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Abstract
Probiotics represent a possible strategy for controlling intestinal infections in livestock. Members of the Weissella genus 
are increasingly being studied for health-related applications in animals and humans. Here we investigated the functional 
properties of two Weissella cibaria strains isolated from cows reared in Kuwait breeding facilities by combining phenotypic 
with genomic analyses. W. cibaria SP7 and SP19 exhibited good growth in vitro under acidic conditions and in the pres-
ence of bile salts compared to the reference probiotic Lacticaseibacillus (formerly Lactobacillus) rhamnosus GG. Both 
strains were able to adhere to Caco-2 and HT-29 cell lines, as well as to mucin. The cell-free supernatants of the two isolates 
exhibited inhibitory activity towards Escherichia coli ATCC 25,922 and Salmonella enterica UC3605, which was ultimately 
due to the low pH of supernatants. W. cibaria SP19 showed a co-aggregation ability similar to that of L. rhamnosus GG 
when incubated with S. enterica. Whole genome sequencing and analysis revealed that both strains harbored several genes 
involved in carbohydrate metabolism and general stress responses, indicating bacterial adaptation to the gastrointestinal 
environment. We also detected genes involved in the adhesion to host epithelial cells or extracellular matrix. No evidence of 
acquired antibiotic resistance or hemolytic activity was found in either strain. These findings shed light on the potential of 
W. cibaria for probiotic use in livestock and on the mechanisms underlying host-microbe interaction in the gut. W. cibaria` 
strain SP19 exhibited the best combination of in vitro probiotic properties and genetic markers, and is a promising candidate 
for further investigation.
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Introduction

Over the last decade, there has been a considerable increase 
in the use of probiotics in animal feeding, with the aim of 
improving animal performance, digestion, productivity, and 

resistance to infectious diseases [1, 2]. Infection control 
is a serious problem for cattle facilities in Kuwait, where 
dairy farms are managed in an intensive system due to the 
extremely arid and harsh environment. The type of housing 
puts stress on animals and, as a consequence, dairy farmers 
are faced with a high calf mortality rate that is mainly attrib-
uted to enterotoxaemia, diarrhea, and pneumonia caused by 
Pasteurella.

Among lactic acid bacteria, the probiotic potential of 
Weissella spp. has only recently been investigated in humans 
as well as in animals. Several studies have reported Weissella 
strains, mostly belonging to the species Weissella cibaria, 
Weissella confusa and Weissella paramesenteroides, to pos-
sess some functional properties relevant to their use as pro-
biotics [3–6]. Notably, W. cibaria JW15 was found to pos-
sess anti-oxidant and anti-inflammatory properties in vitro 
[7, 8], and to exert immune-modulatory effects in mice [9] 
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and in human subjects [10]. W. cibaria WIKIM28 had also 
important immune effects in mice, suppressing allergic Th2 
responses and inducing Treg responses in atopic dermati-
tis [11]. In addition, W. cibaria has been suggested as oral 
care probiotics: strain CMU has shown significant antimi-
crobial activity against oral pathogens [12] and a beneficial 
impact on halitosis and periodontitis in animals and humans 
[13–15].

The development of efficient probiotics relies on a proper 
selection of bacterial strains to secure the desired benefit 
in the target host. This implies the absence of pathogenic 
traits, the capacity to survive during passage and colonize 
the gastrointestinal tract, as well as to produce antimicrobial 
substances against pathogens. In the light of recent findings 
showing that colonization of the intestine may be highly 
dependent on the host genotype and gut microbiome [16], it 
is reasonable to assume that better performing strains may 
be identified if they are specifically selected for the target 
population. Weissella spp. seem to be well adapted to cattle, 
in that they have been often identified in cow feces [17, 18], 
vagina [19], skin [20], and milk [21, 22]. Recently, Weis-
sella spp. were isolated from hosts that have a high capacity 
for adaptation to survive in arid and desert areas character-
ized by poor nutrients, high temperatures, and desiccation, 
such as camels [23]. The authors of the study hypothesized 
that organisms living in arid lands may select specific gut 
commensals with special metabolic characteristics contrib-
uting to the adaptation of their hosts to harsh environmental 
conditions.

In this study we evaluated the probiotic potential of two 
W. cibaria strains selected from among a range of lactic 
acid bacteria isolated from dairy cows in Kuwait; we sought 
to make a preliminary assessment from the perspective of 
developing a tailored treatment strategy to support calf intes-
tinal health. We used conventional in vitro assays to deter-
mine W. cibaria resistance to acid and bile stress, adhesion 
ability, and antimicrobial activity against pathogens. Whole 
genome sequencing and sequence analysis was used as a 
complementary approach to deeply investigate the safety and 
probiotic potential of these promising candidates, as well 
as to gain insight into the genome evolutionary strategies 
adopted by these two strains to adapt to the gastrointestinal 
tract and interact with the host.

Material and Methods

Sample Collection, Strain Isolation, 
and Identification

Sampling was carried out on two dairy farms (Al-Adwani 
and Al-Dhbabi) located in the Kabd area of Kuwait. A 
sampling schedule was prepared to cover the four different 

seasons: winter, spring, summer, and autumn. Fecal samples 
were collected from healthy adult cows and calves, preserved 
in an ice box, and transported to the laboratory for analysis. 
Milk samples were collected in sterile glass bottles, refrig-
erated, and transported to the laboratory where they were 
analyzed immediately. A total of 26 samples were collected. 
Fecal samples were obtained with informed written consent 
from the owners of the animals. All efforts were made to 
minimize animal discomfort according to high standards 
of veterinary care. No experimentation was done on the 
animals.

Each 10 g sample was mixed with 90 mL of sterile saline 
solution (0.85% w/v NaCl) and homogenized using a Stom-
acher machine (400 Circulator, International PBI, Milan, 
Italy) at 260 rpm for 1.5 min. One milliliter aliquots of the 
homogenate were serially diluted in 9 mL of saline and used 
to isolate strains on MRS agar medium (Merck, Darmstad, 
Germany) incubated at 37 °C for 48 h in anaerobic jars. No 
antifungal agents were added in order to avoid any possible 
interference with LAB growth. Different bacterial colonies 
were selected on the basis of morphological characteristics 
(small greyish white colonies) and subjected to three fur-
ther purification steps under the same anaerobic conditions. 
Gram-positive and catalase-negative isolates were retained 
as putative LAB and their identities were confirmed by 16S 
rRNA amplicon sequencing. Two W. cibaria strains, iden-
tified as SP7 and SP19, were selected for further analysis 
from among all LAB cultures recovered from cow feces. The 
known probiotic Lacticaseibacillus (formerly Lactobacillus) 
rhamnosus GG was included as a control strain.

In Vitro Phenotypic Assays

pH and Bile Salt Tolerance

The acid tolerance of W. cibaria strains and L. rhamnosus 
GG was determined by exposing bacterial cells to low pH. 
The strains were grown in MRS broth at 37 °C overnight 
and centrifuged at 3000 rpm for 10 min at 4 °C; the pellets 
were washed in sterile phosphate-buffered saline (PBS, pH 
7) and then suspended in PBS [optical density at 600 nm 
(OD600nm) = 0.8]. An aliquot (0.15 mL) of each washed cell 
suspension was added to 1.485 mL of PBS at pH 2, 3, 4, 
and 7 (control). The mixture was then vortexed at maximum 
speed for 10 s and incubated at 37 °C. An aliquot of 0.1 mL 
was removed after 1, 2, and 4 h, serially diluted in 0.85% 
sterile saline, and plated on MRS agar to determine the total 
viable count [24].

Bile salt tolerance was evaluated by inoculating 1 mL of 
bacterial suspension (OD600nm = 0.8) in 9 mL of MRS broth 
supplemented with 0 (control), 0.5, and 2% (w/v) Ox-bile 
dehydrated purified (Merck KGaA, Germany). After thor-
ough mixing, the test tubes were incubated at 37 °C. One 
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milliliter of culture was taken from each tube immediately 
(0 h) and after 2 h incubation, and a series of tenfold dilu-
tions were prepared. Dilutions were plated on MRS agar 
and incubated at 37 °C for 48 h [25]. Experiments were 
performed in triplicate.

Aggregation and Co‑Aggregation Tests

Auto-aggregation assays were performed according to Kos 
et al. [26]. Pellets of bacterial cultures grown overnight in 
MRS broth were collected by centrifugation at 5000 rpm 
for 15 min, washed twice in PBS (pH 7), and re-suspended 
in PBS after adjusting the OD600nm to 1 (approximately 
107 CFU mL−1). Cell suspensions (4 mL) were mixed by 
vortexing for 10 s and auto-aggregation measured immedi-
ately (t = 0) and after 1, 2, 3, and 4 h of incubation at 37 °C. 
For every hour interval, 100 µL from the upper suspension 
was transferred to another tube with 3.9 mL of PBS and 
the absorbance (A) measured at 600 nm. The auto-aggre-
gation was expressed as a percentage determined by 1-(At/
A0) × 100, where At represents the absorbance at time (t) = 1, 
2, 3, or 4 h and A0 the absorbance at t = 0.

For co-aggregation tests, bacterial strains were grown 
anaerobically at 37 °C for 18 h in MRS broth. Salmonella 
enterica UC3605 from the Università Cattolica del Sacro 
Cuore Bacteria Culture Collection and Escherichia coli 
ATCC 25,922 were used as test pathogens. Suspensions of 
W. cibaria strains and test pathogens were adjusted to an 
OD600nm of 0.5. Two milliliters of each LAB strain suspen-
sion were mixed with the same volume of test pathogen, 
blended on a vortex mixer for 10 s, and incubated at 37 °C. 
Control tubes contained 4.0 mL of the bacterial suspension 
of each strain alone. The OD600nm of the resulting suspen-
sions was measured immediately (t = 0) and after 1, 2, 3, 
and 4 h by transferring 100 µL from the upper suspension to 
another tube with 3.9 mL of PBS as described previously. 
Co-aggregation was calculated as a percentage according to 
the equation described by Handley et al. [27]. Experiments 
were performed in triplicate.

Adhesion to Cell Lines and Porcine Gastric Mucin

The mucin and eukaryotic cell adhesion assays were car-
ried out for all strains using porcine gastric mucin, type II 
(Sigma-Aldrich, Germany) and Caco-2 and HT-29 cells 
obtained from European Collection of Authenticated Cell 
Cultures (ECACC). Culturing, maintenance, and adhesion 
tests were performed as described previously [28, 29] with 
minor modifications. Strains were inoculated in MRS broth 
and incubated for 24 h at 37 °C under anaerobic condi-
tions. Broth cultures were centrifuged and pellets washed 

twice with Hank’s balanced salt solution (HBSS). Washed 
cells were resuspended and diluted to 1.5 × 108 CFU mL−1. 
The bacterial suspensions were further diluted 1:10 in high 
glucose Dulbecco’s Modified Eagle Medium (DMEM), 
and 125 µL of these dilutions were used to inoculate the 
wells seeded with Caco-2 or HT-29 cells, or mucin-coated 
and the other control wells in order to obtain a multiplicity 
of infection (MOI) of 5:1.

Cell lines or mucin plus probiotic strains were incu-
bated for 1 h at 37 °C with 5% of CO2. After incubation, 
the volume in the control wells was harvested and serially 
diluted and plated on MRS agar according to Rapporti Isti-
san 08/36 [30]. The medium was removed from the seeded 
wells and the Caco-2 or HT-29 cell monolayers and mucin 
coating washed three times with 1 mL of HBSS for 5 min. 
The wells seeded with eukaryotic cells were inoculated 
with 100 µL trypsin, and the mucin-coated wells with 100 
µL of a 0.5% solution of Triton-X and incubated for 5 min 
at 37 °C to break the cell monolayers and mucus coating, 
respectively. The homogenates composed of cell lines or 
mucin and probiotics were recovered with 900 µL of Maxi-
mum Recovery Diluent (MRD, BD Difco, England), seri-
ally diluted, and plated onto MRS agar. Count plates were 
incubated for 72 h at 37 °C under anaerobic conditions.

The adhesion percentages were obtained by referring to 
the following formula: P = (µ/M) × 100, where P represents 
the percentage of tested strains adhering to the human cells 
or mucin, µ represents the vital count of analyzed strains 
bonded to intestinal cell lines or mucin expressed as a 
logarithmic value, and M represents the vital count of 
analyzed strains transformed as a logarithmic value in the 
wells without human cells or mucin coating.

Antagonistic Activity Against Pathogens

The method in Choi et al. [31] was used with minor modi-
fications. After 24 h at 37 °C, W. cibaria MRS broth cul-
tures were centrifuged at 4000 rpm for 15 min and filtered 
using a 0.22 µm filter (Jet Biofil, Guangzhou, China) to 
obtain the cell-free supernatant (CFS). S. enterica UC3605 
and E. coli ATCC 25,922 were incubated in Luria Broth 
for 24 h, diluted in 2X Luria Broth to an OD600nm of 0.06, 
corresponding to McFarland standard 0.5, and then 50 μL 
was added to each well of a microtiter plate. The same 
volume of CFS from W. cibaria strains was added to each 
well and incubated at 37 °C for 24 h; filtered CFS was 
tested either after neutralization to pH 6.5 or without pH 
neutralization. In the control trials, sterile and neutral-
ized MRS broth was used instead of the supernatant. The 
growth of pathogens was determined by measuring the 
OD600nm after 24 h. Tests were conducted in duplicate.
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Carbohydrate Fermentation Patterns 
and Exopolysaccharide (EPS) Production

Carbohydrate utilization profiles of W. cibaria SP7 and SP19 
were assessed using API 50 CH strips (bioMérieux, Marcy 
l’Etoile, France) in API 50 CHL Lactobacilli broth as indi-
cated by the manufacturer. The inoculated strips were incu-
bated at 37 °C in anaerobiosis and the reactions observed 
after 48 h.

The W. cibaria strains were screened for their ability to 
produce EPS using modified MRS (mod-MRS) agar medium 
(Proteose Peptone No. 3 10 gL−1, Beef extract 10 gL−1, 
Yeast extract 5 gL−1, Polysorbate 80 1 gL−1, Ammonium 
Citrate 2 gL−1, Sodium Acetate 5 gL−1, Magnesium Sul-
fate 0.1 gL−1, Manganese Sulfate 0.05 gL−1, Dipotassium 
Phosphate 2 gL−1, Agar 15 gL−1), testing individual sugars 
that had a positive fermentation output in the carbohydrate 
fermentation pattern assessment. Mod-MRS agar plates con-
taining 20 g L−1 of glucose, fructose, D-maltose, sucrose, 
galactose, L-arabinose, D-ribose, D-xylose, D-mannose, 
D-cellobiose, or gentiobiose (Sigma-Aldrich, Germany) as 
the sole source of carbohydrate were streaked with the W. 
cibaria isolates and incubated at 37 °C for 2 to 3 days. The 
detection of EPS production was facilitated by the addition 
of Ruthenium Red [0.08% (w/v); Sigma-Aldrich, Germany] 
[32]. Tests were conducted in duplicate.

Safety Evaluation of W. cibaria Strains

The antibiotic susceptibility profiles of the two W. cibaria 
strains were determined by broth microdilution according to 
the ISO 10,932/IDF 233 standard [33] and EFSA guidelines 
[34] with VetMIC Lact-1 and Lact-2 plates (SVA National 
Veterinary Institute, Uppsala, Sweden). Briefly, bacterial 
colonies were suspended in 5 mL of sterile saline solution 
(0.9% NaCl) to obtain a density corresponding to McFar-
land standard 1. Suspensions were diluted 1:1000 in LAB 
susceptibility test medium (LSM); 100 μL of this dilution 
was added to each well of the VetMIC plate. The plates were 
incubated at 37 °C for 48 h in anaerobiosis. The minimum 
inhibitory concentrations (MICs) were determined by spec-
trophotometric analysis of the plates at 620 nm and com-
pared to the breakpoints proposed by EFSA for obligate 
heterofermentative Lactobacillus spp.[34].

To evaluate the hemolytic properties, W. cibaria SP7 and 
SP19 were anaerobically cultured on Columbia agar plates 
(Oxoid, Altrincham, England) containing 5% (w/v) defibri-
nated sheep blood (Biolife, Milano, Italy) at 37 °C for 48 h. 
Staphylococcus aureus ATCC 6538 was used as a positive 
control for hemolysis. The presence of β- or α-hemolysis was 
indicated by a clear or greenish zone around the colonies, 
respectively.

Whole Genome Sequencing and Analysis

Genomic DNA Extraction and Sequencing

Genomic DNA was extracted from exponential phase MRS 
broth culture of W. cibaria SP7 and W. cibaria SP19 using 
the NucleoSpin Tissue kit according to the manufacturer’s 
instructions (Macherey–Nagel, Düren, Germany). Genomic 
DNA was sequenced at Fasteris (Geneve, Switzerland) using 
an Illumina MiSeq operating with V3 chemistry in 300X2 bp 
paired-reads. Basecalling was performed with MiSeq Con-
trol Software 2.4.1.3, RTA 1.18.54.0, and CASAVA-1.8.2.

Genome Assembly and Annotation

Raw Fastq reads obtained in Illumina were screened for 
quality by FastQC software (https​://www.bioin​forma​tics.
bbsrc​.ac.uk/proje​cts/fastq​c), retaining the reads with Phred 
score > 30. Genome assembly was performed using SPAdes 
(v3.11.1) [35], resulting in 64 contigs for W. cibaria SP7 
and 25 contigs for W. cibaria SP19. Genome annotation was 
performed with Prokka (v1.13.3) [36]. Putative virulence 
factors were assessed by BLASTn with the VFDB [37] and 
MvirDB [38] databases. Putative antibiotic resistance genes 
were identified by BLASTn using ARDB database 1.1 [39], 
and by the Resistance Gene Identifier of the CARD database 
[40]. ResFinder 2.1 [41] was used to detect acquired anti-
microbial resistance genes. Bacteriocin-coding genes were 
searched using BAGEL4 [42]. The presence of plasmids 
was assessed by PlasmidFinder 1.3 [43]. The presence of 
CRISPR-Cas systems was evaluated using the online tool 
CRISPRCasFinder [44].

To evaluate the pan- and core-genome of W. cibaria, 
all publicly available complete genomes (nine strains) 
and the two newly sequenced strains were analyzed using 
Roary (v3.12.0) [45]. The choice to consider only complete 
genome sequences was made since it has been previously 
evidenced that incomplete genomes highly affect the core-
genome identification within a species [46]. The core gene 
alignment obtained with Roary was then used in RAxML 
(v8.2.12) to build a maximum-likelihood phylogenetic tree. 
The tree was visualized using iTOL [47]. Orthogroups 
(OGs) were inferred with OrthoFinder (v2.2.3) [48], and the 
gene content analysis was performed by mapping the OGs 
to the eggNOG bacterial database using eggNOG-mapper 
(v1.0.3) [49]. The gene content per OG for each strain (con-
sidering COG categories) was visualized with MeV [50].

Statistical Analysis

Statistical analyses were performed using GraphPad Prism 
version 5 (GraphPad Software, San Diego, CA, USA). 
Phenotypic data were analyzed by two-way ANOVA 
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with Bonferroni post-hoc test, with P < 0.05 considered 
significant.

Results

Phenotypic Characterization of W. cibaria SP7 
and SP19

Resistance to Low pH and Bile Salts

The results of the acid tolerance test are shown in Fig. 1. 
No viable bacterial cells were detected after the first hour 
of exposure to pH 2, suggesting that all three strains were 
severely impaired upon acid shock. Exposure to pH 3 
resulted in a decrease in viability for all strains; after 2 h, a 
decrease of 2 log and 1 log was detected for W. cibaria SP7 
(P < 0.001) and SP19 (P < 0.01), respectively, as compared 
to pH 7. In contrast, for L. rhamnosus GG, significant growth 
reduction was observed only after 4 h (P < 0.001). At this 
time point, the concentration of viable W. cibaria SP19 cells 
declined to undetectable levels. All tested strains had a high 

survival rate when exposed to pH 4; only the viability of L. 
rhamnosus GG decreased significantly after 4 h incubation 
(P < 0.01) when compared to control.

The results of the bile tolerance test are shown in Fig. 2. 
All tested strains demonstrated good survival over the 2 h of 
exposure to concentrations of bile salts as high as 2%, with 
only a reduction in microbial counts as compared to 0% bile 
salts detected for SP19 (P < 0.01).

Aggregation and Co‑Aggregation Tests

As shown in Fig. 3, the aggregation of W. cibaria SP7 was 
very similar to the aggregation of L. rhamnosus GG over the 
4 h incubation, whereas W. cibaria SP19 exhibited signifi-
cantly less aggregation. Neither the two W. cibaria isolates 
nor L. rhamnosus GG exhibited co-aggregative abilities 
with E. coli ATCC 25,922. Co-aggregation with S. enterica 
UC3605 was not observed for W. cibaria SP19 up to 2 h of 
incubation; afterwards, the percentage of co-aggregation was 
comparable to L. rhamnosus GG. In contrast, co-aggregation 
values for W. cibaria SP7 reached a maximum after 1 h of 

Fig. 1   Survival of W. cibaria SP7 and SP19 at various pH as determined by viable bacteria counts. The probiotic L. rhamnosus GG was included 
as a control strain. Results are presented as mean±SD of three experiments; *P<0.05, ***P<0.001

Fig. 2   Survival of W. cibaria SP7 and SP19 at different bile salt concentrations as determined by viable bacteria counts. The probiotic L. rham-
nosus GG was included as a control strain. Results are presented as mean ± SD of three experiments; **P < 0.01
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incubation and then progressively declined, becoming barely 
detectable after 4 h of incubation.

Adhesion to Cells and Porcine Gastric Mucin

All tested strains demonstrated a capacity to adhere to 
porcine gastric mucin at varying levels. L. rhamnosus 
GG exhibited the highest adhesion (77 ± 0.85%), fol-
lowed by W. cibaria SP7 (72 ± 0.0%) and W. cibaria SP19 
(53 ± 1.2%). Significant differences were observed between 
the adhesion of SP19 (P < 0.001) and SP7 (P < 0.01) com-
pared to L. rhamnosus GG. W. cibaria SP7 and L. rham-
nosus GG exhibited the same adhesion to Caco-2 cells 
(78 ± 1%), whereas W. cibaria SP19 exhibited less adhesion 
(69 ± 0.28%;i P< 0.001). In regards to HT-29 cells, L. rham-
nosus GG displayed a percentage of adhesion (76 ± 2.0%) 

that was significantly higher than that of W. cibaria SP19 
(64 ± 1.3%) and of W. cibaria SP7 (70 ± 0.8%) (Fig. 4). No 
significant differences were found between strains consider-
ing the percentage of adhesion to Caco-2 and HT-29 cells.

Antagonistic Activity Against Pathogens

The CFSs of both W. cibaria strains and L. rhamnosus GG 
exhibited antagonistic activity against reference E. coli 
and S. enterica strains. After 24 h of incubation with the 
W. cibaria SP7 supernatant, the growth of E. coli and S. 
enterica decreased 96 ± 1.3% (P < 0.001) and 94 ± 0.8% 
(P < 0.001), respectively. Similar percentages of inhibi-
tion were observed in E. coli (98 ± 1.2%; P < 0.001) and S. 
enterica (96 ± 0.0%; P < 0.001) when exposed to W. cibaria 
SP19 CFS. Analogously, L. rhamnosus GG significantly 

Fig. 3   Aggregation and co-aggregation of W. cibaria SP7 and SP19 with S. enterica UC3605. The probiotic L. rhamnosus GG was included as a 
control strain. Results are presented as mean percentage ± SD of three experiments; *P < 0.05, ***P < 0.001

Fig. 4   Adhesion of W. cibaria 
SP7 and SP19 to Caco-2, 
HT-29, and mucin. The pro-
biotic L. rhamnosus GG was 
included as a control strain. 
Results are presented as mean 
percentage ± SD of two experi-
ments; **P < 0.01, ***P < 0.001
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inhibited the growth of E. coli and S. enterica (97 ± 1.2% 
and 95 ± 0.8%, respectively; P < 0.001). Neutralization of 
CFS resulted in complete reversal of the inhibitory effects 
(data not shown), suggesting a major role of organic acids 
in supporting the antagonistic activity of the three tested 
bacteria against pathogens.

Carbohydrate Fermentation Patterns

The results of the carbohydrate fermentation test are shown 
in Table 1. Both W. cibaria SP19 and SP7 were able to fer-
ment a number of sugars, including L-arabinose, D-ribose, 
D-glucose, D-fructose, D-mannose, N-acetylglucosamine, 
D-maltose, and potassium gluconate. In addition, W. cibaria 
SP19 was able to ferment D-xylose, D-galactose, and 

D-saccharose, as well as β-glucosides D-cellobiose, amyg-
dalin, arbutin, esculin, gentobiose, and salicin.

The production of EPS was assessed by evaluating the 
color of colonies grown on mod-MRS agar plates containing 
various carbohydrates. W. cibaria SP19 resulted in slimy 
colonies, indicating EPS synthesis and secretion only in the 
presence of sucrose, whereas W. cibaria SP7 grew as red 
colonies on the same plates, showing no ability to produce 
EPS (data not shown).

Safety Assessment

The MICs of the tested antibiotics are listed in Table 2. For 
both W. cibaria strains, the MICs did not exceed the MIC 
cut-off values proposed by EFSA for obligate heterofermen-
tative Lactobacillus spp.

Neither β-hemolytic nor α-hemolytic phenotypes were 
detected for W. cibaria SP7 and SP19 grown on blood agar 
plates. In contrast, the positive control S. aureus ATCC 
6538 exhibited the expected β-hemolysin activity (data not 
shown).

Features of the W. Cibaria SP7 and SP19 Genomes

Genes Associated with Persistence in the Host and Probiotic 
Function

The general genomic properties of W. cibaria SP7 and W. 
cibaria SP19 are presented in Table 3 and Fig. S1. In the pre-
liminary RAST annotation, both the SP7 and SP19 genomes 
contained a number of genes encoding enzymes required for 
the metabolism of mannose, D-ribose, xylose, D-gluconate 
and ketogluconates, and L-arabinose. The SP19 genome also 

Table 1   Carbohydrate fermentation patterns of W. cibaria SP7 and 
SP19 strains

Sugar W. cibaria SP7 W. 
cibaria 
SP19

L-Arabinose  +   + 
D-Arabinose - -
D-Ribose  +   + 
D-Xylose -  + 
L-Xylose - -
D-Galactose -  + 
Methyl-d-xylopyranoside - -
D-Glucose  +   + 
D-Fructose  +   + 
D-Mannose  +   + 
L-Sorbose - -
L-Rhamnose - -
Methyl-d-mannopyraranoside - -
Methyl-d-glucopyranoside - -
N-Acetylglucosamine  +   + 
Amygdalin -  + 
Arbutin -  + 
Esculin -  + 
Salicin -  + 
D-Cellobiose -  + 
D-Maltose  +   + 
D-Lactose - -
D-Melibiose - -
D-Trehalose - -
Gentiobiose -  + 
Potassium gluconate  +   + 
D-Saccharose -  + 
D-Raffinose - -
D-Fucose - -
L-Fucose - -

Table 2   Minimal inhibitory concentrations of tested antibiotics 
towards W. cibaria SP7 and SP9

Antibiotic MIC (mg L−1) EFSA cut-off 
values (mg 
L−1)

W. cibaria SP7 W. cibaria SP19 Lactobacil-
lus obligate 
heterofermen-
tative

Ampicillin 0.5 0.5 2
Gentamicin  < 0.5 1 16
Kanamycin 8 16 32
Streptomycin 8 8 64
Neomycin 1 1 -
Tetracycline 8 8 8
Erythromycin 0.5 0.25 1
Clindamycin 0.12 0.06 1
Chloramphenicol 4 4 4
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included genes encoding enzymes required for the utilization 
of fructose, D-galacturonate, and D-glucuronate. Liver-pro-
duced β-D-glucuronides are detoxification products excreted 
into the mammalian gut, and several symbiotic microorgan-
isms have adapted to exploit host-derived glucuronides as a 
source of carbon for growth. Both strains harbored putative 
PTS transporter and permease genes for sucrose, lactose, 
trehalose, and galactose utilization. Genome mining with 
Prokka annotation identified genes involved in chitin and 
N-acetylglucosamine utilization, coding for N-acetylglu-
cosamine-6-phosphate deacetylase (NagA), N-acetylglu-
cosamine-6-phosphate deaminase (NagB), and N-acetyl-
glucosamine repressor (NagC). Notably, two beta-glucoside 
operons were found in both genomes, the bglABFHK operon 
and licABCT operon (with SP7 lacking bglB and licBC in 
the two operons, respectively), which are responsible for the 
catabolism of polysaccharides present in the plant cell wall, 
such as cellobiose, salicin, and arbutin. W. cibaria SP19 pos-
sessed putative enzymes required for glycogen synthesis in 
bacteria, including the glycogen synthase (GlgA), 1,4-alpha-
glucan branching enzyme (GlgB), glucose-1-phosphate 
adenylyltransferase (GlgC), glycogen biosynthesis protein 
glucose-1-phosphate adenylyltransferase (GlgD), and gly-
cogen phosphorylase (GlgP), responsible for glycogen and 
starch breakdown.

We also found several genes associated with stress resist-
ance in SP7 and SP19, including genes encoding for resist-
ance to osmotic stress (aquaporin Z, glycerol uptake facili-
tator protein, and OpuABC and GbuA gene clusters related 
to the uptake and biosynthesis of osmo-protectants choline 
and betaine). Bile stress has been shown to induce oxidative 
stress, and a number of genes involved in resistance to oxida-
tive stress were observed in the two Weissella isolates. These 
genes include proteins with ferroxidase activity, redox-sen-
sitive transcriptional regulator (AT-rich DNA-binding pro-
tein), and genes involved in the biosynthesis and reduction 
of the cellular antioxidant glutathione. Both strains harbored 
hflX and hflK, which are associated with the 50S riboso-
mal subunit and may play a role during protein synthesis or 

ribosome biogenesis. Finally, genes that confer resistance 
to cold (CspLA and CspB proteins) and 11 genes confer-
ring resistance to heat shock were found in both genomes. 
They belong to the heat shock dnaK gene cluster extended 
subsystem and include the DnaK (HrcA-GrpE-DnaK-DnaJ) 
operon. Other genes are involved in protecting ribosomal 
function during heat shock and other stresses (lepA, prmA, 
rdgB, smpAB, rsmABCDEFGHI). No bile salt hydrolase 
(bsh) genes were present.

Gene prediction with Prokka identified genes specifi-
cally associated with adhesion. Specifically, the presence 
of genes coding for capsular proteins (cps12A and cap8A) 
and fibronectin-binding protein (fbpA) was demonstrated, 
as well as three and two copies of mucin-binding protein 
(mucBP) in SP7 and SP19, respectively. Moreover, SP7 and 
SP19 harbored two and three copies of the LPXTG specific 
sortase gene, respectively, along with three copies of the 
gene coding for the biofilm regulatory protein A precursor 
(brpA). EPS clusters, namely EpsDFHJLE, were identified 
in the two strains, with both lacking EpsA. EPS may con-
tribute to cell adhesion and exert a protective function in 
the bacterial cells against the environment. Notably, both 
strains harbored genes encoding enzymes predicted to be 
involved in N-acetylglucosamine catabolism and synthesis 
(nagA, nagB, nagC, glmS, glmM, glmU, manX). However, 
the SP19 genome also harbored genes involved in dTDP-
rhamnose biosynthesis (rfbC, rmlD), whereas SP7 does not 
harbor these genes. Moreover, multiple copies of glycosyl-
transferase genes were found in both strains (gtf1, gtfC), as 
well as maltose metabolism genes (maa, malP, malL).

Gene prediction by Prokka highlighted the presence of a 
putative gene coding for the bacteriocin Colicin V, in both 
strains of W. cibaria. However, a more in-depth characteriza-
tion with BAGEL4 did not detect a related gene cluster for 
the bacteriocin production.

CRISPRCasFinder identified one CRISPR-Cas system in 
W. cibaria SP19, including CAS-TypeIIA proteins (Cas1, 
Cas2, Cas9, Csn2).

A summary of the main genes identified in the two newly 
sequenced strains of W. cibaria, that can be potentially asso-
ciated to probiotic functions, are reported in Table 4.

Genes Associated with Safety

Analysis of the SP7 and SP9 genomes by comparisons to 
the VFDB and MvirDB databases indicated that no puta-
tive virulence-associated genes were present. The Antibiotic 
Resistance Database (ARDB) identified no gene above the 
cut-off (70% identity, P < 0.0001). Analysis by ResFinder 
(selected % ID threshold: 98.00%, selected minimum length: 
60%) identified no acquired antimicrobial resistance genes 
in the genome of either strain. Finally, interrogation of the 
comprehensive Antibiotic Resistance Database (CARD) 

Table 3   General genomic properties of W. cibaria SP7 and W. 
cibaria SP19

Features W. cibaria SP7 W. cibaria SP19

Genome size (bp) 2,007,138 2,499,540
GC content (%) 44.3 44.8
Total CDS 2088 2354
rRNA 4 2
tRNA 49 53
5S rRNA 3 1
CRISPR 0 1
Coverage 346x 310x
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resulted in no positive hits when selecting perfect and strict 
hits, or hits below a percentage identity of 45% when allow-
ing loose hits. No plasmids were found by PlasmidFinder.

Two genes coding for hemolysin A (TlyA) and hemolysin-
III-related protein were found in both SP7 and SP19.

Pan‑ and Core‑Genome Analysis

Comparative genomics of the newly sequenced strains 
with complete W. cibaria genomes revealed the pres-
ence of 1323 core genes (99% ≤ strains ≤ 100%), 1360 
shell genes (15% ≤ strains < 95%), and 2008 cloud genes 
(0% ≤ strains < 15%), resulting in a pan-genome of 4691 
genes (Fig. S2a). Variations in the content of unique and 
new genes in the W. cibaria pan-genomes, as a function of 
the number of analyzed strains, are shown in Fig. S2b. The 
phylogenetic tree based on the core gene alignment of the 11 
strains was re-rooted on strain SP7, serving as an outgroup 
(Fig. S2c). Interestingly, the two newly sequenced strains 
clustered differently, even if the isolation source was the 
same. Excluding the outgroup (SP7 strain), two main clades 

were highlighted: one including strains M2, CBA3612, and 
CH2, and the other including BM2, SRCM103448, SP19, 
CMS2, CMS3, and the proposed oral care probiotic strains 
CMS1 and CMU [51–53] (Fig. S2b).

Evaluating the pan-genome, 97% of the genes identified 
in all genomes were clustered into 2509 OGs, and 1724 
were defined as core OGs (i.e., containing all species). OGs 
were then mapped to the bacterial eggNOG database to 
evaluate the main functional COG categories related to the 
pan-genome considering each strain (Fig. S3). The major 
fraction of OGs (24%) was grouped under the “S” category 
of “unknown function” (not included in Fig. S3). From the 
hierarchical clustering based on the Euclidean distance, 
two main clusters were shown, grouping the more and less 
abundant COG categories, respectively. Similarly, two main 
clades were formed by separating the two strains: CBA3612 
and CH2. Considering the relative abundance profiles, no 
differences were highlighted between the strains when con-
sidering the most abundant COG categories, which were 
related to amino acid and carbohydrate transport and metab-
olism, and DNA replication and translation activities (E, 

Table 4   List of genes putatively related to probiotic function identified in the genomes of W. cibaria SP7 and W. cibaria SP19

1  Genes present only in W. cibaria SP19
2  bglB and licBC lacking in W. cibaria SP7

General function Gene Predicted function

adhesion cps12A capsular polysaccharide phosphotransferase
cap8A capsular polysaccharide type 8 biosynthesis protein
fbpA fibronectin-binding protein
mucBP mucus-binding protein
epsDFHJLE exopolysaccharide synthesis
srt sortase
brpA biofilm regulatory protein

stress resistance dnaK chaperone protein
hflX, hflK GTPase, modulator of FtsH protease
aqp Z aquaporin
gla glycerol facilitator-aquaporin
opuABC glycine betaine transport system permease
gbuA glycine betaine/carnitine transport ATP-binding protein
gshAB glutathione biosynthesis bifunctional protein

sugar metabolism nagA, nagB, nagC N-acetylglucosamine-6-phosphate deacetylase, glucosamine-6-phosphate deaminase,
N-acetylglucosamine repressor

glmM, glmU, glmS phosphoglucosamine mutase, glucosamine bifunctional protein, glutamine–fructose-
6-phosphate aminotransferase

manX PTS system mannose-specific
gtf1, gtfC glycosyltransferase
rfbC, rmlD 1 dTDP-4-dehydrorhamnose 3,5-epimerase, dTDP-4-dehydrorhamnose reductase
maa, malP, malL maltose O-acetyltransferase, maltose phosphorylase, oligo-1,6-glucosidase
glgA, glgB, glgC, glgD, glgP 1 glycogen synthase, 1,4-alpha-glucan branching enzyme, glucose-1-phosphate adenylyl-

transferase, glycogen biosynthesis protein, glycogen phosphorylase
bglABFHK 2 beta-glucosidase
licABCT 2 PTS system lichenan-specific
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G, J, L). However, some differences were found within the 
categories of “Cell envelope biogenesis, outer membrane” 
(M), “Transcription” (K), “Inorganic ion transport and 
metabolism” (P), and “Defense mechanisms” (V) (Fig. S3).

Discussion

Probiotics are gaining interest from research and the food 
industry as a possible strategy for controlling intestinal infec-
tions in livestock and to reduce antibiotic use in animal feed, 
thus helping contain the risks associated with the spread of 
antibiotic-resistance genes or the contamination of animal-
derived products with antibiotic residues. In addition, the 
inclusion of probiotics in cattle diets has the potential to 
improve gut function and increase the utilization of feed, 
ultimately enhancing the health and productivity of ruminant 
animals. In this study, the potential of two W. cibaria strains 
newly isolated from cattle in Kuwait as animal probiotics 
was investigated based on their whole genome sequences 
and corresponding phenotypes. The phenotypic assessment 
of W. cibaria SP7 and SP19 showed that both strains pos-
sess good tolerance to low pH and bile salts in vitro to vary-
ing degrees. The comparison with well-known probiotic L. 
rhamnosus GG indicated similar levels of pH and bile resist-
ance. Although data are available only for a limited number 
of strains, resistance of W. cibaria strains to a pH as low as 
2.5 and 0.3% bile salts has been described in some previous 
studies on fermented food and intestinal isolates of human 
and animal origin [6, 54–57]. The bile salt resistance of 
Weissella spp. is likely to be considered a strain-dependent 
property similar to what has been observed in Lactobacillus 
and Bifidobacterium spp.[58]. A W. cibaria WD2 isolate 
obtained from fermenting cassava mash survived in simu-
lated gastric and intestinal transit, tolerating acid (pH 2) and 
bile salt (1%) [59], whereas W. cibaria KCTC 3746 isolated 
from kimchi was not able to retain its viability when exposed 
to 0.3% bile salts in the presence of pancreatin [31]. At the 
genomic level, both strains under investigation seem to carry 
a good set of genes to counteract stress; some of them are 
frequently found in lactic acid bacteria, such as the chaper-
one system DnaK, which has been demonstrated to play a 
role in the acid resistance response [60, 61]. In contrast, little 
is known about the HflX GTPase, but proteomic studies in 
probiotic Lactobacillus gasseri ATCC 33323 suggest that 
HflX may act as a key regulator during stress [62]. Further-
more, it must be stressed that the occurrence of a coding 
gene not always implies the formation of a functional gene 
product or a direct involvement in a specific biological activ-
ity. We found no evidence of bile salt hydrolases in the W. 
cibaria strains under study. In addition to bile acid modifica-
tion activity, bile tolerance develops through multiple mech-
anisms that can be bile-specific, such as efflux pumps and 

cell wall and membrane modification, as well as mechanisms 
underlying the overall bacterial capacity to maintain intra-
cellular homeostasis [58]. Notably, recent studies relying on 
omics technologies have allowed the detection of numerous 
proteins for which their expression is influenced by bile salt 
stress, including proteins involved in carbohydrate metabo-
lism, cell envelope and lipid metabolism, efflux pumps, and 
proteins related to the general stress response [63].

Phenotypic test results indicated the ability of both 
tested strains to ferment carbohydrates such as L-arabinose, 
D-ribose, D-glucose, D-fructose, D-mannose, N-acetylglu-
cosamine, D-maltose; D-saccharose, D-galactose, and gen-
tiobiose were fermented only by W. cibaria SP19. More than 
12% and 15% of the identified genes in the two bovine iso-
lates, W. cibaria SP7 and SP19, respectively, were involved 
in carbohydrate metabolism. In this context, Lynch et al. [64] 
reported that the sourdough isolate W. cibaria MG1 has the 
potential to metabolize galactose, maltose, fructose, ribose, 
xylose, sucrose, and gluconate. They also identified putative 
phosphotransferase systems (PTSs) for N-acetyl-D-glucosa-
mine, cellobiose, mannose, b-glucosides, and fructose. In 
contrast to W. cibaria SP7, W. cibaria SP19 exhibited an 
ability to utilize sugars widely distributed in plants, namely 
D-xylose and β-glucosides, including arbutin, esculin, and 
salicin, suggesting some level of adaptation to the plant-
based diet of ruminants.

Interestingly, W. cibaria strain SP19 also possessed puta-
tive enzymes conferring an ability to synthesize glycogen 
and a glycogen phosphorylase involved in glycogen catabo-
lism. The glycogen metabolic pathway has been detected 
in probiotic strains or intestinal isolates belonging to the 
Lactobacillus genus, suggesting potential involvement of 
this pathway in the persistence and probiotic functionalities 
of lactobacilli in the gut [65, 66].

At the phenotypic level, both W. cibaria strains exhibited 
adhesion properties to epithelial cell lines and mucin in vitro, 
though significantly lower percentages were detected com-
pared to L. rhamnosus GG. These results are consistent with 
previous findings [6, 55] indicating the in vitro adhesion 
capacity of W. cibaria strains to Caco-2 cells. W. cibaria 
KCTC 3746 exhibited a high percentage of auto-aggregation 
after 24 h incubation and effectively adhered to human intes-
tinal epithelial HT-29 cells [31]. At the genomic level, the 
two isolates harbored genes encoding proteins specifically 
associated with adhesion, such as fibronectin-binding protein 
[67] and mucin-binding protein. No mucus-binding proteins 
were detected in W. cibaria KACC 11,862 in a previous 
study [68]. The presence of sortases, enzymes anchoring 
surface proteins to the cell wall of Gram-positive bacteria, 
could also play an important role. Deletion of the sortase-
encoding gene reduced adherence of Ligilactobacillus (for-
merly Lactobacillus) salivarius UCC118 to epithelial cells 
[69].
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Antagonistic activity and the production of antimicrobial 
compounds is another very important characteristic needed 
to inhibit the growth of pathogenic bacteria. The ability of 
W. cibaria SP19 and SP7 to exert effective antimicrobial 
activity against E. coli and Salmonella spp., which are major 
causes of calf enteric disorders in Kuwait dairy herds [70], 
was associated with the production of organic acids and 
the resulting decrease in pH. W. cibaria is able to produce 
several antimicrobial substances; recently, the antibacterial 
activity of the oral probiotic W. cibaria CMU was linked to 
its ability to produce H2O2, organic acids, oleic acid, and 
specific proteins, such as N-acetylmuramidase [53]. The 
production of bacteriocins was described previously in a 
limited number of Weissella strains belonging to the species 
W. cibaria, W. paramesenteroides, and Weissella hellenica 
[71–75]. Unfortunately, we were not able to highlight any 
production of antimicrobial substances other than organic 
acids in the growth medium or putative bacteriocin gene 
clusters in the genomes of the strains under investigation.

However, the production of antimicrobial compounds is 
only one of several mechanisms through which probiotics 
can prevent or reduce the colonization and infection of live-
stock and humans. In our experimental conditions, co-aggre-
gation of W. cibaria SP19 with the gut pathogen S. enterica, 
though expressed at a low level, was comparable to that of 
L. rhamnosus GG after 4 h incubation, and the ability of 
probiotic strains to co-aggregate with pathogens is thought 
to play an important role in their protective function [76].

In regards to safety, we exploited whole genome sequenc-
ing data analysis in combination with in vitro testing to con-
duct a comprehensive assessment of the antibiotic resist-
ance and pathogenic potential of W. cibaria isolates, as 
recommended by Hill et al. [77]. We found no evidence of 
phenotypic antibiotic resistance characteristics in the two 
W. cibaria strains we investigated. Few studies are avail-
able on the antibiotic resistance profiles of Weissella spe-
cies and, unlike other lactic acid bacteria genera, no specific 
MIC breakpoint values have been defined by EFSA for the 
assessment of antimicrobial susceptibility. Jeong and Lee 
[78] found that the W. cibaria, W. confusa, and W. para-
mesenteroides strains are resistant to streptomycin, and W. 
cibaria strains to penicillin G. Low rates of resistance to 
aminoglycosides have been reported in the Leuconostoc/
Weissella group [79, 80], and Leuconostoc strains of food 
origin have been susceptible to beta-lactams in other studies 
[80–82]. In regards to the resistance to penicillin G, Jeong 
and Lee [78] reported that the results from the disk diffu-
sion test were inconsistent with those from the microdilution 
broth assay, indicating the need to define specific cut-off 
values for Weissella spp. However, in our study, the search 
for antibiotic resistance determinants identified no specific 
gene in either strains, confirming the antimicrobial suscep-
tibility testing results.

In line with previous findings [68], both W. cibaria 
strains harbored genes for hemolysin or hemolysin-like 
proteins, but the presence of such genes was not associ-
ated with the expression of a hemolytic phenotype, further 
confirming the safety profiles of the isolates.

Comparative genomic analysis showed that the W. 
cibaria pan-genome is still “open”, as nearly 25 new genes 
are included for each additional genome considered. This 
is also due to the low number of genomes currently avail-
able for W. cibaria. However, the presence of variable 
genetic content that relies on strain-specific genes (unique) 
is suggested.

Although a lot of commercial probiotic preparations are 
currently available for a wide range of conditions, it is clear 
that not all organisms are well suited for all applications. 
Notably, species-specificity [83, 84] and intestinal origin 
[85, 86] of bacterial strains have been reported as relevant 
factors influencing probiotics efficacy.

The results of this study add to our understanding of the 
genomics and metabolic capabilities of gut-associated W. 
cibaria species, and shed light on potential mechanisms of 
host-microbe interaction that represent a crucial input for 
the probiotics development process. Since functional attrib-
utes of specific strains can be related to their evolution and 
the mutualistic relationship established with different hosts 
[87], our findings could contribute to select probiotics which 
are more likely to colonize and maintain in the intestine of 
cow, and to exert specific physiological effects on the host. 
Future investigations are necessary to ascertain whether the 
in vitro characteristics of our W. cibaria strains may reflect 
the in vivo behavior of the isolates when administered to 
control infection and reduce the use of antibiotics under field 
conditions.

In conclusion, the integration of whole-genome sequenc-
ing and phenotyping provides insight into the genomics 
and physiology of W. cibaria strains of animal origin and 
demonstrated that specific strains belonging to this species 
have relevant features that make them suitable for probi-
otic applications. To the best of our knowledge, this study is 
the first to report the draft genome sequences of W. cibaria 
strains derived from bovine intestine. Our results indicate 
that W. cibaria strain SP19, and to a lesser extent strain SP7, 
possesses several in vitro probiotic capacities, such as good 
tolerance to acidic pH and bile salts, adherence to intesti-
nal cells, and antagonistic activity against pathogens. These 
properties, together with genetic characteristics, such as the 
lack of transferable antibiotic resistance determinants and 
pathogenicity factors, and the presence of genes revealing 
adaptation to the gut environment, suggest a potential use of 
these strains as novel probiotics tailored to prevent intestinal 
infections in cattle production. In vivo trials are mandatory 
to confirm the in vitro results of this study.
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