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Autoinflammatory diseases are a group of clinical syndromes characterized by constitutive
overactivation of innate immune pathways. This results in increased production of or
responses to monocyte- and neutrophil-derived cytokines such as interleukin-1b (IL-1b),
Tumor Necrosis Factor-a (TNF-a), and Type 1 interferon (IFN). By contrast, clinical allergy
is caused by dysregulated type 2 immunity, which is characterized by expansion of T
helper 2 (Th2) cells and eosinophils, as well as overproduction of the associated cytokines
IL-4, IL-5, IL-9, and IL-13. Traditionally, type 2 immune cells and autoinflammatory
effectors were thought to counter-regulate each other. However, an expanding body of
evidence suggests that, in some contexts, autoinflammatory pathways and cytokines may
potentiate type 2 immune responses. Conversely, type 2 immune cells and cytokines can
regulate autoinflammatory responses in complex and context-dependent manners. Here,
we introduce the concepts of autoinflammation and type 2 immunity. We proceed to
review the mechanisms by which autoinflammatory and type 2 immune responses can
modulate each other. Finally, we discuss the epidemiology of type 2 immunity and clinical
allergy in several monogenic and complex autoinflammatory diseases. In the future, these
interactions between type 2 immunity and autoinflammation may help to expand the
spectrum of autoinflammation and to guide the management of patients with various
autoinflammatory and allergic diseases.
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INTRODUCTION

Diseases of immune dysregulation affect up to 40% of the global population and can have
devastating consequences including organ failure and death (1, 2). Conceptually, disorders of
immune activation are divided into three major categories. Autoimmune diseases are caused by
inappropriate antigen-specific immune responses to self-antigens, and inflammation is largely
promoted by lymphocytes (3). Allergic diseases are also mediated by inappropriate activation of
lymphocytes, but the immune responses are against foreign antigens, or allergens (4, 5). By contrast,
autoinflammatory diseases are caused by activated myeloid cells that mediate antigen-independent
innate immune pathology (3). Although this is a useful conceptual framework, many autoimmune
org February 2022 | Volume 13 | Article 8180391
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diseases are driven by a combination of innate and adaptive
immune dysregulation (6, 7). The role of autoinflammatory
pathways in autoimmune diseases has become a major area of
investigation, uncovering novel interactions between innate and
adaptive immunity (6, 7).

While the boundaries between autoimmunity and
autoinflammation have become less clear over time, less work has
been done on the intersection of allergy and autoinflammation. In
general, autoimmune and autoinflammatory responses have been
thought to primarily repress allergic inflammation, andvice versa (8).
This is largely due to theTh1-Th2 (Thelper 1–Thelper 2) paradigm,
where Th1 and Th2 cells have counterregulatory roles. Th1 cells are
associated with Type 1 immune responses, which are also
characterized by activated myeloid lineage cells, and which are
associated with autoimmunity and autoinflammation (9).
However, over the past several decades it has become clear that
autoinflammatory-associated cytokines and pathways can promote
allergy-associated type 2 immune responses (5, 10). In this review,we
explore the interactions between autoinflammation and type 2, or
allergy-associated, inflammation. We begin by providing a
brief overview of autoinflammation and type 2 inflammation,
including the human diseases associated with both immune
responses. We then review the role of autoinflammation-associated
cytokines and pathways in type 2 responses, and the role of type 2
immune factors in autoinflammation. Finally, we summarize results
from studies exploring the prevalence of type 2 clinical and
immunologic phenotypes in patients with monogenic and
complex autoinflammatory diseases.
PART 1: AN OVERVIEW OF
AUTOINFLAMMATION AND
TYPE 2 INFLAMMATION

Autoinflammation Results From
Inappropriate Innate Immune Activation
The concept of autoinflammatory disease was coined in 1999 to
describe a group of immune dysregulatory diseases characterized
by recurrent episodes of fever and systemic inflammation. In
contrast to autoimmune diseases, autoinflammatory disorders
are typified by constitutive activation of myeloid cells rather than
antigen-specific T cell or B cell responses (3). Given the central
role of myeloid cells in the innate arm of immune responses, the
concept of “autoinflammation” was subsequently broadened to
characterize primary disorders of the innate immune system.
This approach was further advanced by the discovery of
monogenic autoinflammatory diseases caused by mutations in
genes critical for innate immune function (11–16).

One useful framework for characterizing monogenic
autoinflammatory diseases is by the innate immunologic
pathways that are dysregulated by disease-causing mutations.
Many autoinflammation-associated genes are critical to the
inflammasome and IL-1b production pathway (Figure 1). This
includes the MEFV gene, which causes the prototypical
autoinflammatory disease Familial Mediterranean Fever (FMF).
Other examples of inflammasome-regulating genes and
Frontiers in Immunology | www.frontiersin.org 2
associated autoinflammatory diseases include MVK (hyper-IgD
syndrome; HIDS), NLRP3 (Cryopyrin-associated periodic fever
syndrome; CAPS), PSTPIP1 (Pyogenic arthritis with pyoderma
gangrenosum and acne; PAPA), WDR1 (periodic fever,
immunodeficiency, and thrombocytopenia; PFIT), IL1RA
(Deficiency of IL-1RA; DIRA), and NLRC4 (Macrophage
activation syndrome; MAS). Inflammasomes are innate
immune sensors; upon activation, they form multimeric
complexes that cleave the protease caspase-1, which in turn
cleaves and activates IL-1b and IL-18. Consequently,
inflammasomopathies are characterized by overproduction of
IL-1b, and affected patients respond clinically to inhibitors of IL-
1b and its receptor (3).

Another group of diseases is caused by mutations in the
tumor necrosis factor (TNF)/NF-kB signaling pathway, which
modulates innate and adaptive immune responses (Figure 2)
(17). The prototypical example of TNF-receptor associated
periodic fever syndrome (TRAPS) is caused by mutations in
TNFRSF1A, although the pathogenesis of TRAPS is complex and
includes TNF-independent mechanisms (18). Downstream of
the TNF receptor, ubiquitin-editing enzymes like OTULIN and
A20 negatively regulate NF-kB signaling; inactivating mutations
cause the autoinflammatory diseases Otulipenia and HA20,
respectively (19, 20). Gain-of-function mutations in the NOD2
and CARD14 genes also cause autoinflammation due to
constitutive activation of NF-kB signaling (21, 22). Although
TNF inhibitors can be effective for this group of diseases, NF-kB
can also be activated by TNF-independent agonists including IL-
1b. Accordingly, some patients with NF-kB associated
autoinflammatory diseases require treatment with other
immunomodulators, including IL-1 pathway inhibitors (3,
18, 23).

The Type I interferon (IFN) pathway is important for
antiviral immunity and for innate immune functions such as
natural killer cell activation and antigen presentation (Figure 3)
(24). Inborn errors of immunity that cause activation of Type I
IFN signaling are termed interferonopathies. Proteasome-
associated autoinflammatory syndromes (PRAAS) result from
mutations in genes encoding proteasome subunits. Proteasome
dysfunction induces the unfolded protein response (UPR),
resulting in Type I IFN activation and autoinflammation (25).
Several monogenic interferonopathies are caused by mutations
in genes that modulate intracellular responses to nucleic acids.
For example, mutations in the DNA sensor gene TMEM173 lead
to STING-associated vasculopathy with onset in infancy (SAVI)
(26). Mutations in interferon-response genes like STAT2 can also
cause autoinflammation due to overactive signaling downstream
of Type I IFN (27, 28).

In addition to these canonical dysregulated pathways,
autoinflammation can also be caused by mutations in genes
important for other innate immune functions. Deficiency of
ADA2 (DADA2) is caused by mutations in CERC1, which
regulates monocyte differentiation (29). Mutations in
complement pathway genes like CFH, C3, and CD46 can cause
atypical hemolytic uremic syndrome (3, 30–32). Genes that
regulate actin polymerization like WDR1 and CDC42 are
also important for inflammasome assembly; mutations can
February 2022 | Volume 13 | Article 818039
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therefore cause IL-1b and IL-18-dependent autoinflammation
(3, 33, 34). The ripoptosome is a multimeric complex containing
RIPK1, FADD, and caspase-8 that is important for regulating
the balance between necroptotic and apoptotic cell death;
inactivating mutations can therefore cause autoinflammation
secondary to increased necroptosis (35–37). Somatic
mutations in the ubiquitin-editing gene UBA1 lead to VEXAS,
Frontiers in Immunology | www.frontiersin.org 3
a treatment-refractory complex autoinflammatory syndrome
characterized by activation of multiple immune pathways (38).
Finally, a number of complex autoinflammatory diseases
including systemic juvenile idiopathic arthritis (sJIA), Behcet’s
disease, and periodic fever, aphthous stomatitis, pharyngitis,
and cervical adenitis (PFAPA) syndrome are linked to a
combination of genetic polymorphisms and environmental
FIGURE 1 | The role of the inflammasome in type 2 immune responses. Inflammasomes are large multimeric signaling molecules that process inactive pro-IL-1b
and pro-IL-18 into their active forms. Constitutive activation of the pyrin inflammasome results in Familial Mediterranean Fever (FMF), while activation of NLRP3
causes the autoinflammatory disease cryopyrin-associated periodic fever syndrome (CAPS). NLRP3 induces Th2 differentiation through inflammasome-
dependent and independent mechanisms (red arrows) but also acts as a brake on type 2 responses to parasites (blue arrow). IL-1b enhances allergic responses
through a variety of effector cells (red arrows), while the effect of IL-18 is context-dependent (red and blue arrows). Th2, T helper 2; IL-9, interleukin 9; IL-13,
interleukin 13; NK, natural killer.
February 2022 | Volume 13 | Article 818039
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FIGURE 2 | TNF-a and NF-kB signaling in type 2 immune responses. TNF-a exacerbates type 2 diseases like asthma in part by promoting Th9 and Th2
differentiation and function (red arrows). The protease caspase-8 forms the ripoptosome complex together with the TNF signaling molecule RIPK1 and FADD. The
ripoptosome is regulates cell death, with caspase-8 and RIPK1 promoting apoptosis over necroptosis, so that defects in RIPK1 result in increased necroptosis and
autoinflammation. The ripoptosome promotes type 2 responses in response to environmental allergens (red arrow) but can suppress type 2 responses to parasites
(blue arrows). Ubiquitin editing proteins like A20 (TNFAIP3) and LUBAC (composed of HOIL-1, HOIP, and SHARPIN) modulate NF-kB signaling by targeting
upstream molecules for activation and/or degradation. A20 negatively regulates NF-kB and also prevents allergic asthma as well as other type 2 responses (blue
arrows). SHARPIN activates NF-kB, and deficiency results in eosinophilic tissue infiltration (blue arrow). The NF-kB signaling molecules CARD14 and CARD15/NOD2
also modulate type 2 responses. CARD14 prevents allergic disease, and deficiency results in clinical atopy (blue arrow). CARD15/NOD2 is reported to have both
positive (red arrows) and negative (blue arrows) effects on type 2 immunity, and its role may be context-dependent. TNF-a, tumor necrosis factor alpha; RIPK1,
Receptor Interacting Serine Threonine Kinase 1; FADD, Fas Associated via Death Domain; LUBAC, linear ubiquitin chain assembly complex; HOIL-1, Haem-Oxidized
IRP2 Ubiquitin Ligase 1; HOIP, HOIL-1L Interacting Protein; SHARPIN, SHANK-associated RH-interacting protein; TNFAIP3, TNF-a induced protein 3; CARD14,
caspase recruitment domain-containing protein 14; CARD15, caspase recruitment domain-containing protein 15; NOD2, nucleotide binding oligomerization domain-
containing protein 2; Th2, T helper 2; IL-9, interleukin 9; IL-13, interleukin 13; IL-4, interleukin 4; NK, natural killer.
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FIGURE 3 | Type 1 interferon signaling in type 2 immune responses. Type 1 IFNs like IFN-a and IFN-b largely suppress type 2 responses (blue arrows), although
they are reported to induce IL-4 (red arrow), which can enhance type 2 immunity. The proteasome is important for processing and degrading misfolded endoplasmic
reticulum proteins; defects cause unfolded proteins to accumulate, resulting in Type 1 IFN production. The proteasome also regulates antigen processing and
presentation which is critical for T cell immunity, including Th2 responses (red arrow). STING is a DNA sensor that activates Type 1 IFN. STING activates STAT6 in
response to viral infection and promotes IgE production in response to HDM (red arrow), but also represses IL-13-induced STAT6 activation in subjects with
rhinosinusitis (blue arrow). IFN, interferon; ER, endoplasmic reticulum; IRE1, Inositol Requiring Enzyme 1; ATF6, Activating Transcription Factor 6; PERK, PKR-like
Endoplasmic Reticulum Kinase; STING, Stimulator of Interferon Genes; TYK2, Tyrosine Kinase 2; JAK1, Janus Kinase 1; STAT1, Signal Transducer and Activator of
Transcription 1; IRF9, interferon regulatory factor 9; Th2, T helper 2; IL-4, interleukin 4; IL-5, interleukin 5; IL-13, interleukin 13; IgE, immunoglobulin E, NK, natural
killer; HDM, house dust mite.
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factors (39, 40). As increased access to next-generation
sequencing accelerates gene discovery, the spectrum of
autoinflammatory diseases will likely broaden to comprise new
mechanisms of innate immune dysregulation.

Type 2 Immunity Is Characterized by
Allergy-Associated Effector
Cytokines and Cells
Type 2 immunity was originally described as a counter-regulator
of Th1-driven immune responses but was subsequently
recognized as a distinct immune response with important roles
in antihelminth defense, allergy, and wound repair (4, 5). Type 2
immunity is most commonly associated with Th2 cells and their
hallmark effector cytokines IL-4, IL-5, and IL-13. However, type
Frontiers in Immunology | www.frontiersin.org 6
2 inflammation is mediated by many other cell types including
alternatively activated macrophages, type 2 innate lymphoid cells
(ILC2), eosinophils, basophils, mast cells, and immunoglobulin E
(IgE) secreting plasma cells (8). In addition to Th2-effector
cytokines, type 2 immune cells secrete and respond to IL-9, IL-
33, IL-25, and thymic stromal lymphopoietin (TSLP)
(Figure 4) (4).

Immune responses have evolved to protect against discrete
pathogens; in this context, type 2 immunity is critical to host
defense against helminth infections. Accordingly, type 2 immune
cells are found at barrier surfaces where they promote goblet cell
hyperplasia, mucus secretion, and muscle contraction – all of
which induce intestinal worm expulsion (4, 8). Many of these
protective mechanisms can also promote tissue remodeling,
FIGURE 4 | The role of type 2 immune cells and cytokines in autoinflammatory cells and pathways. The Th2- and ILC2-derived cytokines IL-4 and IL-13 largely
suppress autoinflammatory pathology by inducing the differentiation of anti-inflammatory M2 alternatively activated macrophages and repressing neutrophil migration (blue
arrows). IL-4 also has some positive effects on autoinflammatory cells (red arrows), particularly in combination with GM-CSF. Like IL-4, the Th2/Th9/ILC2-derived cytokine
IL-9 has both positive (red arrow) and negative (blue arrow) effects on autoinflammatory cells. The alarmins IL-25, IL-33, and TSLP promote autoinflammatory pathology
through their effects on neutrophils and monocytes (red arrows). Mast cells also promote classic autoinflammatory pathology by producing IL-1b and TNF-a. The allergy-
associated immunoglobulin IgE can both promote (red arrows) and repress (blue arrows) autoinflammatory disease. Th2, T helper 2; ILC2, type 2 innate lymphoid cell, IL-,
interleukin-; GM-CSF, granulocyte macrophage colony stimulating factor; NET, neutrophil extracellular trap; APC, antigen presenting cell; TSLP, thymic stromal
lymphopoietin; TNF-a, tumor necrosis factor alpha; IgE, immunoglobulin E; NK, natural killer.
February 2022 | Volume 13 | Article 818039
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making them important for wound repair after injury (4, 8).
Type 2 dependent repair can ultimately result in tissue fibrosis,
particularly when these pathways are chronically activated (4).
Fibrosis is a highly pathological inflammatory endpoint that can
result in significant morbidity and mortality secondary to organ
failure. Thus, protective type 2 responses can easily become
pathogenic when dysregulated or overactivated.

Consistent with the reciprocal inhibition seen for Th1 and
Th2 cells, type 2 immune responses can also protect from
autoimmune inflammation. This has largely been described in
the context of murine inflammatory models, where Th2 cells and
type 2 cytokines ameliorate autoimmune arthritis and
encephalitis (8, 41, 42). However, the role of type 2 immunity
in human autoimmune disease is complex: the type 2 effector
cytokines IL-13 and IL-9, for example, are both thought to
promote inflammation in patients with ulcerative colitis and
psoriasis (43–46). Th2 cells and IgE can both promote kidney
inflammation in patients with systemic lupus erythematosus
(47, 48).

Allergic disorders make up the largest group of human
diseases characterized by type 2 dysregulation and include
asthma, atopic dermatitis, food allergy, and allergic rhinitis (2).
Immunologically, allergy is caused by an exaggerated type 2
response to foreign antigens. However, many allergy-associated
clinical syndromes have forms in which allergic sensitization
cannot be demonstrated (49, 50). In some cases, this might be
due to primary dysregulation of type 2 inflammatory cells and
mediators. For example, some patients with late-onset
eosinophilic asthma are thought to have primary dysregulation
of ILC2, which produce type 2 cytokines independent of
antigenic stimulation (51). Patients with NARES (nonallergic
rhinitis with eosinophilia syndrome) are thought to have a
primary eosinophilic disorder in at least some cases (50). In
other cases, non-type 2 mediators can promote symptoms that
are clinically indistinguishable from allergen-specific type 2
responses. For example, hormonal rhinitis can mimic allergic
rhinitis but is caused by hormone-induced nasal vascular
engorgement (50).
PART 2: THE ROLE OF
AUTOINFLAMMATION IN TYPE 2
IMMUNE RESPONSES

Autoinflammation, Type 2 Immunity, and
Clinical Allergy: A Complex Relationship
Type 1 cytokines have long been thought to primarily repress
type 2 immunity based on the Th1-Th2 paradigm. Indeed,
the type 1 cytokines IFN-g and IL-12 inhibit Th2 differentiation
and type 2 responses to helminth infection (8, 52, 53). However,
other autoinflammatory and autoimmune cytokines can amplify
type 2 inflammation, worsening type 2-driven pathology (54–56)
Additionally, autoinflammatory and autoimmune cytokines can
directly promote tissue inflammation, resulting in clinical
phenotypes identical to type 2-driven allergic disease (57–59).
The heterogeneity of inflammatory mechanisms driving
Frontiers in Immunology | www.frontiersin.org 7
common clinical phenotypes can present substantial barriers to
understanding the crosstalk between type 2 inflammation and
autoinflammation in human disease. To help address this
complexity, one can approach the role of autoinflammation in
type 2-mediated disease using the innate immunologic pathways
that are used to categorize monogenic autoinflammatory diseases:
inflammasomes, TNF-a, Type I IFN, and newer pathways
including necroptosis.

Inflammasomes and Associated Cytokines
in Type 2 Immunity
The pyrin inflammasome does not appear to have a major role in
type 2 immune responses, and a recombinant pyrin domain was
found to attenuate allergic inflammation in mice by suppressing
NF-kB activation (60). By contrast, NLRP3 directly promotes
Th2 differentiation independent of its inflammasome function by
transcriptionally inducing Il4 in conjunction with IRF4
(Figure 1) (61). The NLRP3 inflammasome can also trigger a
Th2-biased response in the context of both infection and allergic
inflammation (Figure 1) (62–64). NLRP3 activation in bronchial
epithelial cells promotes allergic lung inflammation, whereas
activation in keratinocytes promotes eczema (63, 65). By
contrast, Helicobacter pylori gastric infection protects from
allergic asthma by activating NLRP3 in proximal dendritic cells
(66). Similarly, helminths induce NLRP3, which then acts as a
brake on type 2 responses via both inflammasome-independent
and inflammasome-dependent mechanisms (Figure 1) (67–69).
Taken together, these studies suggest that NLRP3 activation may
primarily suppress type 2 responses to pathogens but promote
dysregulated type 2 responses to environmental allergens.

The end products of inflammasome activation, IL-1a, IL-1b
and IL-18, can also regulate type 2 immunity. Single nucleotide
polymorphisms (SNPs) in IL1A, IL1B, and IL1R1 are all linked to
asthma; accordingly, IL-1a and IL-1b both exacerbate murine
allergic airway inflammation (Figure 1) (70–75). Type 2 immune
cells like eosinophils and mast cells can release IL-1b, airway
epithelial cells stimulated with the house dust mite (HDM)
allergen can release IL-1a, and IL-1b can be found in allergic
tissues, further suggesting that IL-1 has a role in type 2 responses
(76–79). This hypothesis is supported by the observation that IL
-1b enhances inflammatory Th2 differentiation and helps induce
the differentiation of Th9 cells (Figure 1) (55, 80–82). IL-1b is
also capable of regulating various type 2 innate effector cells to
promote tissue inflammation. For example, IL-1b activates
human ILC2s in the presence of IL-2, inducing proliferation
and effector cytokine production (83, 84). IL-1b also induces
histamine release from basophils and mast cells, and histamine
enhances IL-1b release, which can induce a positive feedback
loop (Figure 1) (85, 86). Eosinophils and mast cells stimulated
with IL-1b produce IL-9, further supporting the hypothesis that
IL-1b can enhance type 2 immune responses to promote allergic
pathology (Figure 1) (87, 88). A pathogenic role for IL-1
signaling in allergy is further supported by a number of clinical
studies demonstrating the efficacy of IL-1 pathway inhibitors in
asthma and atopic dermatitis (89–91). Several larger randomized
controlled clinical trials have been planned to follow up these
encouraging observations but were halted early due to patient
February 2022 | Volume 13 | Article 818039
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recruitment – particularly in light of the ongoing COVID-19
pandemic (NCT01122914, NCT04035109, NCT03513458).

Like IL-1b, IL-18 is reported to enhance Th2 differentiation
and T-cell-derived IL-13 production (Figure 1) (54, 69). This
effect is IL-4-dependent and may be because IL-18-induces IL-4
production or because it increases T cell sensitivity to IL-4 (54).
IL-18 also induces IL-13 in natural killer (NK) cells and in
basophils, suggesting that it may contribute to the innate arm of
type 2 immune responses (Figure 1) (92, 93). In addition to IL-
13, IL-18 also induces histamine from basophils and can
promote eosinophil development and maturation in
combination with IL-5 (94, 95). However, IL-18 can also
repress type 2 responses in vivo. IL-18-deficient mice develop
enhanced allergen-induced eosinophilia, and IL-18-deficient
mice are protected from helminth infections (Figure 1) (96,
97). This suggests that the role of IL-18 in type 2 immunity may
be context-dependent. Indeed, IL-18 can promote either Th1 or
Th2 differentiation depending on genetic background and
cytokine milieu (98). Similarly, IL-18 represses allergic
pathology and IgE production in combination with IL-12 but
induces both of these in the absence of IL-12 (95, 99, 100).

TNF-a and NF-kB Signaling in
Type 2 Immunity
The inflammatory cytokine TNF-a has a role in both innate and
adaptive immunity, underlying the efficacy of TNF inhibitors in
patients with autoimmune conditions like rheumatoid arthritis
(RA) and autoinflammatory conditions like Deficiency of ADA2
(DADA2) (101, 102). TNF-a and other TNF superfamily cytokines
promote the differentiation of Th9 cells, suggesting that they may
enhance type 2 immune responses (Figure 2) (103, 104). Many
TNF superfamily cytokines are costimulatory molecules that more
generally modulate division, survival, and activation in T cells.
Several of these positively regulate of Th2 differentiation and
function due to their role in costimulation (105). TNF-a also
enhances the effect of IL-4 on eosinophils and enhances Th2-
mediated responses at mucosal sites (Figure 2) (56, 106). This may
be in part due to effects on non-immune cells that promote type 2
responses. For example, TNF-a and IL-1b synergize to promote
airway hyperresponsiveness, which might partly underlie the role
of TNF-a in asthma (Figure 2) (107, 108). The TNF-a inhibitor
etanercept initially showed promise for severe refractory asthma,
but a subsequent trial failed to show efficacy (107, 109). Clinical
development was ultimately halted due to an increased rate of
serious adverse effects, most notably respiratory infections, in a
phase 2 trial of golimumab (110). Etanercept and infliximab are
reported efficacious for the treatment of atopic dermatitis and have
been used as an off-label treatment for severe disease (111, 112).

NF-kB signaling has long been known to play a role in type
2 immune responses, Th2 differentiation, IgE production,
and the function of innate type 2 effectors like eosinophils,
ILC2s, and mast cells (10, 113–115). Inactivating mutations in
NF-kB pathway genes like CARD11 and CARD14 cause
monogenic immune dysregulatory syndromes that include
allergic phenotypes, indicating that physiologic NF-kB
signaling can suppress type 2 pathology (Figure 2) (116, 117).
The clinical phenotype of CARD14 loss-of-function (LOF) is
Frontiers in Immunology | www.frontiersin.org 8
particularly interesting in the context of autoinflammation,
because activating CARD14 mutations cause a monogenic
autoinflammatory disease (22). Similarly, NOD2 (CARD15)
LOF polymorphisms are associated with an increased risk of
clinical allergy and inflammatory bowel disease (IBD), whereas
activating mutations cause the autoinflammatory disease Blau
syndrome (Figure 2) (21, 118, 119). However, NOD2 also
induces the type 2 cytokine TSLP, promotes ILC2 expansion,
and induces eosinophil activation (Figure 2). These studies
suggest that, in some cases, NF-kB signaling is primarily an
inducer of type 2 immune responses.

The autoinflammation-associated NF-kB signaling repressor
A20 (TNFAIP3) inhibits airway epithelial cytokine production in
response to endotoxin, suppressing type 2 responses to HDM
and preventing allergic asthma (Figure 2) (120). A20 also has a
cell-intrinsic anti-inflammatory role in mast cells, inhibits
intestinal Th2 responses, and prevents Th17 differentiation in
response to HDM (Figure 2) (121–123). These observations may
explain the negative associations of TNFAIP3 expression with
allergic asthma, chronic rhinosinusitis, atopic dermatitis, and
food allergy (124–127). The SHARPIN protein (Shank-
interacting protein like 1) is a part of the LUBAC (linear
ubiquitin chain assembly complex), which promotes NF-kB
activation and is linked to autoinflammation and complex
immune dysregulation. SHARPIN promotes regulatory T cell
function, so deficiency promotes systemic inflammation (128).
Additionally, SHARPIN deletion causes lymphocyte-
independent eosinophilic esophagitis, and keratinocyte-specific
deletion causes eosinophilic dermatitis (Figure 2) (129–131).

Type I IFN Signaling in Type 2 Immunity
Broadly, type I IFNs inhibit type 2 immune responses: they
suppress IL-5 and IL-13 production, inhibit GATA3-dependent
Th2 differentiation, and block B cell isotype switching to IgE
(Figure 3) (24, 132–135). Accordingly, recombinant IFN-a is
used to treat Idiopathic Hypereosinophilic Syndromes and
Eosinophilic Granulomatosis with Polyangiitis (136, 137). Type
I IFNs are also thought to play a role in asthma, where deficiency
leads to increased viral infection and enhanced Th2
differentiation, worsening disease (138). However, type I IFNs
are also reported to induce IL-4 production and to promote
murine eosinophilic rhinosinusitis, possibly by increasing
eosinophil recruitment (Figure 3) (134, 139). It remains to be
determined whether these functions have any role in promoting
type 2 immunity-related human diseases.

In addition to modulating type I IFNs through the unfolded
protein response, the proteasome is important for antigen
processing and presentation (140). Consequently, defects in the
proteasome result in a general loss of T-cell-dependent immunity.
Taken together with the antagonistic role of type I IFN on type 2
responses, it is not surprising that defects in the proteasome are
associated with reduced Th2 responses (Figure 3) (141). By
contrast, the DNA sensor STING activates the type 2 associated
signaling molecule STAT6 in response to viral infection, although
the result is enhanced antiviral immunity rather than a type 2
immune response (Figure 3) (142). STING also promotes HDM-
induced IgE production by enhancing the function of T follicular
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helper cells (Figure 3) (143). However, STING represses IL-13-
induced STAT6 phosphorylation in subjects with rhinosinusitis by
increasing expression of the STAT6 inhibitor SOCS1 (suppressor
of cytokine signaling 1) (Figure 3) (144). SOS1 induction may also
underlie the observation that STING signaling in ILC2s promotes a
phenotypic shift to Type 1 ILC (ILC1) during lung inflammation
(145). Taken together, these studies suggest that the role of STING
in type 2 immunity is complex and context dependent.

Other Autoinflammation-Associated
Pathways in Type 2 Immunity
Cytoskeletal regulators that play a role in inflammasome
activation, like CDC42 and WDR1, also play a role in adaptive
immunity and nonhematopoietic cells. CDC42 is activated by the
atypical guanine nucleotide exchange factor DOCK8, which is
linked to autosomal recessive hyper-IgE syndrome (33). CDC42
signaling is also important for mast cell and eosinophil function,
and CDC42-deficient invariant natural killer T cells have a defect
in IL-4 secretion because CDC42 degradation induces IL-4
secretion in response to lipid antigens (146). Complement
activation promotes Th1 differentiation and function, which can
indirectly repress type 2 responses, but is not thought to directly
regulate Th2-driven responses (147). The complement system can
activate innate type 2 effectors like eosinophils and mast cells,
however, and may therefore promote some type 2 associated
pathology (148, 149). Environmental allergens can activate the
ripoptosome to trigger type 2 inflammation through RIPK1 and
caspase 8, which shunt cells away from necroptosis and towards
apoptosis (Figure 2) (36, 150, 151). Caspase-8 can also promote
allergic pathology by directly activating IL-1 cytokines (152).
However, caspase 8 prevents type 2 immune responses to
Trypanosoma cruzi infection, leading to increased parasitemia
and chronic infection (150). Caspase-8 also promotes epithelial
keratinocyte cohesion, so that epidermal-specific deficiency causes
a spontaneous eczematoid dermatitis (153). Thus, the effect of the
ripoptosome on type 2 immune responses may be context-
dependent as for other autoinflammatory mediators.
PART 3: THE ROLE OF TYPE 2
IMMUNITY IN AUTOINFLAMMATORY
CELLS AND PATHWAYS

Th2 and ILC2-Derived Cytokines in
Autoinflammatory Cells and Pathways
The type 2 cytokines IL-4 and IL-13 have long been studied as
modulators of innate immune function due to their role in the
generation of alternatively activated macrophages (M2)
(Figure 4) (154). In contrast to classical activation, which is
induced by IFN-g and characterized by type 1 cytokine
production and microbial killing, alternative activation causes
macrophages to develop an immunoregulatory function. M2
macrophages are not efficient killers of invading pathogens but
produce growth factors and extracellular matrix components,
making them important for wound healing (154). They also can
generate or maintain type 2 immune responses. In the context
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of alternative activation, IL-4 promotes tissue resident
macrophage activation and accumulation (155). Exposure to
IL-4 in combination with GM-CSF (granulocyte-monocyte
colony stimulating factor) causes peripheral monocytes to
function as antigen presenting cells (Figure 4) (156). These
monocyte-derived cells phenotypically resemble inflammatory
dendritic cells rather than inflammatory macrophages
(157). Indeed, the inflammatory macrophage phenotype is
promoted by classical activation and inhibited by alternative
activation (158). This may be because IL-4 inhibits NF-kB
and inflammasome activation in macrophages, reducing
responsiveness to lipopolysaccharide (158).

IL-4 also has a role in neutrophil biology and can even be
produced by neutrophils (159). While IL-4 can induce neutrophil
activation and phagocytosis, it also inhibits neutrophil migration
(Figure 4) (160, 161). IL-4 also represses the formation of
neutrophil extracellular traps (NETs), an important mechanism
used for pathogen killing (162). Like IL-4, IL-13 inhibits
neutrophil migration to inflamed tissues, although IL-13 also
enhances production of several neutrophil effector proteins
including IL-8 (163, 164). Finally, the IL-4 and IL-13 activated
signalingmolecule STAT6 is importance for clearance of apoptotic
neutrophils, which promotes resolution of inflammatory
responses (165). Taken together, these data suggest that
type 2 cytokines primarily repress pathways associated with
autoinflammation in macrophages and neutrophils.

Like IL-4 and IL-13, the type 2 cytokines IL-5 and IL-9 are
derived primarily from T helper cells and ILC2s. While neither IL-
5 nor IL-9 is implicated in alternative activation of macrophages,
both cytokines can modulate the function of monocytes and
neutrophils. IL-5 receptor is expressed on neutrophils, including
airway-resident neutrophils from asthma patients, although its
function in neutrophils is not well characterized (166, 167). IL-5
indirectly regulates dendritic cells by inducing eosinophils, which
repress plasmacytoid dendritic cell derived type I IFN production
(168). IL-9 represses autoinflammation-associated responses by
inhibiting oxidative burst and TNFa release in LPS-stimulated
human monocytes and alveolar macrophages (Figure 4) (169,
170). However, IL-9 can also promote neutrophil survival and
neutrophil-derived IL-8 release, enhancing type 1 inflammatory
responses (171, 172). This suggests that the role of IL-9 in
autoinflammation is complex and context-dependent.

Alarmins in Autoinflammatory Cells
and Pathways
Type 2 innate cytokines, or alarmins, are produced by epithelial
cells, endothelial cells, stromal cells, and fibroblasts in response to
injury. These alarmins include IL-25, IL-33 and TSLP; they activate
ILC2, Th2, eosinophils, mast cells, and other type 2 effectors (5, 10,
173, 174). Because activated ILC2 and Th2 cells produce large
amounts of IL-4 and IL-13, alarmins can indirectly promote ILC2-
dependent immunosuppressive functions in neutrophils (175, 176).
In some cases, alarmins can also directly regulate neutrophils and
monocytes. For example, IL-33 primes neutrophils so that they are
rapidly recruited to sites of infection and inflammation, whereas
IL-25 promotes neutrophilic airway infiltration (Figure 4) (177–
180). IL-33 overexpression causes spontaneous neutrophilic
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arthritis and sterile inflammation possibly due to increased NET
formation (181). The alarmin TSLP enhances neutrophilic
inflammation and induces a proinflammatory phenotype in
circulating monocytes and neutrophils (Figure 4) (182, 183).
Further supporting its role in neutrophil-mediated host defense,
TSLP enhances neutrophilic microbicidal activity against
methicillin-resistant Staphylococcus Aureus (184). Together, these
data suggest that type 2 alarmins can promote autoinflammatory
pathology in some contexts.

Mast Cells and High Affinity IgE Receptor
in Autoinflammatory Cells and Pathways
Mast cells produce IL-1b; which is cleaved and activated by
caspase 1, caspase 8, and serine proteases (Figure 4) (185). Mast
cell IL-1b production is NLRP3-dependent, suggesting that mast
cells may have a role in NLRP3-associated autoinflammatory
processes. Accordingly, patients with NLRP3 mutations develop
cold-induced histamine-independent urticariform lesions, and
mast cells are a major source of IL-1b in affected skin (77, 79).
Mast cells also produce IL-1b in patients with the adult-onset
autoinflammatory disease Schnitzler’s syndrome, in subjects with
chronic recurrent multifocal osteomyelitis, and have been found
in inflamed joints from patients with FMF (186–188). In mice,
mast cells promote sterile joint and central nervous system
inflammation (185, 189). Mast cell derived TNF-a induces
urticariform rashes in patients with NLRP3 mutations,
although the role of mast cell derived TNF-a in other
autoinflammatory diseases is not known (Figure 4) (190).

IgE is a critical inducer of many type 2 effector cells, including
mast cells, through its high affinity receptor Fc epsilon RI. Fc
epsilon RI is also expressed and functional in several type 1
innate effector cells. IgE crosslinking suppresses monocyte
funct ion by blocking phagocytosis and preventing
differentiation into dendritic cells (Figure 4) (191, 192).
Simultaneously, engagement of Fc epsilon RI activates NF-kB
in monocytes and dendritic cells, which promotes secretion of
IL-6, IL-10, and TNF-a (192, 193). Macrophage Fc epsilon RI
engagement also reprograms alternatively activated tumor-
resident macrophages to be more proinflammatory, enhancing
their antitumoral functions (194). The functions of IgE and its
receptor are not as well characterized in other type 1 innate cells.
However, Fc epsilon RI is expressed in both dendritic cells and
neutrophils, where it delays neutrophil apoptosis (195–197).
IgE can also activate NK cells through the lower affinity Fc
gamma RIII receptor (198). Future studies will be needed to
further characterize the roles of IgE and its receptors in
autoinflammation-associated innate immune cells.
PART 4: THE EPIDEMIOLOGY OF ALLERGY
IN AUTOINFLAMMATORY DISEASES

The Epidemiology of Allergy in Monogenic
Autoinflammatory Diseases
One way to investigate the interaction between autoinflammatory
pathways and type 2 immunity is to investigate the prevalence of
Frontiers in Immunology | www.frontiersin.org 10
allergic clinical and immunological phenotypes in subjects
with monogenic autoinflammatory diseases (Table 1). Because
single gene mutations promote activation of discrete innate
pathways, this approach can assess the in vivo roles of
dysregulated autoinflammatory pathways in regulating human
type 2 immune responses (199). This question has been most
extensively studied in FMF, perhaps because it was the first
autoinflammatory disease to be linked to a causative gene (16)
(Table 1). Several studies have suggested that FMF protected
against asthma and atopy, potentially due to protective linkage of
MEFV with asthma associated genes like IL4RA (199–201).
Although one study suggested that Turkish FMF patients may
have elevated total serum IgE relative to healthy volunteers, this
result was not seen in other cohorts, where there was a trend
towards reduced serum IgE (199, 201, 202). Taken together, these
results suggest that activation of the pyrin inflammasome
attenuates human type 2 immune responses.

By contrast, the autoinflammatory disease CAPS, caused by
NLRP3 mutations, is associated with peripheral eosinophilia and
eosinophilic skin infiltration (199, 203) (Table 1). Eosinophilia
correlates with CAPS disease activity, suggesting that NLRP3
activation promotes eosinophilia (199). This is consistent with
the role of NLRP3 and IL-1b in promoting the differentiation
and function of type 2 effectors like Th2 cells, mast cells, and
eosinophils. CAPS is also characterized by an increased
prevalence of eczema, asthma, and allergic rhinitis relative to
both the general population and FMF (199). This is consistent
with the observation that NLRP3 activation exacerbates murine
models of asthma and eczematous dermatitis (63, 65). Finally,
the urticariform lesions of CAPS are characterized by IL-1b and
TNF-a producing mast cell infiltration, once again linking the
NLRP3 inflammasome to type 2 effector activation in humans
(77, 79, 190). Overall, these results suggest that in humans,
constitutive activation of the NLRP3 inflammasome promotes
type 2 immune responses. Because helminth infections are
extremely uncommon in countries with highly developed
CAPS cohorts, it remains to be determined whether NLRP3
activation suppresses type 2 responses to pathogens in humans,
as it does in murine models (67–69).

CDC42 is a plasma membrane associated GTPase involved in
diverse processes including cell division, phagocytosis, and
epithelial cell morphology (204). Mutations are linked to
NOCARH (neonatal onset of pancytopenia, autoinflammation,
rash, and episodes of HLH) an IL-1-responsive autoinflammatory
disease with features of macrophage activation syndrome (MAS)
(33, 205). CDC42 alternates between an inactive cytosolic form
and an active plasma membrane bound form; mutations affecting
trafficking alter the subcellular localization independent of the
protein’s activation state (33). This, in turn, alters the partners that
bind to CDC42, ultimately leading to NF-kB overactivation and
autoinflammation (204). In addition to autoinflammation, one
patient with NOCARH also developedmild hypereosinophilia and
hyper-IgE, although no clinical allergic diagnoses were reported
(204) (Table 1). As additional patients are identified, careful
phenotyping will be needed to determine whether type 2
immune activation is a common feature of NOCARH.
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Far less is known about the prevalence of type 2 immune
activation in other autoinflammatory diseases. In one systematic
population study, clinical diagnoses of allergic rhinitis were highly
prevalent in almost all autoinflammatory diseases, including FMF
(199). This included diseases with reduced clinical laboratory
markers of type 2 inflammation relative to the general
population, like HIDS and DADA2. This might be because
autoinflammation-associated cytokines like IL-1b and TNF-a
can promote sinus mucosal thickening independent of type 2
immune activation (206). Thus, in some cases, autoinflammatory
pathology may mimic type 2 associated disease, and this may be a
potential confounder in epidemiologic studies.

The Epidemiology of Allergy in Complex
Autoinflammatory Diseases
Unlike their monogenic counterparts, complex autoinflammatory
diseases are linked to multiple genetic and environmental factors
that contribute to their pathogenesis. Behcet’s disease is a
heterogeneous and complex autoinflammatory disease that
manifests with orogenital ulcers, pustular skin disease, arthritis,
eye disease, gastrointestinal inflammation, and vascular
complications (207). Genetic studies have identified a number of
risk alleles that overlap with both recurrent aphthous stomatitis and
PFAPA syndrome, allowing the three syndromes to be grouped
together as Behcet’s spectrum disorders (39). Amongst the
susceptibility loci shared by Behcet’s spectrum disorders are
multiple genes associated with Th1-driven immunity, such as
STAT4 and IL12A (39). Th1 cells are thought to repress Th2 cells,
and perhaps for this reason patients with Behcet’s disease were
found in several studies to have lower rates of allergic sensitization
and lower IgE levels than the general population (201, 208)
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(Table 2). However, a separate group of studies reported
increased rates of atopy and elevated levels of type 2 cytokines in
subjects with Behcet’s spectrum disorders, particularly children with
PFAPA (209–212). Moreover, the IgE-blocking monoclonal
antibody has been reported to alleviate symptoms and reduce
autoinflammation in one subject with concurrent Behcet’s disease
and asthma (213) (Table 2). These disparate findings may be partly
due to the genetic and phenotypic heterogeneity of patients with
Behcet’s spectrum disorders, which can vary substantially between
cohorts with different ancestries (207).

Systemic juvenile idiopathic arthritis (sJIA) is another complex
autoinflammatory disease with genetic and phenotypic links to
both autoinflammation and autoimmune inflammation (40).
Children with allergic disease were found to be at a higher risk
of developing JIA in a Taiwanese cohort, although sJIA was not
differentiated from other forms (214). Atopy may also be a risk
factor for increased disease severity in sJIA, although this has only
been investigated in one small prospective study (215). Adult-
onset Still’s disease (AOSD) is an adult-onset clinical syndrome
that phenotypically resembles sJIA (216). Cases of AOSD have
been reported in association with elevated serum IgE, IL-4, and
clinical atopy, but the prevalence of these features has not yet been
systematically investigated (216, 217).
CONCLUSIONS

Although autoinflammation and type 2 immunity have
traditionally thought to counter-regulate each other, a growing
body of literature demonstrates that the relationship between
type 1 and type 2 immune responses is more nuanced than this
TABLE 1 | Associations of monogenic autoinflammatory diseases with type 2 clinical and immunological phenotypes.

Disease Gene(s) Type 2 Phenotype

FMF MEFV Reduced prevalence of asthma (199–201)
Increased prevalence of rhinosinusitis (199)
Elevated total serum IgE relative to healthy volunteers (202)
Reduced total serum IgE relative to healthy volunteers (201)
Reduced mean absolute eosinophil count relative to healthy volunteers (199)

CAPS NLRP3 Increased prevalence of hypereosinophilia, asthma, eczema, and rhinosinusitis relative to healthy volunteers (199, 203)
Increased mean absolute eosinophil count relative to healthy volunteers (199)
Th2 cell expansion (199)

NOCARH CDC42 Mild hypereosinophilia and hyper-IgE (204)
TRAPS TNFRSF1A Increased prevalence of allergic rhinitis, eosinophilic GI disease relative to healthy volunteers (199)

Th2 cell expansion (199)
CANDLE POMP Increased prevalence of eczema, eosinophilic GI disease relative to healthy volunteers (199)

PSMA3 Reduced prevalence of asthma relative to healthy volunteers (199)
PSMB10 Reduced mean absolute eosinophil count relative to healthy volunteers (199)
PSMB4
PSMB8
PSMB9
PSMG2

DADA2 CERC1 Increased prevalence of eczema, allergic rhinitis relative to healthy volunteers (199)
Reduced mean absolute eosinophil count, total serum IgE relative to healthy volunteers (199)

HA20 TNFAIP3 Increased prevalence of eczema, allergic rhinitis, eosinophilic GI disease relative to healthy volunteers (199)
Th9 cell expansion (19, 199)

HIDS MVK Increased prevalence of allergic rhinitis, eosinophilic GI disease relative to healthy volunteers (199)
Reduced total serum IgE, mean absolute eosinophil count relative to healthy volunteers (199)

PAPA PSTPIP1 Reduced mean absolute eosinophil count relative to healthy volunteers (199)
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canonical view would suggest. Some autoinflammatory
cytokines, like IL-1b and TNF-a; enhance the differentiation
and function of type 2 effector cells and exacerbate allergic
pathology. Others, like type 1 IFN, largely repress type 2
inflammation but can promote type 2 cytokine production in
certain contexts. And some autoinflammatory signaling
molecules like NLRP3 may constrain type 2 responses in the
context of parasitic infection, while inducing type 2 immunity in
the setting of allergic inflammation. These observations suggest
that the role of autoinflammation in type 2 immunity may rely
on a broad array of genetic and environmental factors involved
in driving the immune response.

Similarly, the role of type 2 immunity in the pathogenesis of
autoinflammation is complex and context-dependent. While Th2-
and ILC2-derived type 2 cytokines like IL-4 and IL-13 generally
repress type 1 inflammation, they can promote neutrophil
activation in certain context. Moreover, alarmins like IL-33 and
TSLP clearly induce autoinflammatory effectors like neutrophils and
monocytes, causing local and systemic inflammation. Mast cells,
which are generally considered type 2 effectors, have a clear role in
NLRP3-associated autoinflammatory diseases and may play a role
in diseases linked to other genes like MEFV. Future investigation
will be required to determine the roles played by type 2 cytokines
and effectors in modulating pathology in subjects with monogenic
and complex autoinflammatory diseases.
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Clinical epidemiology studies in patients with autoinflammatory
diseases paint a similarly nuanced picture. Given the role of NLRP3
in promoting allergic pathology, for example, it is not surprising that
the phenotypic spectrum of CAPS comprises eosinophilia and
clinical allergy in addition to systemic autoinflammation. In other
syndromes, autoinflammation appears to have a negative effect on
type 2 immunity – most notably for FMF – although the
mechanisms are not well-defined. Finally, in some cases, it
appears that autoinflammatory pathology can mimic allergic
disease, causing a phenotype that is indistinguishable from clinical
allergy but that is not mediated by type 2 effectors. These
observations have clinical implications for subjects with
autoinflammatory diseases, where type 2 directed therapies have
been reported effective in some cases. They may also have
repercussions for subjects with clinical allergy-associated
diagnoses like asthma, where non-allergic endotypes are unlikely
to respond to type 2 directed therapies. The ability of
autoinflammatory cytokines and mediators to both potentiate and
clinically phenocopy type 2 pathology suggests that some of these
patients might benefit from autoinflammation-directed treatments.
In the future, dissecting the interactions between these two not-so-
separate arms of the immune response should help to refine our
understanding of – and improve treatments for – monogenic and
complex immune dysregulatory disorders.
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