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INTRODUCTION 
 

Tumor microenvironment (TME) is linked closely with 

the initiation, promotion and progression of cancer. 

Fibroblasts, the major composition of cancer stroma, are 

often activated by various stimuli such as some cytokines 

secreted by tumor cells in the TME [1]. Increasing 

research has documented that tumor-infiltrating 

fibroblasts could facilitate cancer progression through a 

multitude of mechanisms including inducing angiogenesis 
and immune suppression [2]. 

 

PDGFR-β, a major regulatory protein for mesenchymal 

cells such as fibroblasts and mesangial cells, is 

becoming a pivotal controller of these cells in TME of 

numerous malignancies including breast and prostate 

cancer [3]. Recently, many studies have demonstrated 

that PDGFR-β was frequently upregulated in fibroblasts 

in tumor stroma [4], and could well represent the 

activation status of fibroblasts [5]. In the last decades, 

although a great number of researchers have 

investigated the association between intratumoral 

PDGFR-β+ fibroblasts and prognosis in human solid 

tumors, their results were controversial [6]. It needs 

further investigation, in addition, the potential of 

intratumoral PDGFR-β+ fibroblasts as a practicable 

prognostic biomarker and targeted strategy is required 

to be explored. 
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ABSTRACT 
 

Fibroblasts are a highly heterogeneous population in tumor microenvironment. PDGFR-β+ fibroblasts, a 
subpopulation of activated fibroblasts, have proven to correlate with cancer progression through multiple of 
mechanisms including inducing angiogenesis and immune evasion. However, the prognostic role of these cells in 
solid tumors is still not conclusive. Herein, we carried out a meta-analysis including 24 published studies with 6752 
patients searched from PubMed, Embase and EBSCO to better comprehend the value of such subpopulation in 
prognosis prediction for solid tumors. We noted that elevated density of intratumoral PDGFR-β+ fibroblasts was 
remarkably associated with worse overall survival (OS) and disease-free survival (DFS) of patients. In subgroup 
analyses, the data showed that PDGFR-β+ fibroblast infiltration considerably decreased OS in non-small cell lung 
cancer (NSCLC), breast and pancreatic cancer, and reduced DFS in breast cancer. In addition, increased number of 
PDGFR-β+ fibroblasts appreciably correlated with advanced TNM stage of patients. In conclusion, PDGFR-β+ 

fibroblast infiltration deteriorates survival in human solid tumors especially in NSCLC, breast and pancreatic cancer. 
Hence, they may offer a practicable prognostic biomarker and a potential therapeutic strategy for these patients. 
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In this study, we carried out a meta-analysis to 

quantitatively assess the correlation between tumor-

infiltrating PDGFR-β+ fibroblasts and clinical outcomes 

in solid tumors, and found that high density of 

intratumoral PDGFR-β+ fibroblasts was remarkably 

associated with worse overall survival (OS) and 

disease-free survival (DFS) of patients. In subgroup 

analyses, PDGFR-β+ fibroblast infiltration considerably 

decreased OS in non-small cell lung cancer (NSCLC), 

breast and pancreatic cancer, and reduced DFS in breast 

cancer of patients. Moreover, increased number of 

PDGFR-β+ fibroblasts appreciably correlated with 

advanced TNM stage of patients. Hence, we may offer a 

practicable prognostic biomarker and a potential 

therapeutic strategy for these patients. 

 

MATERIALS AND METHODS 
 

Literature search 

 

PubMed, Embase and EBSCO were retrieved to 

evaluate the PDGFR-β+ fibroblast infiltration and 

clinical outcomes in solid tumors from January 1980 to 

November 2020. The keywords for searching strategy 

were: (fibroblasts [Title/Abstract] OR PDGFR-β 

[Title/Abstract]) AND (tumor [Title/Abstract] OR 

cancer [Title/Abstract] OR carcinoma [Title/Abstract] 

OR neoplasms [Title/Abstract]) AND (survival 

[Title/Abstract] OR prognosis [Title/Abstract]). 

 

Inclusion and exclusion criteria 

 

Studies included in this meta-analysis should meet the 

following inclusion criteria: (1) been published as 

original articles in English; (2) investigated human 

subjects; (3) tested PDGFR-β+ fibroblasts in primary 

tumor lesions; (4) supplied hazard ratios (HRs), or 

Kaplan – Meier curves exhibiting the association 

between PDGFR-β+ fibroblasts and OS, and/or DFS. 

 

The exclusion criteria were that studies haven’t been 

published as research article or full text such as case 

report, commentary, letter and conference abstract. 

Studies without sufficient data for hazard ratios (HRs) 

calculation or detecting fibroblasts in metastatic tissues, 

or not with marker ‘PDGFR-β’ were also excluded. 

 

Endpoints 

 

OS and DFS were considered as the primary and second 

endpoint respectively in this meta-analysis. 

 

Data extraction 

 

Two authors (GM.H. and KF.Z.) independently 

extracted data such as number of patients, follow-up 

time, method applied for quantifying PDGFR-β+ 

fibroblasts as well as the cut-off value for identifying 

increased density of such subpopulation. OS, DFS and 

clinicopathological features including primary tumor, 

lymph node, distant metastasis (TNM) stage as well as 

tumor differentiation were obtained from the text, tables 

and Kaplan – Meier curves. 

 

Quality evaluation 

 

Two authors adopted Newcastle–Ottawa Scale (NOS) 

[7] to assess the quality of individual research 

independently, and achieved consensus with the 

assistant of the third or more authors. Six or above that 

the study scored was regarded as high quality. 

 

Subgroup analyses 

 

In this study, the subgroup analyses between PDGFR-β+ 

fibroblasts infiltration and OS or DFS were conducted 

according to tumor types. 

 

Statistical analysis 

 

Relevant data were combined into hazard ratios (HRs) 

for OS, DFS, and odds ratios (ORs) for clinico-

pathological features such as TNM stage, lymph node 

metastasis, tumor differentiation with STATA 12.0 

respectively based on the random-effect model if 

statistical heterogeneity was considerable [8], 

otherwise, the fixed-effect model was adopted [9]. We 

also used sensitivity test, Begg’s funnel plot and 

Egger’s analysis [10] to investigate the impact of each 

research on overall result and publication bias 

respectively. We considered that there was statistical 

significance when P value was less than 0.05. 

 

RESULTS 
 

Search results and characteristics of studies 

 

Flow chart diagram of study selection was stated in 

Supplementary Figure 1. We finally included 24 

researches with 6752 patients in this meta-analysis [11–

34], and then assessed these included cohort researches 

with Newcastle–Ottawa Scale (NOS). Characteristics of 

researches being appropriate for data integration were 

exhibited in Table 1 and Supplementary Table 1. 

 

Meta-analyses 
 

OS 

In this study, we noted that increased number of tumor-

infiltrating PDGFR-β+ fibroblasts remarkably reduced 

OS (HR = 1.68, 95% CI 1.42 to 1.99, P < 0.001) in 

human solid tumors, with little heterogeneity being 
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Table 1. Features of individual included research. 

Research Year Type of tumor 
Patients’ 

No. 
M / F 

Median age 

(range) (year) 

Cut-off 

value 

PDGFR-β+ 

fibroblast: 

(H/L)  

TNM 

stage 

Median follow-

up (months) 

Clinical 

outcome 

Quality 

score 

(NOS) 

Park, C.K.  

et al [11] 
2016 Breast cancer 524 0/524 

<50: 55.8%; 

≥50: 44.2% 

≥ 10% of the 

stroma /HPF 
153/489 I - III NR OS, DFS 8 

Park, S.Y.  

et al [12] 
2015 Breast cancer 642 0/642 

≤50: 60.3%; 

>50: 39.7% 

≥ 10% of the 

stroma /HPF 
153/489 I - III 68.3 ± 30.1 OS, DFS 8 

Kim, H.M.  

et al [13] 
2016 

Malignant 

phyllodes tumor of 

breast 

16 0/16 47.6 ± 12.9 
≥ 30% of the 

stroma /HPF 
5/11 NR NR OS, DFS 8 

Jung, Y.Y.  

et al [14] 
2015 Breast cancer 642 0/642 

≤50: 60.3%; 

>50: 39.7% 

≥ 10% of the 

stroma /HPF 
23/619 I - III 68.3 ± 30.1 OS, DFS 7 

Paulsson, J.  

et al [15] 
2009 Breast cancer 289 0/289 64.2 (27, 96) 

≥ 10% of 

stromal 

fibroblasts 

/HPF 

100/189 I - III 106 (0, 207) OS, DFS 8 

Kilvaer, T.K. 

et al [16]  
2019 NSCLC 513 343/170 

<65: 42.5%; 

≥65: 57.5% 
Score ≥2 202/311 

IA - 

IIIB 
NR OS 7 

Kanzaki, R.  

et al [17]  
2018 NSCLC 92 78/14 60.2 

≥ 5% of the 

stroma /HPF 
65/27 

IA - 

IV 
187 (48, 260) OS, DFS 8 

Donnem, T.  

et al [18] 
2008 NSCLC 335 255/80 67 (28, 85) Score ≥ 2.5 69/262 

I - 

IIIA 
96 (10, 179) OS 7 

Kilvaer, T.K. 

et al [19] 
2018 NSCLC 499 161/338 

<65: 42.9%; 

≥65: 57.1% 

≥ 10% of the 

stroma /HPF 
199/300 

IA - 

IIIA 
48.0 (1, 137) OS 7 

Chu, J.S.  

et al [20] 
2013 Hepatic carcinoma 93 77/16 

≤50: 33.3%; 

>50: 66.7% 

≥ 50% of 

stroma 

/10HPF 

18/75 III (1, 58) OS 6 

Zhang, X.F.  

et al [21] 
2017 

Intrahepatic 

cholangiocarcinoma 
41 NR NR 

≥ 20% of the 

stroma /HPF 
33/8 I - IV 15.7 (1.3, 63.2) OS 6 

Chen, L.  

et al [22]  
2011 Hepatic carcinoma 63 59/4 48.9 (30, 73) 

≥ 26% of the 

stroma /HPF 43/20 I - IV 46.7 (40.3, 62.1) OS, DFS 7 

Sayaka, Y.  

et al [23] 
2012 

Pancreatic 

adenocarcinoma 
26 18/8 61.5 (45, 81) NR 13/13 

I - 

IVB 
NR OS 6 

Kurahara, H. 

et al [24] 
2016 Pancreatic cancer 120 71/49 

≤70: 60.8%; 

>70: 39.2% 
score > 2 59/61 NR 29.2 OS 6 

Hagglof, C.  

et al [25] 
2010 Prostate cancer 244 244/0 74 (51, 95) 

mean density 

≥1.0 
66/178 NR (1, 300) OS 7 

Nordby, Y.  

et al [26] 
2017 Prostate cancer 529 529/0 62 (47, 75) 

mean density 

≥1.50 
262/267 I - IV 148.8 (18, 240) DFS 6 

Frodin, M.  

et al [27] 
2017 

Renal cell 

carcinoma 
287 162/125 (37, 89) NR 144/143 I - IV NR OS 8 

Shim, M.  

et al [28] 
2015 

Renal cell 

carcinoma 
758 536/222 55 (47, 64) 

≥ 33% of the 

stroma /HPF 
302/456 I - II 29.5 (21.5, 39.6) DFS 7 

Corvigno, S. 

et al [29] 
2016 Ovarian cancer 154 0/154 60 (22, 84) 

≥ 10% of the 

stroma /HPF 
79/75 I - IV 28 (0.03, 162.5) OS 7 

Mezheyeuski, 

A. et al [30] 
2016 Colorectal cancer 372 182/190 (18, 75) 

≥ 50% of the 

stroma /HPF 
NR IV 9 (7.8, 10.2) OS 7 

Yonemori, K. 

et al [31] 
2011 Angiosarcoma 34 9/25 68 (16, 96) Score ≥1 30/4 I - III 26.7 (0.3, 152.6) OS 7 

Ha, S.Y.  

et al [32] 
2014 

Esophageal 

squamous cell 

carcinoma 

116 112/4 
<65: 26.7%; 

≥65: 73.3%  

≥ 50% of the 

stroma /HPF 
63/53 I - IV 30 (0, 108) OS, DFS 6 

Moreno, L.  

et al [33] 
2013 Ependymoma 24 15/9 (1.5, 64.9) 

≥ 50% of the 

stroma /HPF 
7/17 IV 32.3 (2.1, 59.1) OS 6 

Sun, W.Y.  

et al [34]  
2015 

Thyroid papillary 

carcinoma 
339 NR NR 

≥ 50% of the 

stromal cells 

/HPF 

72/267 NR NR OS, DFS 6 

OS: overall survival; DFS: disease-free survival; TNM, Tumor, Lymph Node, Metastasis; NR: not reported; HPF: high power 
field. M: male; F: female. 
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detected among included researches (I2 = 21.5%, P = 
0.179) (Figure 1). 

 

In subgroup analyses based on tumor types, the pooled 

data indicated that high density of PDGFR-β+ 

fibroblasts within tumor was markedly associated with 

reduced OS in breast cancer (BC) (HR = 1.96, 95% CI 

1.21 to 3.18, P = 0.006), with no heterogeneity being 

observed; Similar results were observed between 

PDGFR-β+ fibroblasts and OS in non-small cell lung 

cancer (NSCLC) (HR = 1.30, 95% CI 1.04 to 1.62, P = 

0.021), and pancreatic cancer (PC) (HR = 2.63, 95% CI 

1.27 to 5.44, P = 0.009).(Figure 2) However, we were 

unable to obtain a combined result for several types of 

tumor including ovarian cancer, renal cell carcinoma, 

colorectal cancer (CRC), esophageal squamous cell 

carcinoma, angiosarcoma and thyroid papillary 

carcinoma as there was only one study that supplied 

sufficient data for such type of tumor. 

 

DFS 

Pooled data showed that the infiltration of  

PDGFR-β+ fibroblasts appreciably decreased DFS 

(HR = 1.50, 95% CI 1.14 to 1.97, P = 0.004) of 

patients (Figure 3). 

 

In subgroup analyses, we discovered that increased 

number of intratumoral PDGFR-β+ fibroblasts was 

considerably associated with lower DFS in BC (HR = 

1.68, 95% CI 1.11 to 2.55, P = 0.014), with little 

heterogeneity being detected (I2 = 0%, P = 1.000). 

(Figure 4) However, there was no sufficient data for 

other types of tumor, so we were unable to obtain the 

combined result. 

 

In addition, we found that elevated density of those cells 

was remarkably associated with advanced TNM stage 

(OR = 0.47, 95% CI 0.25 to 0.86, P = 0.015), but not 

with lymph node metastasis or tumor differentiation of 

patients (Supplementary Figure 2). 

 

Sensitivity analyses 

 

Sensitivity analyses revealed that each individual study 

didn’t have impact on overall result for OS or DFS 

(Supplementary Figure 3). 

 

 
 

Figure 1. Forest plots describing HR of the association between PDGFR-β+ fibroblast infiltration and OS in solid tumors. HRs: 

hazard ratios; OS: overall survival. 
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Publication bias 

 

Funnel plot and Egger’s tests indicated that no potential 

publication bias existed between tumor-infiltrating 

PDGFR-β+ fibroblasts and OS (P = 0.305) or DFS (P = 

0.727) (Supplementary Figure 4). 

 

DISCUSSION 
 

Although multitudinous researchers have correlated 

tumor-infiltrating PDGFR-β+ fibroblasts and survival in 

human solid tumors for the past decades, the results 

were inconsistent even controversial. In this study, we 

noted that PDGFR-β+ fibroblast infiltration significantly 

decreased survival in solid tumors especially in BC, 

NSCLC and PC. In addition, increased number of 

PDGFR-β+ fibroblasts remarkably correlated with 

advanced TNM stage. Hence, we harbor the idea that 

this is the first to exhibit the important prognostic value 

of tumor-infiltrating PDGFR-β+ fibroblasts in human 

solid tumors. 

 

We considered that the following evidence can 

probably explain the negative correlation between 

intratumoral PDGFR-β+ fibroblasts and prognosis of 

patients. First, tumor-infiltrating fibroblasts can 

trigger proliferation, survival and invasion of tumor 

cells by releasing a variety of growth factors, 

cytokines, chemokines and degradation of extracellular 

matrix proteins including matrix metalloproteinases 

(MMPs) (e.g. MMP9) [35, 36]; Second, they can also 

produce hydrogen peroxide to induce carcinogenesis, 

promote epithelial-mesenchymal transition of  

tumor cells, [37] and induce CD73+γδTreg cell 

differentiation via IL-6 secretion thereby facilitating 

immune suppression [38]. More importantly, in vivo 

experiments have indicated that the activation of 

PDGFR-β in fibroblasts mediated by its 

 

 
 

Figure 2. Subgroup analyses describing HRs of the association between PDGFR-β+ fibroblast infiltration and OS in breast cancer (A), NSCLC 
(B), Hepatic carcinoma (C), and pancreatic cancer (D). HRs: hazard ratios; OS: overall survival. 
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Figure 3. Forest plots describing HR of the association between PDGFR-β+ fibroblast infiltration and DFS in solid tumors. HRs: 

hazard ratios; DFS: disease-free survival. 

 

 
 

Figure 4. Subgroup analyses describing HRs of the association between PDGFR-β+ fibroblast infiltration and DFS. HRs: hazard 
ratios; DFS: disease-free survival. 



 

www.aging-us.com 13699 AGING 

ligand (PDGF-β) can promote the accumulation and 

expansion of these cells in primary tumor thereby 

prompting cancer progression [39, 40]. In addition, 

PDGFR-β+ fibroblasts can stimulate tumor growth 

through inducing angiogenesis by generating 

proangiogenic factors such as VEGF [41]. 

Furthermore, they can dampen antitumor immunity 

and promote cancer immune evasion via secreting 

immunosuppressive cytokines including TGF-β1 [41], 

and recruiting MDSCs through CCL2 released in the 

TME [42]. Hence, it is rational to conclude that the 

PDGFR-β+ fibroblasts are prone to foster tumor 

progression and decrease survival. 

 

Several limitations existed in the meta-analysis. For 

example, morphometric analyses applied for assessment 

of PDGFR-β+ fibroblasts in individual included studies 

were inconsistent. In addition, there was no sufficient 

data for OS in certain types of tumor, we were therefore 

unable to obtain pooled results for them. 

 

In conclusion, PDGFR-β+ fibroblast infiltration 

deteriorates survival in human solid tumors especially 

in NSCLC, breast and pancreatic cancer. They may 

therefore provide a practicable prognostic biomarker 

and a potential therapeutic strategy. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Flow chart diagram of study selection. 
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Supplementary Figure 2. Forest plots indicating ORs of the association between PDGFR-β+ fibroblast infiltration and clinicopathological 
features such as lymph node metastasis (A), tumor TNM stage (B), and tumor differentiation (C). ORs: odds ratios. 
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Supplementary Figure 3. Plots describing the influence of individual studies on the overall HRs for OS (A) and DFS (B) in solid tumors. HRs: 
hazard ratios; OS: overall survival; DFS: disease-free survival. 
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Supplementary Figure 4. Funnel plots for publication bias between PDGFR-β+ fibroblasts and OS (A) and DFS (B) in solid tumors. OS: overall 
survival; DFS: disease-free survival. 
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Supplementary Table 
 

 

Supplementary Table 1. Characteristics of the included researches for OR analysis of clinicopathological features. 

Research Year Tumor type 
No. of 

patients 

PDGFR-β+ 

fibroblasts: 

high/low 

Lymph 

node 

metastasis 

(Yes / No) 

Tumor 

stage 

(TNM) 

I+II/III+IV 

Tumor 

differentiation 

(well-

moderate/poor) 

Paulsson, J. 

etal [Paulsson 

et al., 2009] 

2009 Breast cancer 289 100/189 
H:(39/53); 

L:(59/109) 
I - III NR 

H:(52/48); 

L:(135/53) 

Kilvaer, T.K. 

etal [Kilvaer et 

al., 2018] 

2018 NSCLC 499 199/300 
H:(63/136); 

L:(98/202) 

IA - 

IIIA 

H:(64/35); 

L:(254/46) 

H:(121/78); 

L:(169/131) 

Ha, S.Y. etal 

[Ha et al., 

2014] 

2014 

Esophageal 

squamous cell 

carcinoma 

116 63/53 
H:(42/18); 

L:(32/17) 
I - IV NR NR 

Kanzaki, R. 

etal [Kanzaki 

et al., 2018] 

2018 NSCLC 92 65/27 NR IA - IV 
H:(37/28); 

L:(20/7) 
NR 

Corvigno, S. 

eta [Corvigno 

et al., 2016] 

2016 Ovarian cancer 154 79/75 NR I - IIIA 
H:(8/69); 

L:(8/67) 

H:(27/44); 

L:(26/46) 

Chu, J.S. etal 

[Chu et al., 

2013] 

2013 
Hepatic 

carcinoma 
93 18/75 NR III NR 

H:(13/5); 

L:(58/17) 

N: lymph node; M: metastasis; H: high; L: low; NR: not reported. 


