean that the phenotypic effects of mutations add up [45–47],

and the difference between the measured phenotype and the null model prediction is thus

attributed to genetic interactions [41–47]. When the interaction between a pair of mutations is

affected by the presence of a third mutation, a third-order interaction is found. In recent years,

strategies that are inspired by the study of complex interactions on fitness landscapes have

been deployed to detect interactions in other complex biological systems, e.g., between tran-

scription factors in combinatorial gene regulation [48,49] or among multiple drugs in antibi-

otic or cancer drug cocktails [50,51].

Applied to microbial communities, this strategy would involve reconstituting all possible

combinatorial subcommunities (i.e., every possible monoculture as well as every possible pair-

wise coculture, three-species coculture, four-member coculture, etc.), measuring their func-

tion, and then comparing this measurement to the prediction of a null model [6,20]. Defining
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a null model that captures the absence of interactions is therefore critical to unambiguously

establish the contribution of both pairwise interactions and HOIs to community-level func-

tions. Yet, for complex functions that are also often inherently nonlinear and depend in poorly

understood ways on the molecular interplay between hosts and microbes, it is often not obvi-

ous what that null model should be.

To circumvent this problem, we set out to study a simple community-level function that

can be quantitatively modeled from the bottom up from mechanistic biochemical principles.

The quantitative characterization of this function, combined with theory borrowed from fit-

ness landscapes, allows us to build quantitative null models for the relationship between com-

munity structure (i.e., species composition) and function. Combining this theory with

experiments, we seek to precisely determine the contribution of interactions of different order

(e.g., pairwise, third-order, etc.) and type (e.g., modifying population growth through competi-

tion or facilitation, or altering the expression of this function at the cellular level).

Results

A simple additive function in a simple in vitro consortium

We sought to study a small synthetic consortium that could be combinatorially reconstituted

in vitro and that performs a simple function that could be mechanistically and quantitatively

understood from first principles when interactions among species are absent. To this end, we

constructed a set of synthetic consortia consisting of every combination of six amylolytic soil

bacteria: Bacillus subtilis, B. megaterium, B. mojavensis, Paenibacillus polymyxa, B. thuringien-
sis, and B. cereus (Fig 1A). As the function, we chose the starch hydrolysis rate of the enzymes

released by the consortia (Fig 1B and 1C). This function was expressed on agar plates as well as

in liquid culture (Fig 1A–1D) by all members of the consortia in isolation. This is a redun-

dantly distributed, simple function that requires just one kind of extracellular enzyme (an

endoamylase) for its completion.

To formulate a quantitative null model for this function that is based on the underlying bio-

chemistry, we adopted the random or “single-attack” model of enzymatic starch hydrolysis,

which has been previously found to capture the mechanism of Bacillus endoamylases [53]. In

the Methods section, we explain how we mathematically formulated this model and consid-

ered two alternative, minimal scenarios that are consistent with the concentration of low-

molecular-weight soluble starch that we use as substrate and the operational definition of

starch we use throughout the paper (Methods). As we will show in what follows (Fig 1E and

1F), the model also has a strong predictive power. As described in Methods, enzymatic starch

hydrolysis is well captured under our experimental conditions by a sequential two-step

Michaelis-Menten reaction with each step having an identical velocity (V) (Figs 1B and 1C and

S1).

We now sought to apply this model to the extracellular enzymes from live cultures of the

species in the consortium. The same two-step model in (Eq 9) also fits well the kinetics of

starch degradation by the amylases released into the extracellular medium by each species in

monoculture (Fig 1D), and the fitting parameter Vi gives us the hydrolysis rate of each species

i. Moreover, as described in the Methods section, the theory of chemical kinetics predicts that

the starch hydrolysis rate (VAB) of a cocktail or mixture of the enzymes independently released

by monocultures of species A and B is the sum of both rates in isolation (VAB = VA(0) + VB(0)).

We tested this prediction by growing all six species in monoculture for 24 hr and then mixing

their supernatants 1:1 in every possible pairwise combination (Fig 1E). A series of different

volumes (representing enzyme dilutions x = 0.05, 0.125, 0.25, 0.5) of these supernatant mix-

tures were incubated at T = 30˚C with a 1 mg/mL starch solution for various incubation times
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Fig 1. Starch degradation of simple consortia follows an additive null biochemical model. (A-B) All members of

our six-species consortium are able to break down extracellular starch by secreting extracellular amylases. This is

evidenced by the presence of a halo around colonies of all six species after Lugol stain [52]. Colonies formed on basic

growth minimal media (1x bSAM) agarose plates. Extracellular Bacillus amylases bind randomly on starch chains,

breaking them at random positions [53]. We propose a two-step enzymatic degradation model (Methods) that requires

two cleavage reactions to turn starch into smaller oligosaccharides. (C) We fit the model (Eq 9) to the result of

incubating purified B. subtilis amylase at various concentrations (from 0.4 to 100 μg/mL in 2X increments) with a 1

mg/mL starch solution for various lengths of time. In the horizontal axis, we plot z = x�t, where x represents the

dilution of the enzyme relative to the maximum concentration (see Methods), and t is the incubation time. In the

vertical axis, we plot the fraction (“Fract.”) of starch degraded for each condition. Each red dot represents a

measurement for a different value of (x, t). (D) Amylolytic activity of the supernatants of individual species in

monoculture. Species were grown in monoculture in 3 mL of 1x bSAM medium at 30˚C for 24 hr. The vertical axis

represents the fraction of starch degraded by different dilutions (x = 0.05, 0.125, 0.25, 0.5) of the filtered supernatants
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(3, 6, 19, and 24 hr), and the fraction of starch degraded at each time was then measured for

each condition (Methods). A fit to the model in Eq 9 allowed us to obtain the degradation rate

of the enzymatic cocktails (VAB), which can be compared to the prediction from the model of

independently acting enzymes (Fig 1E). We find a very strong correlation (Pearson’s % =

0.973, P< 0.001; root-mean-square deviation [RMSD] = 0.41, N = 15) between the predictions

from this naturally additive, interaction-free mechanistic model and the experimental mea-

surements (Fig 1F). The strong predictive power of the two-step model further validates it

under our experimental conditions.

In summary, the theory of chemical kinetics states that the rate of hydrolysis when two or

more different enzymes are mixed together should be the sum of the hydrolytic rate of each

enzyme, if those enzymes act independently on the substrate. This prediction is validated in

our experiments. When the species in our consortia are grown in separate culture tubes and

do not interact with one another in any way, their contributions to the rate of starch degrada-

tion add up. Armed with this mechanistic null model, we are now prepared to investigate the

role of pairwise and higher-order functional interactions.

Mapping pairwise functional interactions in our microbial consortium

To investigate the contribution of pairwise and higher-order interactions to the function of

our consortia, we made use of concepts and tools that were originally developed for the study

of genetic interactions. By analogy with the theory of fitness landscapes, we define the func-

tional landscape as a map connecting every possible combinatorially assembled consortia with

its function (which, in the case at hand, represents the amylolytic rate of the cocktail of

enzymes collectively secreted by a consortium).

In the absence of interactions, growing species together would be identical to growing them

separately in their own culture flask. In such scenario, the null mechanistic model described

above predicts that the functional landscape should be additive, and the function of a consor-

tium would grow monotonically with the number of species (Fig 2A). For an M-species con-

sortium (which we denote as M
!

Þ, our null model is given by Eq 11 (Methods) and can be

written as:

VM
!
ð0Þ ¼

XM

i¼1

Vi
ð0Þ;

where VM
!
ð0Þ denotes the function of the consortium, and Vi

(0) represents the amylolytic rate of

the enzymes released by species i in monoculture.

To test the null model, we assembled combinatorial consortia including pairs and trios as

well as four-, five-, and six-member species and measured the amylolytic rates of the enzymes

released over 24 hr of culture (Methods). For internal consistency, we also replicated the

monocultures, obtaining good agreement with the measurements in Figs 1 and S1B. Overall,

the experimental functional landscape often exhibits a marked deviation from the prediction

incubated at 30˚C with 1 mg/mL starch for various time lengths (t = 3, 6, 19, 24 hr). The two-step model (Eq 9; solid

black line) is fit to the data (red dots), and the fitted parameter Vi (hr−1), which corresponds to the function of the

monocultures Vi0, is reported in red in each subpanel. (E) Amylolytic activity of 1:1 mixtures of all possible pairs of

single-species filtered supernatants. In addition to experimental data (red points) and fit to Eq 9 (solid black line;

fitting parameter Vij), we also show the fraction of starch degraded for each value of z predicted by the null biochemical

model of independently acting enzymes (Eq 11; mean ± 2SE, gray region). (F) Comparison of fitted versus predicted

values of Vij for the same pairs shown in (E) (error bars represent ± 2SE); red line represents perfect prediction. Vol.,

volume.

https://doi.org/10.1371/journal.pbio.3000550.g001
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Fig 2. Pairwise interactions are ubiquitous in our microbial consortia. (A) Functional landscape predicted by the

additive biochemical model (Eq 11). (B) Experimental functional landscape, where each point is the experimentally

measured amylolytic rate of a consortium (error bars omitted for clarity). (C) Example of a pairwise functional

landscape that is representative of communities lacking P. polymyxa (in this case, B. mojavensis and B. thuringiensis).
Red lines show experimental measures (±SE), which are well predicted by the additive model (gray). (D) Functional

landscape for a pairwise consortium containing P. polymyxa and B. thuringiensis. Here, the experimentally measured

function of the pair (red) is not well predicted by the sum of the individual contributions (gray). The difference εð0ÞPT
quantifies the pairwise interaction. (E) Pairwise interactions (εð0ÞAB) of all possible two-member species consortia. (F)

Comparison of the measured community function and the function predicted by the additive model (±2SE). Shape

and color represent community size and presence of P. polymyxa, respectively. Black line represents perfect prediction.

Species are designated as follows: C = B. cereus; E = B. megaterium; M = B. mojavensis; P = P. polymyxa; S = B. subtilis;
and T = B. thuringiensis. This convention will be used throughout the text.

https://doi.org/10.1371/journal.pbio.3000550.g002

High-order interactions distort the functional landscape of microbial consortia

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000550 December 12, 2019 6 / 34

https://doi.org/10.1371/journal.pbio.3000550.g002
https://doi.org/10.1371/journal.pbio.3000550


of the null model (Fig 2B), indicating the presence of interactions in many—but not all—con-

sortia. For instance, we show the functional landscape for two different two-species consortia:

one formed by B. thuringiensis (“T”) and B. mojavensis (“M”) (Fig 2C) and a second one

formed by B. thuringiensis and P. polymyxa (“P”) (Fig 2D). As we see in Fig 2C, the null model

approximates well the function of the pairwise consortium formed by B. thuringiensis and B.

mojavensis. In contrast, the null model underestimates the function of the consortium formed

by B. thuringiensis and P. polymyxa (Fig 2D). The deviation between the null model prediction

and the measured function of the consortium quantifies the pairwise functional interaction,

which we denote as εPT
(0) (i.e., VPT(0) = VP(0) + VT(0) + εPT

(0)) (Fig 2D).

The strength of pairwise functional interactions can be determined in the same manner for

other pairs of species too (Fig 2E). A pattern readily emerges: interactions are strong when P.
polymyxa is present but weak when it is absent. Consistent with this finding, the predicted

function from the additive null model is strongly predictive of the measured function

(RMSD = 1.47, N = 25) for all of the consortia we tested (including all of those with M> 2 spe-

cies), where P. polymyxa is absent (Fig 2F, blue dots). On the other hand, when P. polymyxa is

present, the additive null model is weakly predictive (Fig 2F, RMSD = 17.36, N = 28), severely

underestimating the amylolytic function of all consortia. Given the failure of the null model,

we conclude that pairwise and potentially also higher-order functional interactions are

required to explain the function of consortia when P. polymyxa is present.

Quantifying high-order functional interactions in our simple consortia

Third-order interactions capture how the function of a pair of species (e.g., the amylolytic rate

of the enzymes secreted by the pair) is altered when a third species is present. To determine

whether pairwise interactions can indeed be altered by the presence of a third species, we mea-

sured the amylolytic rate for every possible pairwise and three-member consortia and then fol-

lowed the approach outlined in Fig 3A. The results are summarized in Fig 3B, and they show

that a model that adds up all single-species contributions and all pairwise interactions vastly

overestimates the amylolytic function of our consortia when P. polymyxa is present. An exam-

ple is given in Fig 3C, which shows a three-member community formed by P. polymyxa (“P”),

B. subtilis (“S”), and B. mojavensis (“M”). None of the three species have a strong amylolytic

activity in monoculture (Fig 1D), but the two pairs that include P. polymyxa have high amylo-

lytic rates, driven by strong pairwise interactions (Fig 3C). However, as shown in Fig 3C, the

trio has much lower function (VPSM0 = 24.2 ± 1.6 hr−1) than would be expected by adding

together the single-species contributions and every possible pairwise interaction (53.2 ± 3.3

hr−1). The same finding extends to other trios, and we find that third-order interactions gener-

ally exhibit a strong negative correlation with the sum of all pairwise interactions (Pearson’s %

= −0.95, P< 10−10; Fig 3D). By comparison, the correlation with first-order interactions is

much weaker (% = −0.29, P = 0.04; S2 Fig), suggesting that pairwise interactions do not add up

as one may predict based on the functional landscape model in Fig 3A. Rather, the result in Fig

3D shows that pairwise interactions combine subadditively.

In principle, interactions that affect the function of a consortium could be caused by any

combination of (1) synergy or antagonism between the contributions of individual members

to the net function of the consortium; (2) ecological competition (facilitation), which decreases

(increases) the population size of community members relative to their monocultures (poten-

tially altering the amount of function contributed by each population); or (3) an increase or

decrease in the per-cell contribution to the net function of the consortium when other species

are present (S3 Fig). The success of our null biochemical model for all enzymes rules out the

possibility of (1) biochemical synergy involving the enzymes released by P. polymyxa. In the
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Fig 3. Higher-order interactions in simple amylolytic consortia. (A) Box explaining how single, pairwise, and higher-order interactions in

the function of microbial consortia can be separated and quantified using ecological functional landscapes. (B) Third-order interactions

ΔεABC (±SE), defined as the difference in the functional interaction (εð0ÞAC) when a pair “AC” is grown alone and in the presence of a third

species “B” (εðBÞAC), whose identity is shown in the horizontal axis. Species are designated as C, B. cereus; E, B. megaterium; M, B. mojavensis; P,

P. polymyxa; S, B. subtilis; and T, B. thuringiensis. (C) Community function V (±SE) for every combinatorial consortia of P. polymyxa (“P”),

High-order interactions distort the functional landscape of microbial consortia
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following sections, we will proceed to examine whether (2) facilitation or (3) stimulation of

amylase expression could explain the higher-than-expected function of consortia containing

P. polymyxa.

Facilitation qualitatively explains the enhanced function of consortia

containing P. polymyxa
Given that P. polymyxa grows poorly in our medium, we hypothesize that the positive pairwise

interactions between every other community member and P. polymyxa may arise as a result of

facilitation toward P. polymyxa (Fig 4A). To test this hypothesis, we determined the number of

colony forming units (CFUs) of P. polymyxa in monoculture as well as in coculture with each

of the other members of the consortium. Consistent with our hypothesis, we find that P. poly-
myxa is facilitated by every other member of the consortium (Fig 4B), but their facilitative

effects are redundant: coculturing P. polymyxa with two or more members of the consortium

produces a similar growth stimulation than that observed in coculture with just one other

member (Fig 4C).

Growth stimulation is also observed when P. polymyxa is grown in media supplemented

with the filtered supernatant of every other species in monoculture (with the exception of B.

megaterium and B. cereus, Fig 4D). This ecological facilitation also results in a marked increase

in the amylolytic activity of P. polymyxa (Fig 4E). To ensure that this increase in amylolytic

activity is not due to the activity of extracellular amylases carried over in the Bacillus spent

media, we filtered these a second time through a 30-KDa filter membrane (Methods), which

blocks the passage of amylases (molecular weight [MW]> 50 KDa). The filtrate through the

second 30-KDa filter exhibited no amylolytic activity (S4 Fig), demonstrating that amylases are

not present in it. Despite the lack of growth stimulation by the supernatants of B. megaterium
and B. cereus monocultures, growth of P. polymyxa is strongly facilitated by either of them (Fig

4B).

Altogether, these results suggest that cross-feeding facilitation stimulates the growth of the

P. polymyxa population, which in turn leads to a larger amount of amylase secreted (Fig 4E).

We also find that all of the Bacillus species in our consortia are able to facilitate the growth of

P. polymyxa in pairwise coculture with it, supporting our hypothesis that this facilitation is

redundant: any combination of the Bacillus species stimulates the growth of P. polymyxa about

as much as any of these species do separately (Figs 4C and S5). This is overall consistent with

the finding reported in Fig 3C, that the positive effect of adding additional species to a P. poly-
myxa consortium qualitatively saturates after the first partner is added. These results prompt

the question of whether ecological facilitation alone is sufficient to quantitatively explain the

observed interactions in our consortia. If that were the case, then by including population

growth into our null model, we could then predict the amylolytic function of P. polymyxa
consortia.

Including population dynamics into a null model of the structure-function

landscape

To address this question, we follow the same strategy we used before and formulate a new

additive null model that explicitly incorporates population growth while assuming that no

B. mojavensis (“M”), and B. subtilis (“S”). In gray, we show the function predicted by adding the functions of all three taxa in isolation and all

pairwise interactions (rather than, for instance, by averaging out the pairwise interactions). (D) Third-order interactions (±SE) are strongly

anticorrelated (Pearson’s ρ = −0.95, P< 0.001) with the sum of all pairwise interactions (±SE in hr−1).

https://doi.org/10.1371/journal.pbio.3000550.g003

High-order interactions distort the functional landscape of microbial consortia

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000550 December 12, 2019 9 / 34

https://doi.org/10.1371/journal.pbio.3000550.g003
https://doi.org/10.1371/journal.pbio.3000550


other interactions exist (S3 Fig). Any systematic deviations from this new null model will

reveal additional interactions—for instance, those that modulate the amount of amylase

expressed per cell. To formulate this new null model, we must determine how the amount of

amylase produced by a species (which is proportional to Vi) depends on how much its popula-

tion (Ni) grows over the incubation time T (i.e., ΔNi = Ni(T) − Ni(0)). In our experiments

Ni(T)>> Ni(0), so the population growth is approximately equal to the population size at the

time of harvest (ΔNi� Ni(T), which for simplicity of notation we denote as ni). Once we have

determined how Vi depends on ni for each of the M species (which we will hereafter denote as

Vi(ni)), our additive null model now incorporates population growth and takes the form:

VM
!
ð0Þ ¼

XM

i¼1

ViðniÞ:

The key is then to determine the functions Vi(ni). As a first ansatz, we considered a simple

model in which the amylolytic function of each species is assumed to be proportional to its

Fig 4. Redundancy in the ecological facilitation of P. polymyxa explains higher-order interactions. (A) If growth of

P. polymyxa is facilitated by any and all of the other species, this facilitation may be redundant. Species are designated

as C, B. cereus; E, B. megaterium; M; B. mojavensis; P, P. polymyxa; S, B. subtilis; and T, B. thuringiensis. (B) P.
polymyxa grows in the presence of any of the other species (gray bars) but not in monoculture (orange bar). CFUs

were determined by colony counting of serially diluted cultures after 48 hr of growth at 30˚C. Error bars represent ±SE.

(C) P. polymyxa grows to a comparable density as a part of a pair, trios, or higher numbers of other species in the

consortium. This strongly suggests redundancy in the facilitation mechanism. (D) P. polymyxa growth (quantified by

the final OD620 after 24 hr of culture, initialized at OD620 = 0; mean ± difference of two independent biological

replicates) in our growth media supplemented with a 1:10 dilution of the filtered supernatant of each of the other

species (Methods). (E) Function (VP(0)) of P. polymyxa monocultures shown in (D) (mean ± difference of two

independent biological replicates). CFU, colony forming unit; OD, optical density at 620 nm.

https://doi.org/10.1371/journal.pbio.3000550.g004
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population size at the time of harvest, i.e.,

ViðniÞ ¼ lini;

where λi reflects the average amount of amylase produced per cell (Methods). Beyond being

the simplest [54] (Holling type I) functional response, the proportionality between amylolytic

function and population growth arises naturally in a minimal mathematical model that

assumes constitutive expression of the amylase gene and exponential population growth

(Methods). Given this first ansatz, our new null model for the function of a consortium would

take the form VM
!
ð0Þ ¼

P
i lini. To construct this model, we reexamined all of the mixed-spe-

cies consortia in Fig 2 and determined ni for all species by plating methods (Methods). To esti-

mate λi, we simply divided the amylolytic rate of each monoculture by the final number of

cells ni at the time of harvest (T = 24 hr; Methods).

The population growth for all species is generally different in mixed culture than in mono-

culture (S5 Fig). Yet, the null "presence/absence" (P/A) model that we introduced in Fig 2

(which ignored the effect of population growth) predicts function better than the revised null

model (which assumes that amylolytic activity is proportional to the population size). This is

true regardless of whether P. polymyxa is absent (Fig 5A, RMSD = 12.34 versus 1.47 [inset];

N = 25) or present (Fig 5B, RMSD = 10,689.5 versus 17.36 [inset]; N = 28). We reasoned that

this could be explained if the amount of amylase produced by a population saturates and

becomes insensitive to population size past a certain population threshold. To capture this

hypothesis, we propose a new ansatz in which the amount of amylase produced by species i
over an incubation time T (and thus the enzymatic rate Vi) is a generic Holling type II saturat-

ing function of its final population size:

ViðniÞ ¼ ui
ni

ni þ Ki
:

Here, Ki represents the threshold population size for species i, and ui represents the maximum

amylolytic rate of species i, which reflects the amount of amylase secreted when ni is much

higher than Ki. As we show in the Methods section, a minimal generic model of amylase

expression under negative-feedback regulation naturally exhibits a saturating dependence

between Vi and ni (S6 Fig). Encouragingly, amylase expression in multiple Bacillus species (as

well as in P. polymyxa) [55,56] is under negative-feedback regulation, inhibited through catab-

olite repression by the byproducts of its enzymatic action over starch. A similar form of a feed-

back loop has also been reported for other extracellular enzymes [39,57].

To test the validity of this ansatz, we measured the growth and amylolytic activity of P. poly-
myxa monocultures supplemented by different dilutions (ranging from 1:10 to 1:40) of spent

media from each Bacillus species in monoculture (Methods). Projecting the measured VP and

nP for all of these experiments on the same plot, we find that, to a good approximation, the

amount of amylase produced by P. polymyxa in monoculture is well predicted by its final pop-

ulation size and it is well fitted by the generic “type II” saturating function introduced above

(Fig 5C; Methods). Encouraged by this result, we repeated the experiment for all other mem-

bers of the consortia to see whether their function also saturates with population growth (S7

Fig). The results were again consistent with the saturating model. By fitting the type II Holling

function to the data (Methods; S7 Fig), we estimated the asymptotic amylolytic function ui and

the threshold population size Ki for each species. Armed with these fits, we propose a new
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additive null model for the function of an M-species consortium:

VM
!
ð0Þ ¼

XM

i¼1

ui
ni

ni þ Ki
:

This model assumes, as before, that the enzymes released by each species act additively on the

starch substrate and that the amount of amylase secreted by each species is deterministically

governed by the number of cells in the population. Interactions exclusively affecting

Fig 5. Including population dynamics into a null model of the structure-function landscape. (A-B) We compare the predictive ability of the P/A null model

(insets; data replotted from Fig 3F), with the revised null model that assumes that species contribution to function is proportional to their population size. For

clarity, we separate consortia where P. polymyxa is absent (A) from those where it is present (B). Note the log-log scale used here for easier interpretation of the

data. Red dashed line represents the identity curve where the null model perfectly predicts the function of the consortia. (C) To test whether the relation

between final population size and function in P. polymyxa is well approximated by a saturating function, we grew P. polymyxa in media supplemented with

different amounts of spent media from each of the other taxa. We determined the final population size in CFU/mL and the amylolytic function V (Methods,

example in inset). The data were fitted using the saturating function Vð0Þ
M
! ¼

PM
i¼1
ui

ni
Kiþni

(dashed line); 95% confidence interval (gray shading). (D) Comparison

of the measured community function and the function predicted by the model assuming that function saturates with population size, for consortia where P.
polymyxa is absent, and (E) for consortia in which P. polymyxa is present. All points shown ±SE. In (A), (B), (D), and (E), red dashed line represents perfect

prediction. CFU, colony forming unit; Cond. supernat., Conditioning species supernatant; P/A, presence/absence.

https://doi.org/10.1371/journal.pbio.3000550.g005
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population dynamics will increase or decrease ni (but not ui or Ki), so their effect on the overall

function is implicitly captured by the null model above, if no other interactions exist.

Saturating effects of population growth explain the success of the original

P/A null model

The observed insensitivity of amylolytic function to competitive interactions among the Bacil-
lus strains could be explained if their population sizes were generally higher than the threshold

Ki. To test whether this is true, we compared the final population size of all species with their

respective population thresholds Ki. We found that in virtually all cases, ni > Ki (S8 and S9

Figs). This means that, at the population densities reached by the members of our consortia,

the contribution of each species to the total amylase pool becomes insensitive to the final popu-

lation size. In this limit, we can approximate our revised null model as VM
!
ð0Þ � Siui. For con-

sortia lacking P. polymyxa ui� Vi(0) (S9 Fig), so the revised null model that includes the effect

of population size converges to our initial P/A null model (VM
!
ð0Þ ¼ SiVi

ð0ÞÞ (S10 Fig, Pearson

% = 0.88, P< 10−7, RMSD = 2.21; N = 25). This explains why our initial P/A null model, which

ignored population growth, predicts so well the amylolytic function of microbial consortia

despite the strong competitive interactions among them (S5 and S9 Figs).

Using the values of ui and Ki estimated from the fits in Figs 5C and S7, we calculate the pre-

dicted function for our multispecies consortia using the new null model (Fig 5D and 5E). As

before, the null model is strongly predictive of function in consortia that lack P. polymyxa
(RMSD = 2.98, Fig 5D). Yet, it still systematically overestimates the function of those that

include it (RMSD = 31.1, Fig 5E and 5F). This suggests that interactions between P. polymyxa
and the other members of the consortia do more than simply altering the population growth

of P. polymyxa: they also generally lower the per-cell production of amylase (Methods).

Redefining pairwise and HOIs from an additive null model that includes

population dynamics

We started this section by asking whether the higher-than-expected function of consortia con-

taining P. polymyxa is caused by facilitation (a population dynamics interaction) or stimula-

tion of amylase expression (a behavioral interaction). Can we quantitatively separate the effect

of both types of interactions? In the Methods section, we mathematically demonstrate that the

pairwise interactions (εð0ÞAB) that we had determined in Fig 2E as deviations from the original

P/A null model can be partitioned as the sum of two separate terms. One of these terms cap-

tures the mutual effect that both species have on their respective population dynamics (εpopAB ).

The second term quantifies the change of amylase expression in coculture relative to monocul-

ture (i.e., a behavioral interaction term εbehavAB ) (Methods; S11 Fig).

We applied this analysis to our pairwise communities containing P. polymyxa (Fig 6A). We

find that facilitation interactions are higher than the net interaction and that the effect of facili-

tation is partially compensated by inhibition (rather than stimulation) of amylase expression

in coculture. Our experimental methods do not allow us to distinguish the amylases contrib-

uted from each species in isolation. However, using the fact that amylolytic rates cannot be

negative, we can unambiguously determine that P. polymyxa expresses less amylase in cocul-

ture than it does in monoculture. A quantitative estimation of the upper and lower bound of

the inhibition of amylase production by P. polymyxa in mixed culture is shown in S11 Fig.

A similar logic was applied to the net effect of HOIs. We show in the Methods section that

these also can be partitioned as the sum of population dynamics interactions and behavioral

interactions. We quantified both contributions (Methods) and plot them in Fig 6B. We find
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that both behavioral and population dynamics interactions contribute to the HOIs, and their

magnitudes are similar though of different sign. We conclude that accounting for population

dynamics into the null model does not eliminate the effect of HOIs in distorting the functional

landscape. We then asked whether a similar compensation could be masking the presence of

population dynamics or behavioral interactions in consortia lacking P. polymyxa. As shown in

Fig 6A and 6B, and consistent with our previous conclusions, we find that neither population

dynamics nor behavioral interactions are significant for species other than P. polymyxa.

Discussion

The results presented above represent an attempt to quantitatively map the functional land-

scape of a microbial consortium. All of our results hinge on the definition of functional inter-

actions as deviations from the predictions of a null model of the structure-function landscape.

Functional interactions are observed when the contribution of a community member (or set

of members) to a community-level function depends on the presence or absence of other spe-

cies. For instance, pairwise interactions reflect how the contribution of a single species to a

community function (e.g., in the case explored above, the amylolytic activity of the enzymes it

secretes) depends on whether it is grown alone or in coculture with a second species. This may

be mediated by behavioral interactions, in which microbes alter the phenotype of neighbors

when grown in coculture [39,58,59] (S3 and S11 Figs), or by population dynamics interactions,

in which a population of microbes influence the population size of a second species [58,60] (S3

Fig 6. Quantifying the population (“Pop.”) dynamics and behavioral (“Behav.”) components of both pairwise and

high-order interactions. (A) Pairwise interactions (±SE) for all two-species consortia. We separate pairs by whether

they include (orange) or do not include (blue) P. polymyxa. (B) Higher-order interactions in communities with three

or more members. Similar to (A), we differentially color consortia by whether they include (orange) or lack (blue) P.
polymyxa. Jitter in the horizontal axis (which is categorical) was added to the data for clarity of presentation.

https://doi.org/10.1371/journal.pbio.3000550.g006
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and S11 Figs), or by both [58,61]. In the case studied here, amylase expression and secretion is

often tied to cell growth in Bacillus sp. [62,63], which indicates that both ecological and behav-

ioral interactions are not necessarily independent of one another.

By analogy with pairwise interactions, third-order interactions capture how the function of

a pair of species, (e.g., the amylolytic rate of the enzymes secreted by the pair) is altered when a

third species is present. This simple idea, based on the study of fitness landscapes and complex

interactions in genetics [41,64,65], allowed us to decompose the function of a community into

the contributions of single species and the interactions that modulate these contributions and

can be used to shed light onto the role played by HOIs in community function. As we have

shown here and others have shown before in different contexts [41], a null model of how the

functional contributions of multiple species should combine to determine the community

function is essential to unequivocally identify interactions through this approach.

We started this paper by showing that an additive null model predicts the amylolytic rate of

our consortia when no interactions are present. Our experiments revealed that the additive

null model has an unexpectedly strong predictive power when any combination of the Bacillus
species is cocultured together. The strength of our additive null model may thus reflect that no

interactions are present. Yet the population size of Bacillus species in mixed consortia generally

reaches different levels than in monoculture, indicating that population dynamics interactions

are indeed present and they can be strong.

By contrast, when P. polymyxa is part of the consortia, the additive model failed, indicating

the presence of interactions. We found strong evidence of facilitation from the Bacillus species

toward P. polymyxa, and this prompted us to ask whether we could explain these interactions

by including the population size of P. polymyxa in an updated null model. We first assumed a

linear correspondence between population size and the amount of enzyme produced. This

actually diminished the predictive power of our null model for all consortia. To explain this

seemingly paradoxical result, we measured the precise dependence between population size

and amylolytic rate in monoculture and found that it is not linear. Rather, the amylolytic activ-

ity has a saturating relationship with population size, becoming insensitive to it above a popu-

lation threshold. All of the Bacillus strains grow above this threshold both in monoculture and

in mixed culture. This explains why species interactions that alter population size do not have

an effect on amylase production, and additivity is observed when P. polymyxa is absent.

In the case of P. polymyxa consortia, we asked whether the increase in function observed in

mixed culture stemmed from facilitation, from stimulation of amylase production, or from

both. Our results identified an important effect of metabolic facilitation. Unexpectedly, how-

ever, P. polymyxa secretes less enzyme per cell than we would expect based on the monocul-

tures (Figs 6 and S11). Although identifying the molecular causes behind this down-regulation

is beyond the scope of this paper, we might speculate that the presence of amylases secreted by

other species could result in a stronger catabolite repression (i.e., more inhibition at lower cell

densities) compared to the monoculture, leading to the detection of lower per-capita amylase

secretion in mixed cultures.

As for the facilitation, the strain of P. polymyxa we included in our consortia is a biotin

auxotroph [66], a trait that is widely shared with other strains from the same species [67].

Indeed, it grows poorly in our growth medium (which does not include biotin), but its growth

is rescued as expected by adding a biotin-containing vitamin supplement (S12 Fig). This sug-

gests that the cross-feeding of biotin (or a biosynthetic precursor of this vitamin) likely medi-

ates facilitation. Despite its importance, facilitation alone was not enough to explain the

function of our P. polymyxa-containing consortia. The effect of facilitative and of behavioral

interactions could be disentangled by formulating a new null model that incorporated the

effect of population growth in amylase expression. By disentangling both forms of interactions,
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we have shown that both can be important contributors to the function of our consortia, par-

ticularly when P. polymyxa is part of it (Fig 6A and 6B).

The operational detection of interactions as deviations from the prediction of an interac-

tion-free null model has a long history and has been previously used in ecology (e.g., Billick

and Case [68]) as well as in many other fields of biology (e.g., [50,51,69–71]). In the context of

communities, recent work has used the same analogy with fitness landscapes to detect high-

order and complex interactions in ecological systems [6,72]. Our results also emphasize the

potential importance of complex functional interactions even for a decidedly noncomplex

function: one that could be independently carried out by each species in isolation and that

does not require more than a single gene in each species. By comparison to an additive null

model, HOIs have also been reported in a set of recent experiments in which the microbiome

of Drosophila melanogaster was combinatorially reconstituted to map its effects on several life-

history traits of the fly host, such as its longevity or developmental time [6].

The confluence of findings between this study and ours suggests that complex functional

interactions may play an important role in microbial communities, presenting a fundamental

challenge to predicting their function from the bottom up. Indeed, our results suggest that in

the presence of higher-order interactions, the ability of our null model to predict community

function declines as more species are added to the consortia (S13 Fig). Although this may be

seen as a disappointment, it is not unusual in ecology, nor in complex systems in general, that

the whole is different from the sum of its parts. Understanding exactly how this complexity

works and how the parts come together to produce complex quantitative traits has led to fruit-

ful research in many fields, from genetics and evolutionary biology [73–76] to metabolism

[65,77]. We hope that our findings will help stimulate similar efforts in the functional charac-

terization of microbial communities.

Methods

Strains and media

Bacterial strains were obtained from ATCC (Manassas, VA, USA) with the following designa-

tions: B. subtilis (ATCC 23857), B. megaterium (ATCC 14581), B. mojavensis (ATCC 51516),

P. polymyxa (ATCC 842), and B. thuringiensis (ATCC 10792). B. cereus was isolated from a

soil sample in Boston, MA, USA, and identified by 16S Sanger sequencing. To select these spe-

cies, we screened a larger number of 20 strains of soil bacteria (all from ATCC) that had been

reported to be amylolytic. We chose two criteria to include a strain in the consortium: (1) that

they must be able to grow in our medium; (2) that they form a halo on agarose plates supple-

mented with our growth medium after exposure to iodine (indicating that they do secrete

amylases under our growth conditions). We discarded B. circulans, B. clausii, B. firmus, B.

halodurans, B. lentus, B. pumilus, and P. alvei for their failure in one or the other of these crite-

ria. We also discarded B. amyloliquefaciens because its amylolytic activity was so strong that it

masked the effects of all other species making their effects undetectable in practice. We dis-

carded B. niacini, B. simplex, Cellulomonas biazotea, B. mycoides, and B. licheniformis for rea-

sons related to their colony morphology and their growth on plates, which made it difficult to

work with them. Cell stocks were prepared according to manufacturer instructions and stored

at −80˚C in 40% glycerol. Basic growth minimal media (1× bSAM) was prepared from 10x

concentrated stocks of bM9 Salts containing Na2HPO4×2H2O (85.4 g/L; Bioworld), KH2PO4

(30 g/L; Fisher Scientific), NaCl (5 g/L; Sigma-Aldrich), NH4Cl (10 g/L; Fisher Scientific), sup-

plemented with 0.04% synthetic complete amino acids (w/v; Sunrise Science Products), 0.1%

starch (w/v; soluble, Sigma-Aldrich), 1% trace mineral supplement (v/v; ATCC MD-TMS con-

taining EDTA, 0.5 g/L; MgSO4�7H2O, 3.0 g/L; MnSO4�H2O, 0.5 g/L; NaCl, 1.0 g/L;
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FeSO4�7H2O, 0.1 g/L; Co[NO3]2�6H2O, 0.1 g/L; CaCl2 [anhydrous], 0.1 g/L; ZnSO4�7H2O,

0.1 g/L; CuSO4�5H2O, 0.010 g/L; AlK[SO4]2 [anhydrous], 0.010 g/L; H3BO3, 0.010 g/L;

Na2MoO4�2H2O, 0.010 g/L; Na2SeO3 [anhydrous], 0.001 g/L; Na2WO4�2H2O, 0.010 g/L;

NiCl2�6H2O, 0.020 g/L), CaCl2 (0.1 mM; Sigma-Aldrich), and MgSO4 (2 mM; Fisher Scien-

tific). Starch assay media (2x SAM) consisted of 2x bM9 salts, supplemented with 0.1% starch

(w/v), CaCl2 (0.2 mM), and MgSO4 (4 mM). To confirm the previously reported biotin auxot-

rophy of our strain of P. polymyxa [66], we supplemented our medium with 1% vitamin sup-

plement (v/v; ATCC MD-VS, which contains folic acid 2.0 mg/L; pyridoxine hydrochloride

10.0 mg/L; riboflavin 5.0 mg/L; biotin 2.0 mg/L; thiamine 5.0 mg/L; nicotinic acid 5.0 mg/L;

calcium pantothenate 5.0 mg/L; vitamin B12 0.1 mg/L; p-aminobenzoic acid 5.0 mg/L; thioctic

acid 5.0 mg/L; monopotassium phosphate 900.0 mg/L).

Culture inoculation and combinatorial assembly

Strains were streaked out on BE Starch Agar (0.3% beef extract, 1% starch) plates and grown

for 24 hr at 30˚C. Seed cultures were started from several colonies (depending on colony size),

inoculated into 3 mL 1x bSAM and grown without shaking at 30˚C for 24 hr. Cultures were

then transferred to a 96-well plate (Corning Cat. No. 3596), and the optical density (620 nm)

of 100 μL was measured (Multiskan Spectrophotometer; Fisher Scientific). Cells were har-

vested by centrifugation at 3,500 rpm for 15 min, washed twice with 1x phosphate buffered

saline, and suspended in fresh 1x bSAM media at a concentration of 5 × 105 CFU/μL. Mono-

cultures or combinatorially assembled communities of the six bacilli species were prepared by

inoculating 2 μL from each seed culture into 96-deep-well plates (VWR) containing 500 μL of

1x bSAM, regardless of the number of species. The initial density of cells in the six-member

consortia was therefore six times higher than in monocultures. Plates were covered with Aero-

gel film (VWR) and incubated without shaking at 30˚C for another 24 hr. Optical density (620

nm) of the grown cultures was measured as above at the end of the new incubation period.

Determination of amylolytic rates

Starch hydrolysis assays followed the quantitative Lugol iodine staining method described in

[78], which is an adaptation of the classic Fuwa method [52]. Lugol staining solution was pre-

pared with 390 mL water: 60 mL Lugol iodine stain (Sigma-Aldrich). Supernatants containing

extracellular amylases were prepared for enzymatic assays by applying 330 μL of homo-

geneously suspended bacterial cultures grown for 24 hr directly to a 96-well 0.2-μm Acroprep

filter plate (Pall, Cat. No. 8019) fitted to a 96-well collection plate (Corning, Cat. No. 3596)

with a metal collar adaptor (Pall, Cat. No. 5225) and centrifuged for 20 min at 1,500g in a table-

top centrifuge (Eppendorf 5810).

Assays, in 96-well plates, contained varying volumes of filtered supernatant (100, 50, 25, 10,

and 5 μL), 100 μL 2x SAM, and water to a total reaction volume of 200 μL. Control reaction

plates were also prepared for either no enzyme (100 μL 2x SAM and 100 μL water) or no starch

with supernatant (100 μL water and 100 μL supernatant). Reactions, assembled with prewarmed

SAM, were incubated at 30˚C to the desired time point and quenched by transferring 50 μL to a

solution containing Lugol iodine stain (130 μL water and 20 μL Lugol per well). The resulting

solution was homogenized by pipetting and immediately transferred to a plate reader to quan-

tify starch concentration by measuring the optical density at 690 nm. The amount of starch

remaining in the medium is calculated as described in [78], as fsta = 1 − (OD690(t)/OD690(0)). All

reactions with no detectable starch degradation were set to fsta = 0.
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Michaelis-Menten kinetic model of enzymatic starch hydrolysis

We adopt an operational definition of starch as a polysaccharide long enough to give a positive

signal in a colorimetric iodine test [52]. To model how the fraction of starch remaining in solu-

tion (fsta) depends on the time of incubation t and the enzyme concentration [E], we examine

two simple kinetic models of enzymatic starch hydrolysis. First, we assume that amylase

enzymes bind starch at random positions on the linear chain (e.g., the single-attack model

[53]) and cut it into two smaller oligosaccharides, none of which are large enough to bind

iodine. This single-step enzymatic hydrolysis reaction can be modeled by Michaelis-Menten

kinetics, which gives us the classic equation of enzyme catalyzed substrate elimination:

d½S�
dt
¼ � kcat

½E�½S�
KM þ ½S�

: ð1Þ

The general solution of this differential equation is:

½SðtÞ� ¼ KMW
½Sð0Þ�
KM

eð½Sð0Þ�� kcat ½E�tÞ=KM
� �

; ð2Þ

where W[.] denotes the Lambert function [79,80]. The second model we propose, which we

illustrate in Fig 1B, captures the scenario of a longer starch chain, which requires two succes-

sive, random-attack enzymatic hydrolysis reactions to be converted into iodine-negative

oligosaccharides.

We make the further simplifying assumption that the length of the starch molecule does

not substantially affect the catalytic rate of the amylase enzyme, so that both KM and kcat are

the same for both short and long starch chains. This is justified in that the total number of sites

where an endoamylase may cut is approximately the same in both a single long and two

shorter starch chains (both differ by just one binding site, so for a sufficiently long chain the

difference between the two is negligible). This assumption would fail to capture certain alter-

native mechanisms, such as the “multiple attack” model [53]. However, as we shall see, the

model ensuing from this assumption provides an excellent fit to the data (Fig 1C and 1D) and

has a very strong predictive power (Fig 1E and 1F), suggesting that it captures reasonably well

the mechanism of enzymatic starch hydrolysis in our experiments, at least at this coarse-

grained level. The model takes the form:

d
dt
½S�long ¼ � kcat

½E�½S�long
KM þ ½S�long

; ð3Þ

d
dt
½S�short ¼ kcat

½E�½S�long
KM þ ½S�long

� kcat
½E�½S�short

KM þ ½S�short
; ð4Þ

where [S]long and [S]short are the concentrations of long and short chains of starch, respectively.

The full solution to this model is cumbersome [80]. However, previous characterization of KM
for various Bacillus-secreted amylases acting on nonsoluble starch are in the range of approxi-

mately 2–15 mg/mL [81–84], whereas the initial starch concentration in our experiments is 1

mg/mL. Therefore, during our incubation reactions, the starch concentration [S] will be gener-

ally lower than the expected KM. Taking the limit [S] << KM (where [S] = [S]long + [S]short),
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the system of differential equations above takes the simpler form:

d
dt
½S�long ¼ �

kcat½E�
KM
½S�long; ð5Þ

d
dt
½S�short ¼

kcat½E�
KM
½S�long �

kcat½E�
KM
½S�short ð6Þ

The concentration of starch as a function of time can be readily found by solving this sys-

tem of equations using standard techniques of calculus and then adding the two solutions to

obtain [S(t)] = [S(t)]long + [S(t)]short:

½SðtÞ� ¼ ½Sð0Þ�ð1þ kcat½E�t=KMÞe
� kcat ½E�t=KM ð7Þ

In our experiments, the two parameters we can externally control are the incubation time (t)
and the concentration of enzyme ([E]) added to the starch solution. We note, as we do in the

text, that both of these always appear multiplying one another in all of the models presented

above. Therefore, the natural variable that governs the amount of starch degraded is the prod-

uct of [E] and t. For convenience, we can define the parameter x = ([E]/[E0]), which represents

the enzyme dilution (relative to the reference stock concentration [E0]) and the maximum

reaction velocity V = kcat [E0]/KM. Defining the variable z = x�t, the fraction of starch hydro-

lyzed, after a time t, by a dilution x from an enzyme of velocity V at stock concentration [E0]
can thus be written as:

fstaðtÞ ¼ 1 �
KM

½Sð0Þ�
W
½Sð0Þ�
KM

eð½Sð0Þ�� kcat ½E0 �x tÞ=KM

� �

¼ 1 �
KM

½Sð0Þ�
W
½Sð0Þ�
KM

eð½Sð0Þ�� kcat ½E0 �zÞ=KM

� �

ð8Þ

for the one-step Michaelis-Menten model and as

fstaðzÞ ¼ 1 � ½SðzÞ�=½Sð0Þ� ¼ 1 � ð1þ VzÞe� Vz ð9Þ

for the two-step model described above, where the single fitting parameter is V = kcat [E0]/KM.

The two scenarios (captured by Eqs 8 and 9, respectively) differed in whether one or two

sequential cleavage steps are required to break down a starch polymer into smaller oligosac-

charides that are too short to cause a colorimetric signal in an iodine test [53]. In both scenar-

ios, we model each enzymatic cleavage reaction by Michaelis-Menten kinetics using

parameters kcat (the catalytic rate per enzyme) and KM (the Menten constant). In the two-step

model (Fig 1B), we also made the approximation that both steps had equal rates (V = kcat[E0]/
KM) and that the starch concentration [S] was much smaller than KM. This approximation

reflects our experimental conditions. For both models, we calculated the fraction of starch

degraded (fsta) by an enzyme of concentration [E0] diluted by a factor x and incubated with a

starch concentration [S(0)] for a period of time t. Although both models exhibit a similar qual-

itative sigmoidal shape, both predict different quantitative dependencies between fsta and the

product of x and t, which we denote as z. Therefore, both models can be discriminated on a

quantitative basis.

To test the performance of these two models, we fitted them to the results of a starch hydro-

lysis experiment, in which we incubated commercially available, purified B. subtilis amylase

(Sigma-Aldrich, Cat. No. 10070-10G) at various concentrations (from 0.4 to 100 μg/mL in 2X

increments) with a 1 mg/mL soluble starch solution (prepared as explained in the previous sec-

tion) and incubated for various times (0, 10, 20, 30, 60, 120, 240 min) at T = 30˚C. Both models

were fitted using the NonLinearModelFit function in Mathematica (Wolfram). The two-step

model fits the data better (Akaike information criterion [AIC] = −262.5, versus AIC = −238.8
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for the one-step model) despite having just one fitting parameter (V = kcat[E0]/KM) as opposed

to two (kcat, KM), as can be also readily seen by visual inspection of both the fit (Fig 1B) and the

residuals (S1 Fig). All other fits to kinetic data were performed using the nls function in R.

To extend this model to cocktails of multiple enzymes, we resort to the theory of chemical

kinetics, which predicts that when a reaction can occur independently through multiple paral-

lel channels, the overall rate of the reaction is the sum of the rates for each of the independent

channels [85,86]. In our model, each of the two reaction steps can be catalyzed by the m types

of enzymes in the cocktail. Since all enzymes break down starch independently from each

other, the velocity of each step when enzymes from m different monocultures are mixed is

given by:

Vm ¼
Xm

j¼1
Vj
ð0Þ ¼

Xm

j¼1
ðkcat

j=KM
jÞ½E0�j; ð10Þ

where Vj(0) = (kcatj/KMj)[E0]j represents the velocity of the reaction catalyzed by the enzymes

released by species j after 24 hr of growth in monoculture. The null biochemical model in the

text is therefore given by Eq 10. Entering the first equality in Eq 10 into Eq 9, we can calculate

the fraction of starch degraded by a cocktail of enzymes j = 1, . . . ns as:

fstaðzÞ ¼ 1 � ð1þ
Xm

j¼1
Vj
ð0ÞzÞe

�

Xm

j¼1
Vjð0Þz

: ð11Þ

Eq 11 gives us the fraction of starch degraded over a time t by a cocktail of enzymes of

velocities Vj(0) that act independently on the substrate and whose catalytic rates are not affected

by each other’s presence. It is important to emphasize that when multiple species are grown in

coculture, Eq 11 does not necessarily apply, since ecological interactions can in principle alter

the amount of enzymes released by each species, as well as their activity. We also assume

throughout that the enzymes from each species are not necessarily identical and that they can

have different biochemical velocities.

Determining pairwise and third-order interactions

HOIs can be quantified by following the scheme in Fig 3A and are briefly summarized below.

Let us consider a consortium of three species (A,B,C) and denote it by VABC(0), the function of

this consortium in the absence of any other members in the community (which, consistent

with the notation we followed in this paper, is denoted by the (0) superscript). In what follows,

the function of interest will be the collective starch hydrolysis rate of the enzymes secreted by

the consortium. We can decompose VABC(0) in terms of (1) the functional contributions from

each of the single species in isolation Vj(0) (where j = A,B,C), which are equal to the catalytic

rates of the enzymes secreted by each species in monoculture; (2) the pairwise interactions

measured from each pair in isolation (Δεij
(0), where i,j = A,B,C); and (3) a term that captures

the HOIs when the three species are together in coculture (ΔεABC
(0)):

VABC
ð0Þ ¼

X

i
Vi
ð0Þ þ

X

i6¼j
εij
ð0Þ þ DεABC

ð0Þ i; j ¼ A;B;C: ð12Þ

VABC(0) is the net function of the three-species community, which can be measured experimen-

tally. In addition, all of the Vi(0) and εij
(0) parameters can also be obtained independently from

the function of the monocultures and pairwise cocultures. Therefore, we can experimentally

determine the strength of three-way interactions (ΔεABC
(0)) as a function of independently

measured experimental parameters:

DεABC
ð0Þ ¼ VABC

ð0Þ �
X

i
Vi
ð0Þ �

X

i6¼j
εij
ð0Þ i; j ¼ A;B;C: ð13Þ
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Propagation of errors was used to estimate the uncertainty in the measurement of pairwise

and third-order interactions through this approach.

Determining fourth- and higher-order interactions

For communities of size M (larger than three species), Eq 12 can be generalized as

VM
!
ð0Þ ¼

XM

i¼1
Vi
ð0Þ þ

XM

i6¼j
εij
ð0Þ þH3

ð0Þ þH4
ð0Þ þH5

ð0Þ þ � � � ; ð14Þ

where the collection of HOIs can be defined as the sum of all of the three-way (H3
(0)), four-

way (H4
(0)), five-way (H5

(0)) interactions in isolation, etc., and can be determined experimen-

tally as:

HM
!
ð0Þ ¼

XM

S¼3
HS
ð0Þ ¼ VM

!
ð0Þ �

XM

i¼1
Vi
ð0Þ �

XM

i6¼j
εzij
ð0Þ: ð15Þ

We can construct approximations to VM
!
ð0Þ that take into account only pairwise interactions,

or only up to third-order interactions, as:

FM
!
ð2Þ ¼

XM

i¼1
Vi
ð0Þ þ

XM

i6¼j
εij
ð0Þ; ð16Þ

or

FM
!
ð3Þ ¼

XM

i¼1
Vi
ð0Þ þ

XM

i6¼j
εij
ð0Þ þH3

ð0Þ: ð17Þ

Minimal model of constitutive amylase expression

To formulate a minimal model of amylase production that incorporates population growth,

we first made the simplifying assumption that the extracellular amylase is constitutively

expressed by each cell at a constant rate μexp. This is a standard and widely used null model of

gene expression [87–90]. Assuming that the population grows exponentially with growth rate

r, our model can be written through the coupled differential equations:

dN
dt
¼ rNðtÞ; ð18Þ

da
dt
¼ mexpNðtÞ ð19Þ

where a(t) represents the amount of amylase in the environment. From Eq 18, we find that N
(t) = N(0) er t. Entering this into Eq 19 and integrating it over the incubation time T, we find

that the total amount of enzyme released into the environment (E) is given by E = (μexp/r)(N
(T) − N(0)) = (μexp/r)ΔN.

The proportionality between E and the total population growth ΔN does not require expo-

nential growth and is also found in a model in which the population switches to stationary

phase at time τ< T. To prove this, let us assume that cells express amylase constitutively at

rate μexp in exponential phase and (also constitutively) at rate μsta at stationary phase. The total

amount of amylase produced is the sum of the amylase produced in each phase of growth: E =

Eexp + Esta. Following the argument given above, Eexp = (μexp/r)(N(τ) − N(0)). In stationary

phase (for t > τ), N(t) = N(τ) and the differential equation that describes amylase production

reduces to da/dt = μstaN(τ). Integrating this equation between a = [0,E] and t = [τ,T], we find
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Esta = μstaN(τ)(T − τ). Since the population size is constant in stationary phase, N(τ) = N(T)

and we can write Esta as Esta = μstaN(T)(T − τ). Given that N(T)>> N(0) (a limit that is fulfilled

in our experiments), we can write N(T)� ΔN, and we approximate Esta = μsta(T − τ)N(T)�

μsta(T − τ)ΔN. Adding up Esta and Eexp, we find:

E ¼ ðmexp=rÞDN þ mstaðT � tÞDN ¼ ½ðmexp=rÞ þ mstaðT � tÞ�DN: ð20Þ

We note that μexp/r is the ratio of the rate of amylase expression and the rate of growth. This

ratio is equal to the average amount of amylase produced by a single cell over a doubling

period tdiv = 1/r. In turn, μsta(T − τ) represents the total amount of amylase produced per cell

during stationary phase. Given that N(T)>> N(0), we conclude that under constitutive

expression, the cumulative amount of amylase secreted by each species is proportional to that

species’ population size at the time of harvest, which as discussed in the main text we denote as

Ni(T)� ni. Under the Michaelis-Menten model above, the amylolytic rate is proportional to

the enzyme concentration. Therefore, we can write the function of a species as Vi = λini. Under

our additive null model, the function of an M-species consortium would thus be written as:

VM
!
ð0Þ ¼

XM

i¼1
lini: ð21Þ

Minimal model of amylase expression under negative-feedback regulation

We capture this negative-feedback regulation through a simple phenomenological model (Fig

5D and 5E), which coarse-grains the complex biochemical interactions and gene-regulatory

circuitry that controls amylase expression through a phenomenological Hill function in which

the expression rate of extracellular amylase is down-regulated by the amount of amylase

already accumulated in the environment. Such approach is routine practice in the modeling of

gene-regulatory circuits [58,88,89], including those mediated by catabolite repression [57,90–

92]. To make this model as unconstrained as possible, we analyze a general form of the

phenomenological Hill function (equivalent to the Holling type III functional response) that

captures a large range of scenarios including different degrees of cooperativity and amplitude

of the negative-feedback function. Assuming first that the population is growing exponentially,

our model takes the form:

dN
dt
¼ rNðtÞ; ð22Þ

da
dt
¼ mexpNðtÞ

1

1þ ða=AÞq
ð23Þ

Here, q characterizes the steepness of the negative feedback (e.g., if q� 1, it will be switch-

like, whereas if q = 1, it will be gradual), and A represents the threshold concentration of extra-

cellular amylase above which the amylase gene is turned off. The relationship between ΔN and

E can be obtained by integrating both equations, and by defining the threshold population size

N� = A/(tdivμexp), we obtain:

DN ¼ ½E=Aþ
1

qþ 1
ðE=AÞqþ1

�N�: ð24Þ

We define H as the inverse function of f[x] = x + xq+1/(q + 1), which gives us:

E=A ¼ H½DN=N��: ð25Þ
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As shown in S6 Fig for various values of q, E is a saturating function of ΔN. In other words,

the model predicts that the amylolytic rate of a population becomes insensitive to changes in

the size of the population, past certain population threshold. Also shown in S6 Fig, for compar-

ison, is an example of the type II saturating function we use throughout the paper.

Although we have derived this result for an exponentially growing population, it is straight-

forward to generalize this result to the same case studied in the previous section: a population

that switches to stationary phase at time τ< T after growing exponentially between 0 and τ.
Integrating Eq 23, we find:

Z T

0

NðtÞdt ¼ ðA=mÞ½E=Aþ
1

qþ 1
ðE=AÞqþ1

�: ð26Þ

Defining tdiv as the timescale of cell division (where r = 1/tdiv), the first half of Eq 26 can be

written as:

Z t

0

Nð0Þet=tdivdt þ
Z T

t

NðtÞdt � DNðtdiv þ T � tÞ: ð27Þ

This gives us a relationship between E and ΔN:

DN ¼ ½E=Aþ
1

qþ 1
ðE=AÞqþ1

�N#
; ð28Þ

which has the same form as Eq 24, only now the threshold population size is given by

N#�A/[μ(T– τ + tdiv)]. As we show in S6 Fig, this model predicts that the total amount of

amylase produced by a population saturates when the population size grows beyond a

threshold population size.

Separating the contribution of behavioral and population dynamics

pairwise interactions

In Fig 3, we define the functional interactions between species A and B as εAB
(0), where:

VAB
ð0Þ ¼ V ð0ÞA þ V

ð0Þ

B þ ε
ð0Þ

AB: ð29Þ

Here, VAB(0) is the measured function of the consortium formed by species A and species B,

and VA(0) and VB(0) represent the measured function of each of the species in their respective

monocultures. In Fig 5, we introduced and quantified a second null model that incorporated

the effect of population dynamics. This new model made use of the functions VA(.) and VB(.),

which quantitatively map the population size of species A and B after 24 hr of growth in mono-

culture with the amylolytic rate of the enzymes released by each population over that period.

These functions were estimated for all species as shown in Figs 5C and S7. Let us denote the

population size reached by species A and B in monoculture as nA
(0) and nB

(0) and the popula-

tion size of A and B in coculture as nA(AB) and nB(AB). Employing this notation, Eq 29 can be

rewritten as:

VAB
ð0Þ ¼ VAðn

ð0Þ

A Þ þ VBðn
ð0Þ

B Þ þ ε
ð0Þ

AB: ð30Þ

According to the second null model that incorporates population dynamics, the function of

this consortium can also be related to the population size of A and B after 24 hr of coculture,

as:

VAB
ð0Þ ¼ VAðn

ðABÞ
A Þ þ VBðn

ðABÞ
B Þ þ ε

behav
AB ; ð31Þ
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where εbehavAB represents the deviation from the null model and can be interpreted as capturing

the effect of changes in the expression of amylase. This is the interaction that is quantified in

Fig 6. It is straightforward to rewrite Eq 31 by adding and subtracting VA(nA
0) and VB(nB

0) to

the right side:

VAB
ð0Þ ¼ ðVAðn

ðABÞ
A Þ � VAðn

ð0Þ

A ÞÞ þ ðVBðn
ðABÞ
B Þ � VBðn

ð0Þ

B ÞÞ þ VAðn
ð0Þ

A Þ þ VBðn
ð0Þ

B Þ þ ε
behav
AB : ð32Þ

We can then define dA
ðABÞ
¼ VA nðABÞA

� �
� VA nð0ÞA

� �
as the change in amylolytic function of A

that would be caused solely by an increase or decrease in its population size in coculture with

B. We can similarly define dB
ðABÞ
¼ VB nðABÞB

� �
� VB nð0ÞB

� �
and the sum of both as:

εpopAB ¼ ðVAðn
ðABÞ
A Þ � VAðn

ð0Þ

A ÞÞ þ ðVBðn
ðABÞ
B Þ � VBðn

ð0Þ

B ÞÞ ¼ dA
ðABÞ þ dB

ðABÞ: ð33Þ

Entering Eq 33 into Eq 32, we get:

VAB
ð0Þ ¼ VAðn

ð0Þ

A Þ þ VBðn
ð0Þ

B Þ þ ε
pop
AB þ ε

behav
AB : ð34Þ

It is therefore straightforward to see, by comparing Eq 34 with Eq 30, that the total interac-

tion we reported in Fig 2 from comparison to the P/A null model (εð0ÞAB) is the sum of an inter-

action that is solely due to changes in population dynamics in coculture relative to

monoculture (εpopAB ) (S11 Fig) and an interaction (εbehavAB ) that captures the overall of change in

amylase expression for both species in coculture relative to monoculture (S11 Fig):

εð0ÞAB ¼ ε
behav
AB þ ε

pop
AB : ð35Þ

The result in Eq 35 showcases the connection between the interactions as defined from both

null models, and it allows us to estimate the contribution of population dynamics to the net

interactions reported in Fig 2. It is worth noting that whereas εpopAB represents an interaction

that is independent of any changes in behavior or gene expression, εbehavAB is defined at a given

final population size for both A and B, so it is not entirely independent of changes in popula-

tion dynamics.

Determining high-order behavioral interactions using the revised null

model

Recalling our definition of HM
!
ð0Þ as the sum of all HOIs for an M-species consortium, we can

rewrite the function of an M-species consortium (which we denote by VM
!
ð0ÞÞ as:

VM
!
ð0Þ ¼

XM

i¼1
Vi
ð0Þ þ

XM

i6¼j
εij
ð0Þ þHM

!
ð0Þ: ð36Þ

It is straightforward to show per our definition above that

Vi
ð0Þ ¼ Vi n

ð0Þ

i

� �
¼ Vi niðM

!
Þ

� �
� d

ðM
!
Þ

i

� �
, where niðM

!
Þ is the density reached by species i in

coculture with the M-species consortium, and d
ðMÞ
i is the change in function of species i one

would predict just due to the different population growth of species i when embedded in the

M-species consortium relative to its monoculture. From Eq 35, we also know that

εð0Þij ¼ εbehavij þ εpopij . This all allows us to rewrite Eq 36 as:

VM
!
ð0Þ ¼

XN

i¼1
Viðni

ðM
!
ÞÞ þ

XM

i6¼j
εij

behav þ
XM

i6¼j
εij

pop �
XM

i¼1
d
ðM
!
Þ

i þHM
!
ð0Þ: ð37Þ

We can then redefine the combined high-order behavioral interactions (HM
!
behav) as the
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deviation from the revised null model that incorporates population dynamics after adding to it

also the sum of all pairwise behavioral interactions, i.e.:

VM
!
ð0Þ ¼

XM

i¼1
Viðni

ðM
!
ÞÞ þ

XM

i6¼j
εij

behav þ HM
!
behav; ð38Þ

where

HM
!
behav ¼ HM

!
ð0Þ þ

XM

i6¼j
εij

pop �
XM

i¼1
d
ðM
!
Þ

i : ð39Þ

This allows us to separate the effect of population dynamics and behavioral contributions to

the total HOIs:

HM
!
ð0Þ ¼ HM

!
behav þ HM

!
pop; ð40Þ

where we have defined the contribution of population dynamics to higher-order interactions

as:

HM
!
pop ¼

XM

i¼1
d
ðM
!
Þ

i �
XM

i6¼j
εij

pop
� �

: ð41Þ

It may be difficult to appreciate this last point using such a compact, general notation. To illus-

trate it more clearly, consider the particular case of three-species consortium containing spe-

cies A, B, and C, in which there are no behavioral interactions. In this instance,

HM
!
pop ¼ HABC

pop. Expanding Eq 41 for this consortium, we would get:

HABC
pop ¼ d

ðABCÞ
A þ d

ðABCÞ
B þ d

ðABCÞ
C � εAB

pop � εBC
pop � εAC

pop: ð42Þ

We can further expand the pairwise population dynamics interactions as the sum of the effect

on each species as discussed above:

HABC
pop ¼ d

ðABCÞ
A þ d

ðABCÞ
B þ d

ðABCÞ
C � ðd

ðABÞ
A þ d

ðABÞ
B Þ � ðd

ðBCÞ
B þ d

ðBCÞ
C Þ � ðd

ðACÞ
A þ d

ðACÞ
C Þ; ð43Þ

which can be rewritten as:

HABC
pop ¼ ðd

ðABCÞ
A � ðd

ðABÞ
A þ d

ðACÞ
A ÞÞ þ ðd

ðABCÞ
B � ðd

ðABÞ
B þ d

ðBCÞ
B ÞÞ þ ðd

ðABCÞ
C � ðd

ðBCÞ
C þ d

ðACÞ
C ÞÞ:ð44Þ

Consistent with our notation above, d
ðABCÞ
A reflects the increase (decrease) in the amount of

amylase produced by species A due to larger (lower) population growth when in coculture

with B and C. In turn, d
ðABÞ
A and d

ðACÞ
A would reflect the change in amylase production by species

A due to changes to its population dynamics when in coculture with either B alone or C alone,

respectively. Each term within parentheses characterizes the deviation between the observed

change in amylase production by a member of the three-species consortium and the prediction

from summing up the deviations observed in each combinatorially assembled two-species

subconsortium.

In Fig 6A, we estimated εpopAB for all pairs using Eq 33. Error bars were determined by error

propagation. In Fig 6B, we estimated HM
!
pop from Eq 41, and error bars were also determined

by error propagation of the terms of the equation.

Estimating model parameters

For P. polymyxa, we estimated the saturating population size Ki by fitting the data in Figs 5C

and S7 to the model using R function nls. The monocultures supplemented with B.megaterium
supernatant were discarded because of inconsistencies among the replicates. For the other

Bacillus species, we estimated ui by fitting the data in S7 Fig to a constant value. The value of B.
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mojavensis is likely overestimated, as it reaches higher function values when grown supple-

mented with spent media of the other species, increasing monotonically with the amount

added (S7 and S8 Figs). The value of Ki could not be estimated from this data directly, since

the population size is in all cases much larger than Ki (e.g., the data are flat and does not show

curvature). The maximum bound of this parameter could be conservatively estimated as half

of the minimum population size in our spent media addition experiments.

Quantifying population size of the different Bacillus species in consortia

Combinatorially assembled communities were incubated at 30˚C for 24 hr and then stored at

−80˚C in 40% glycerol. To measure the amount of P. polymyxa CFUs in each mixture, approx-

imately 20 μl of the frozen stock was melted and serially diluted 1:10 up to 1:105. Fifty microli-

ters of dilutions 1:102, 1:103, 1:104, and 1:105 were then plated onto BE Starch and incubated at

30˚C for 48 hr. Plates were scanned with an EPSON Perfection V700-V750 scanner at a

300-dpi resolution, and CFU/mL was recorded with the ImageJ plugin Cell Counter. Colony

morphology was different enough to easily allow differential identification of all species (S14

Fig).

Cross-feeding assays

The six Bacillus strains were individually grown in 3 mL of 1x bSAM at 30˚C for 24 hr. To

obtain the supernatants for cross-feeding assays, cultures were pelleted in 15-mL conical tubes

at 3,500 rpm for 15 min in an Eppendorf 5810 tabletop centrifuge. The supernatants were care-

fully transferred to clean, sterile tubes and kept at room temperature. To eliminate any cells,

supernatants were transferred to 0.2-μm spin-filter columns (VWR 82031–358) and centri-

fuged at 14,000g for 5 min. Each flow-through was subjected to a second filtration step through

a 30-KDa centrifugal device (Nanosep 3K; Pall OD003C33) at 5,000g for 10 min to avoid any

amylases in subsequent steps. All spent media were sequentially diluted 1:2 in water, and 50 μL

was mixed with 250 μL 2x bSAM and 200 μL water in 96-deep-well plates to obtain 1x SAM

supplemented at a final concentration of 0.1, 0.05, 0.025, 0.0125, 0.00625, and 0. Two microli-

ters containing 106 CFU of each of the six Bacillus species, processed as described above, was

inoculated into this media and grown still at 30˚C for 24 hr in 96-deep-well plates (VWR).

Plates were covered with Aerogel film (VWR). Optical density (620 nm) of the grown cultures

was measured, and the amylolytic rate was determined as above at the end of the incubation

period. Prior to filtering, all devices were sanitized with 70% ethanol, according to manufac-

turer instructions.

Supporting information

S1 Fig. Comparisons of residuals from one-step and two-step biochemical models. (A)

Residuals of both one-step and two-step models fit to the data in Fig 1C. The residuals of the

fits in Fig 1C are shown as a function of z. Gray line: one step; black line: two-step model. (B)

Comparison of two-step model fits for two biological replicates. In the x axis, data used for Fig

1; in the y axis, data used in Figs 2–5, in the main text.

(TIFF)

S2 Fig. Pairwise interactions only marginally correlate to additive expectation. Sum of pair-

wise interactions (mean ± SE, hr−1) is very weakly correlated to additive expectation

(mean ± SE, same units) in three-species communities (ρ = −0.29, P = 0.04). Trios including P.
polymyxa are shown in orange, and those not including P. polymyxa are shown in blue.

(TIFF)
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S3 Fig. Types of interactions that could affect the function of a microbial consortium. Left

panel: Biochemical interactions. The enzymes secreted by different organisms interact with

each other producing a higher or lower activity than each would in isolation (e.g., through allo-

steric interactions or by catalyzing different steps on a complex biochemical pathway). Center

panel: Behavioral interactions. Organisms could respond to the presence of other species in

their environment by regulating the expression of extracellular enzymes (either inducing or

repressing the amount of enzyme produced per cell). Right panel: Population dynamics inter-

actions. Organisms could affect each other’s population size, thereby indirectly affecting the

total amount of extracellular enzyme released to the environment.

(TIFF)

S4 Fig. The supernatant of different strains filtered through 30-KDa filters shows no amy-

lolytic activity. Supernatant from 24-hr cultures in 1x bSAM supplemented with starch were

filtered through either 0.2-μM or 30-KDa filters and assayed for amylolytic activity using

Lugol staining (Methods) at 0, 2, and 18 hr. Error bars represent ±SD from three replicates.

(TIFF)

S5 Fig. Changes in CFU/mL observed after coculturing bacilli species in pairs. Cultures of

the six bacilli species grown at 30˚C for 24 hr were concentrated, washed, resuspended in

growth media to inoculate monocultures or pairs, and grown at 30˚C for an additional 24 hr.

Species (light and dark green) are designated as C, B. cereus; E, B. megaterium; M, B. mojaven-
sis; P, P. polymyxa; S, B. subtilis; and T, B. thuringiensis. Upward arrows denote an increase in

CFU/mL from the value obtained when the two species are grown in monocultures to the

value obtained after the same two species were cocultured for 24 hr. The experiment was done

in two biological replicates of which we measured starch concentration in both and counted

CFUs in one. Downward arrows indicate a decrease in CFU/mL. CFU, colony forming unit.

(TIFF)

S6 Fig. Our minimal model of amylase expression under negative-feedback regulation pro-

duces a saturating dependence of the amount of enzyme released and the population size.

We plot Eq 24 (DN=N� ¼ E=Aþ 1

qþ1
E=AÞqþ1
� �h

) for various values of q: q = 4 (light gray),

q = 8 (dark gray), q = 20 (black). By way of comparison, we plot the inverse of a type II Holling

function like the one we use in the paper E/A = (E/A)max ΔN/(N� + ΔN) (dashed blue) for

(E/A)max = 2 (the result is not contingent on this choice, and other values gave similar behavior

but are not shown for clarity). Inset: log-log scale representation of the same figure.

(TIF)

S7 Fig. The relation between final population size and function in Bacilli species is consis-

tent with a saturating function. We cultured each of the Bacillus species in 1x bSAM media

supplemented with different amounts of filtered spent media from all of the other taxa (the

fraction of the final culture volume made up by the spent media ranged between 0 and 0.1, as

shown). After 24 hr of culture, the final population size (in CFU/mL) and the amylolytic func-

tion V were determined and plotted. With the exception of P. polymyxa (Fig 5C, main text)

and B. subtilis, for the whole range of observed population sizes in other Bacilli species the

function remained approximately flat, consistently with an underlying saturating function.

Thus, for these species, we used the average of the observed Vi(ni) values to estimate parameter

ui (dashed black line; gray indicates ±SD), and we conservatively estimated K as one-half of the

minimum observed ni in the data shown in these figures. Using V and K parameters estimated

in this way, we show the resulting saturating function for each species (dashed red lines). CFU,
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colony forming unit.

(TIFF)

S8 Fig. Comparison between the Vi
(0) values obtained by fitting the two-step Michaelis-

Menten model to the monocultures and ui values, i.e., the asymptotic rate using the satu-

rating model. The dashed red line indicates perfect matching. The value of B. mojavensis is

likely overestimated, as it reaches higher function values when grown supplemented with

spent media of the other species. The value of P. polymyxa is expected not to match, given that

Vi
(0) is determined in monoculture and in the absence of any facilitation.

(TIFF)

S9 Fig. Population sizes in consortia are above the threshold estimated for the saturating

model. The threshold for each species (red line) was conservatively estimated as one-half of

the minimal population size in the supernatant conditioning experiment (Figs 5C and S7).

The black points represent the CFU/mL counts determined for each species in all of the con-

sortia that it is present. CFU, colony forming unit.

(TIFF)

S10 Fig. The predictions from the original presence/absence null model and the predic-

tions from the saturating null model are highly correlated for consortia lacking P. poly-
myxa (ρ = 0.88, P< 10−7). Each point represents one consortium; error bars represent ±SE.

(TIFF)

S11 Fig. A combination of metabolic facilitation and amylase expression inhibition

explains interactions in P. polymyxa. We depict the effect of species B on the amount of

enzyme released by species A at different population sizes: (A) An example of how population

dynamics interactions may affect the amount of amylase produced by a species: when species B

competes with species A, it lowers its population size, but it does not alter the amount of amy-

lase it expresses relative to monoculture. (B) An example of how behavioral interactions may

affect the amount of amylase produced by a species: Species B does not affect the growth of spe-

cies A, but the latter responds to the presence of species B by lowering its investment in amylase

production. (C) We propose that the function of communities containing P. polymyxa could be

explained by a combination of growth facilitation, which pushes the population size over the

threshold KP, and a behavioral interaction in which P. polymyxa reduces its investment in amy-

lase production in coculture with other species. (D) We estimate the lower and upper bound

inhibition of the contribution of P. polymyxa to community function in mixed culture with

other species (i.e., d
M
!

P ). It is straightforward to show that d
M
!

P 2 � uP
nP

nPþKP

� �
;VM

!
ð0Þ� uP

nP
nPþKP

� �h i

where, as defined in the text, uP is the activity of P. polymyxa at saturating population size

(nP>>KP), and VM
!
ð0Þ is the activity of the consortia. The lower bound corresponds to P. poly-

myxa completely suppressing its contribution, and the higher bound corresponds to all other

species suppressing their contribution while P. polymyxa is the only one secreting amylase.

(TIFF)

S12 Fig. P. polymyxa grows better in media supplemented with vitamins. Optical density at

620 nm of P. polymyxa cultures grown at 30˚C for 24 hr in rich media (beef extract + 2% w/v

starch) or 1× bSAM supplemented or not, as indicated, with 1% vitamin supplement (v/v,

ATCC MD-VS). Note that the non-vitamin-supplemented condition (“- Vitamins”) would

correspond to the same growth medium (1× bSAM) used in all of the experiments in this

paper. This medium (1× bSAM) does not contain vitamins. As expected from prior work [66],

addition of a biotin-containing vitamin supplement to bSAM (“+Vitamins”) is sufficient for P.
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polymyxa to grow, as expected. Plots show the media for two replicates and the standard error.

(TIFF)

S13 Fig. The strength of high-order interactions increases with community size. (A) Plot

showing the prediction of the function (V) from a model that includes only up to pairwise

interactions against the experimentally measured value for consortia of different richness (rep-

resented by point color). (B) Strength of higher-order interactions, measured as the absolute

value of the difference between the function determined experimentally (amylolytic activity

Vð0Þ
M
! , hr−1) and the expected one using the model including single and pairwise effects. (C) The

strength of high-order interactions increases with community size also when accounting for

third-order interactions. Similarly to (B), interactions of order higher than three are measured

here as the absolute value of the difference between the function determined experimentally

(Vi(0), hr−1) and the expected one using the model including only single, pairwise, and third-

order effects. Orange and blue dots represent communities with or without P. polymyxa,

respectively. All error bars represent ±SE.

(TIFF)

S14 Fig. Identification of Bacillus species based on colony morphology. Combinatorially

assembled communities were incubated in 1x bSAM at 30˚C for 24 hr and stored at −80˚C in

40% glycerol. Approximately 20 μl of the frozen stock was melted and serially diluted 1:10 up

to 1:105. Fifty microliters of dilutions 1:104 was plated onto BE Starch and incubated at 30˚C

for 48 hr. To record colony growth and development, plates were scanned every 24 hr with an

EPSON Perfection V700-V750 scanner at a 300-dpi resolution. Colonies were discriminated

by naked eye using a Laxco MZS1 Series Stereo Zoom Microscope or the scanned images

according to their color, shape, size, roughness of borders, and size of the halo produced upon

starch degradation. (A) Agar plate showing the community composed of B. cereus, B. mojaven-
sis, P. polymyxa, B. subtilis, and B. thuringiensis. Insets A1–A4 have been scaled up to show the

different colony morphologies found. Arrows point to each of the five Bacillus species in this

consortium. (B) Agar plate showing the community composed of B. cereus, B. megaterium, P.
polymyxa, B. subtilis, and B. thuringiensis. Insets B1–B4 have been scaled up to show the differ-

ent colony morphologies found. Arrows point to each of the five Bacillus species in this con-

sortium. Species are designated as C, B. cereus; E, B. megaterium; M, B. mojavensis; P, P.
polymyxa; S, B. subtilis; and T, B. thuringiensis.
(TIF)
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