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Abstract

The growing risk of new variants of the influenza A virus is the most significant to public

health. The risk imposed from new variants may have been lethal, as witnessed in the year

2009. Even though the improvement in predicting antigenicity of influenza viruses has rap-

idly progressed, few studies employed deep learning methodologies. The most recent litera-

ture mostly relied on classification techniques, while a model that generates the HA protein

of the antigenic variant is not developed. However, the antigenic pair of influenza virus A

can be determined in a laboratory setup, the process needs a tremendous amount of time

and labor. Antigenic shift and drift which are caused by changes in surface protein favored

the influenza A virus in evading immunity. The high frequency of the minor changes in the

surface protein poses a challenge to identifying the antigenic variant of an emerging virus.

These changes slow down vaccine selection and the manufacturing process. In this vein,

the proposed model could help save the time and efforts exerted to identify the antigenic

pair of the influenza virus. The proposed model utilized an end-to-end learning methodology

relying on deep sequence-to-sequence architecture to generate the antigenic variant of a

given influenza A virus using surface protein. Employing the BLEU score to evaluate the

generated HA protein of the antigenic variant of influenza virus A against the actual variant,

the proposed model achieved a mean accuracy of 97.57%.

1 Introduction

The fast-paced determination of circulating influenza strains is crucial for vaccine manufactur-

ing. The virus lipid envelope consists of glycoproteins namely Hemagglutinin (HA) and Neur-

aminidase (NA). Given the changing nature of the influenza virus, it undergoes two types of

changes identified as antigenic shift and antigenic drift. The antigenic shift in the influenza

virus is a significant change in virus surface protein that leads to a new HA, NA, or both. This

profound change happens when the virus, which affects a certain population, gains the ability

to infect another population and this type of change is less frequent and unpredictable [1]. The
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antigenic drift in the influenza virus is related to minor changes that occur in the surface pro-

teins of the virus: HA and NA. Moreover, these changes are more frequent especially in influ-

enza virus A [2]. Most influenza vaccines are designed to target an influenza virus’s surface

proteins.

The changes occurring in the influenza virus are primarily caused by changes in the virus

envelope. These changes in the outer surface of the influenza virus account for the virus eva-

sion from antibodies created during prior infections [3]. Several studies were conducted to

predict the virus antigenic variant based on the virus antigenic data [4–6]. The virus antigenic

distance data, acquired from Hemagglutinin-Inhibition (HI) assay, calculates the antigenic dis-

tance between pairs of the influenza virus. Moreover, the antigenicity data is obtained in a lab-

oratory setup, and this process requires a considerable amount of work and time [7].

Dramatic breakthroughs have been realized recently in deep learning. Applications such as

natural language processing (NLP) [8, 9], image recognition [10, 11], and Bioinformatics [12,

13] have seen tremendous advancements due to deep learning (DL) and hardware acceleration

capabilities. Motivated by these recent developments, a computational method was devised to

generate HA sequence of the antigenic variant of a given influenza virus based on a hypothe-

sized antigenicity value, utilizing both influenza antigenicity data and sequences. The proposed

model relies on a framework for solving sequential problems namely sequence to sequence

[14]. Sequence to sequence methodology has obtained popularity due to its high efficacy in

various computational modeling tasks, especially when an attention mechanism is added [15,

16], such as machine translation [15–18], text summarization [19–21], image captioning [22–

24] and video captioning [25, 26], and speech recognition [15, 27, 28]. The influenza virus

outer surface proteins are represented as a sequence of letters. Considering the (HA) protein

representation and advancement in (NLP) domain, the problem can be formulated as an

(NLP) problem taking the antigenic distance into consideration. In this work, a variety of

sequence to sequence deep learning models were implemented on pairs of influenza HA

sequences, based on their antigenic relation; in an attempt to generate the antigenic pair of a

newly emerging influenza virus.

2 Related work

Many studies were conducted to devise computational methods for specifying a new influenza

virus antigenicity. Such studies employed a variety of machine learning models in an attempt

to identify the antigenic pair of an influenza virus. However, the studies mentioned in upcom-

ing sections, in general, formulated the problem such that the input is the sequence of an exist-

ing virus and the sequence of newly discovered one, and the output defines the antigenic

distance between both sequences as a classification or regression problem. Additionally, these

studies are mentioned even though the approach is to generate the antigenic pair based on a

given antigenic distance. These machine learning methods are mainly categorized into four

categories; classical, tree-based, stacking and ensemble, and deep learning methods. The fol-

lowing subsections elaborate more on the work done, under each of the mentioned categories.

2.1 Classical methods

Liao et al. [29] compared several techniques, particularly, iterative filtering, multiple regres-

sion, logistic regression, and support vector machine. These methods were applied after utiliz-

ing a grouping method for polarity, charge, and structure of amino acids on the H3N2

subtype. Moreover, the final results showed the superiority of the grouping method followed

by iterative filtering. Sun et al. [30] devised a methodology based on bootstrapped ridge regres-

sion with antigenic mapping to specify influenza virus antigenicity using (HA). Their work
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was applied on H3N2 sequences. Peng et al. [4] introduced a universal computational model

named PREDAV-FluA, built based on the regional bands, and employed a Naive Bayes classi-

fier technique. PREDAV-FluA was applied on subtypes H1N1, H3N2, and H5N1.

2.2 Tree-based methods

Neher et al. [31] conducted research, based on HA sequences and phylogenetic tree, to predict

the antigenic evolution of different influenza virus types. The researchers utilized two related

models a tree-based model and an amino acid substitution model. The mentioned models per-

formed similar or better than cartographic approaches. Yao et al. [32] utilized a joint random

forest regression technique that relies on the choice of amino acids substitution matrices and

antigenic cartography on the H3N2 subtype. Bandi et al. [33] predicted rates of circulating

viruses for the upcoming influenza season using historical data by applying a tensor comple-

tion formulation. Additionally, the suggested vaccine efficiency was predicted by implement-

ing an optimal regression trees technique using the distances between the vaccine strain and

the actual circulating viruses in influenza season for H1N1, H3N2 subtypes, and influenza type

B. Finally, the mentioned model scored well, and their work did not utilize the influenza HA

sequence.

2.3 Stacking and ensemble

Yin et al. [5] made an ensemble stack of different classifiers based on each classifier strength.

The first level of the stack consisted of an ensemble between three classifiers, namely logistic

regression, neural network, and Naive Bayes. The second level of the stack incorporated an

ensemble of random forest and gradient boosting. Finally, the third level of the stack employed

logistic regression classifier. The mentioned stack of ensembles of classifier models was applied

after feature extraction on the influenza H1N1 subtype. The authors compared three feature

extraction methods based on regional bands, epitope regions based, and residues, where the

latter method gave the best performance. The work done by Peng et al. [34] produced an

ensemble of three computational steps. The first step is based on the Naive Bayes classifier

which is used to predict the antigenic relation between two viruses. The second step is to con-

nect viruses with similar antigenicity predicted from the first step. After that, a correlation net-

work is constructed based on predicted antigenicity. Finally, the network clustering technique

is applied to create antigenic clusters. The ensemble, PREDAC, as depicted by the authors is

capable of predicting antigenicity and antigenic variants for influenza types A and B.

2.4 Deep learning

The authors of [35] used an encoder-decoder architecture of recurrent neural networks which

enabled them to implement a sequence to sequence prediction on the influenza H3N2 subtype.

The deep learning model employed techniques from (NLP) such as embedding and using a

3-gram residue method for each sequence step for prediction. The model performance was

excellent, yet, the authors had to train the model on virus sequences in chronological order

without considering the actual value of antigenic distance. Yin et al. [36] used a similar meth-

odology used in [35] in addition to a temporal attention technique while limiting their predic-

tions to the sites of epitope regions. Despite the fact that the model performed exceptionally

well in terms of accuracy metric, the authors neglected the antigenic distance as a variable to

the model input. The approach depicted in [37] employed a six-step methodology alongside

with particle swarm algorithm to optimize the hyperparameters of convolutional neural net-

work. The computational model is trained on influenza H3N2 subtype data and utilized anti-

genic cartography. Forghani et al. [38] used physicochemical properties of the constituent

PLOS ONE End-to-end antigenic variant generation for H1N1 influenza HA protein using sequence to sequence models

PLOS ONE | https://doi.org/10.1371/journal.pone.0266198 March 28, 2022 3 / 14

https://doi.org/10.1371/journal.pone.0266198


amino acids with the help of PCA as a dimensionality reduction technique, to create a

sequence encoding. The obtained sequence encoding is fed to a convolutional neural network

to predict the antigenic distance for the H1N1 influenza virus subtype. Yin et al. [39] devised a

framework namely IAV-CNN to predict the antigenicity of influenza A viruses. The research-

ers applied techniques from the NLP domain for embedding namely ProtVec, along with a

2-dimensional convolutional neural networks. The IAV-CNN framework was trained on

H1N1, H3N2, and H5N1 and the CNN architecture relied on squeeze-and-excitation

mechanisms.

3 Methodology

3.1 Data collection and preprocessing

We incorporated two data sets in this research; antigenic data, and sequence data of influenza

A subtype H1N1. Antigenic data was based on hemagglutination inhibition (HI) assay and

was collected from reports of international organizations and published papers including

World Health Organization (WHO), European Centre for Disease Prevention and Control

(ECDC), the Francis Crick Institute (FCI), and Food and Drug Administration (FDA). Addi-

tionally, the HA protein sequences were taken from Influenza Virus Resource (IVR) [29] and

Global Initiative on Sharing All Influenza Data (GISAID) [40]. The Antigenicity data consisted

of three columns VirusA, VirusB, and Antigenic Distance. These columns resemble an old

virus, new virus, and antigenic distance between both viruses respectively. The antigenic dis-

tance Dij follows definition by Archetti-Horsfall distance [41] given by Eq 1.

Dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hii � Hjj

Hij �Hji

s

ð1Þ

where Dij is the antigenic distance, Hij is the hemagglutination inhibition titer for a given strain

i in relation to the antisera caused by another strain j. If The value of the antigenic distance is

greater than or equal to 4, the two viruses are said to be antigenic distinct. Otherwise, they are

considered similar [29]. Moreover, antigenic distance data and the HA protein sequence data

are joined together, then data is filtered to avoid repetition. As a result of filtering, records con-

taining an antigenic distance above 185 were removed, as the antigenic distance is far between

the two strains. Finally, the obtained 998 pairs of influenza virus A subtype H1N1 with

sequences and their antigenic distance. A key point of the research was creating an end-to-end

model without any feature extraction, or feature engineering employing the strength of deep

learning models.

3.2 Models construction

Sequence to sequence model is typically an encoder-decoder architecture [14]. The basic

building unit in both encoder and decoder is typically a recurrent neural network such as

LSTM [42] or GRU [43] layers, which are illustrated in Fig 1 respectively. First, at each step of

the sequence, the hidden state vector is computed. Then at the following step, the hidden state

is computed considering the hidden state of the previous step along with the current step

input until a final hidden state vector is computed. Second, the decoder receives the final hid-

den state vector from the encoder as an input. Then, at each step, a new hidden state vector is

computed considering the hidden state of the prior cell and the current step target. Eventually,

a vector containing the probabilities for all domain items is produced to represent the follow-

ing item in the sequence as shown in Fig 2.
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In this work, various architectures of sequence to sequence models were utilized. relying on

different types of recurrent neural networks and a number of consecutive layers of the same

recurrent neural network to search for the best scoring architecture. Table 1, is an illustration

of the various architectures used in this research. Moreover, the inputs to sequence to sequence

model are newly discovered virus sequence, antigenic distance, and old virus sequence. In

training mode, a new virus sequence and antigenic distance are given to the encoder, while the

old virus sequence is given to the decoder. In inference mode, a newly discovered virus

sequence and a hypothesized antigenic distance are given to the encoder inference model,

after that the decoder inference model is initiated with a beginning of a sentence marker to

start predicting the old virus sequence, based on the hypothesized antigenic distance. Finally,

data for both antigenic distinct and similar sequences were utilized. However, the main inter-

est was obtaining a known virus with high antigenic similarity to discovered virus i.e. antigenic

Fig 1. LSTM cell.

https://doi.org/10.1371/journal.pone.0266198.g001

Fig 2. Sequence to sequence architecture.

https://doi.org/10.1371/journal.pone.0266198.g002
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distance between both viruses is less than 4, data for both antigenic distinct and similar viruses

were used. The developed models are anticipated to aid in the development of vaccines by

eliminating the necessity for Hemagglutinin-Inhibition (HI) assay once the newly found virus

sequences are identified.

The nature of sequence to sequence models depends on the final hidden state of the

encoder; and in the case of lengthy sequences, there is a significant probability that the initial

context has been lost by the end of the sequence. Attention mechanism combats losing con-

text in long sequences by accurately encoding the parts of the input sequence that surround a

particular word, or in this case amino acid. In this research, the attention mechanism used in

[15] was utilized with the sequence to sequence model, as illustrated in Fig 3. The model con-

sists of an encoder, a decoder, and an attention layer. Firstly, the encoder produces hidden

states of each element in the input sequence. Secondly, the attention layer computes alignment

scores using the previous decoder hidden state as query and the encoder hidden states as both

keys and values. After that, the resulting alignment scores are incorporated in a single vector,

then a softmax layer is applied. Finally, the resulting alignment scores and their respective hid-

den states are multiplied to form a context vector. Consequently, the previous decoder output

and the resulting context vector are concatenated and given to the decoder accompanied by

the previous decoder’s hidden state.

Table 1. Utilized models’ architectures.

Model name Encoder Decoder Attention layer

Recurrent layer type No. of recurrent layers Recurrent layer type No. of recurrent layers

LSTM LSTM 1 LSTM 1 No

GRU GRU 1 GRU 1 No

Deep_LSTM LSTM 2 LSTM 1 No

Deep_BI_LSTM BI_LSTM 2 LSTM 1 No

Deep_GRU GRU 2 GRU 1 No

Deep_BI_GRU BI_GRU 2 GRU 1 No

Attn_Deep_BI_LSTM BI_LSTM 2 LSTM 1 Yes

Attn_Deep_BI_GRU BI_GRU 2 GRU 1 Yes

https://doi.org/10.1371/journal.pone.0266198.t001

Fig 3. Attention with sequence to sequence architecture.

https://doi.org/10.1371/journal.pone.0266198.g003
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The acquired sequences data represent the HA protein of an influenza subtype H1N1. Each

sequence consists of 327 letters representing different amino acids. In resemblance to an NLP

problem, considering each letter as a word and the whole sequence as a sentence. Therefore,

word embedding methodology [44] is employed to represent each sequence in a comprehensi-

ble way for a computational method. In this implementation, an embedding size of 50, batch

size of 128 were used. Consequently, each sequence is represented as a tensor of shape (128,

327, 50). learning rate decay is not only recommended as depicted in [45], it is also considered

a significantly important technique while training neural networks [46]. Thus, the step decay

technique is employed to lower the initial learning rate with a decay factor of 0.98 and a drop

rate (step size) of 50 iterations. The step decay learning rate is given by Eq 2.

an ¼ a0 � d
floor 1þn

rð Þ ð2Þ

where αn is the learning rate at epoch, α0 is the initial learning rate, d is the decay parameter,

and r is the drop rate.

4 Experiments and results

4.1 Baseline architectures

Two different architectures were used as shown in Table 1 as the baseline models, namely

LSTM and GRU. Both architectures have a single recurrent layer for decoder and encoder, and

the recurrent layers used are LSTM and GRU as depicted by models names. The sole objective

for using the two architectures as baseline models is to compare deeper models performance

against these shallow architectures.

4.2 Experimental setup and implementation

Architectures in Table 1 were executed using the parameters stated in Table 2. The number of

epochs is set to 500 with a patience of 11. Thus, the model in training mode will only stop if

the training accuracy did not improve for 11 epochs. Recurrent layers of both encoder and

decoder use a dropout rate of 0.2. It is commonly agreed that using dropout will regularize lay-

ers learning and prevent overfitting. Each model will randomly select 80% of the data for train-

ing and the remaining 20% for test. Additionally, the training data is split into 70% for training

and 30% for validation. Each of the proposed architectures is executed in training mode until

reaching the early stopping threshold. learning rate will decay every 50 epochs with a decay

factor of .98, as slowing the learning rate will enhance the learning of complicated patterns and

is commonly believed to help neural networks find a local minimum. After that, each model is

evaluated by performing predictions on the test data set. Finally, generated and actual

sequences are saved for test evaluation and architectures comparison. The work done in this

Table 2. Proposed architectures parameters.

Parameter Value

Epochs 500

Batch size 128

Early stopping patience 11

No. of recurrent layer cells 50

Learning rate 0.001

Decay step size 50

Decay Factor 0.98

Dropout rate 0.2

https://doi.org/10.1371/journal.pone.0266198.t002
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research is implemented in the Python programming language. Libraries Such as Biobython

for reading sequence data and Keras were used for developing the proposed deep learning

architecture. Full implementation and data are made available on GitHub.

4.3 Accuracy metrics

As a final step, the generated sequences acquired during the test phase are evaluated against

the original sequences. Since the approach taken in this paper is similar to approaches used in

NLP, it was convenient to use accuracy metrics used in NLP as well. Hence, the utilization of

the BLEU score [47] which is often used in NLP problems. BLEU score consists of two main

terms, particularly precision score and a brevity penalty. The precision score, pn, calculated for

each n-gram length by summing over the match for a generated sequence S against the original

sequence O from the test set as in Eq 3.

pn ¼
P

S2O

P
n� gram2SCountmatchedðn � gramÞ

P
S2O

P
n� gram2SCountðn � gramÞ

ð3Þ

Since the BLEU score is precision-based, and recall term will be inconvenient to formulate

over multiple references, thus, the brevity penalty calculated in Eq 4 is introduced to rectify the

possibility of presenting high precision hypothesis.

BP ¼
1 if L > r

e1� r=L if L � r

(

ð4Þ

where L is the output sequence length and r is reference sequence length.

BLEU ¼ BP � expð
XN

n¼1

wnlogpnÞ ð5Þ

where wn represents the weights and typically equals 1/N and N represents the number of

grams. According to the definition given by Eq 5 BLEU score will always range from 0 to 1.

Thus, for each generated sequence compared against the original sequence, the resulting

BLEU score will represent the accuracy of the model in generating a single sequence. Finally,

the mean BLEU score percentage was used as an indicator of each model’s accuracy.

4.4 Results

During the training stage, architectures utilizing bi-directional recurrent layers—both LSTM

and GRU—performed better than other architectures in terms of both training and validation

accuracy, as shown in Table 3. Unexpectedly, the addition of an attention layer to the encoder-

decoder architecture did not improve training or validation accuracy. Moreover, in the case of

Table 3. Training performance of the proposed models.

Model Training Validation Epochs

Loss Accuracy Loss Accuracy

Deep_BI_GRU 0.0581 0.9801 0.0576 0.9814 338

Deep_BI_LSTM 0.0684 0.9801 0.0619 0.9818 445

Attn_Deep_BI_GRU 0.1094 0.9685 0.1060 0.9682 143

Deep_LSTM 0.1400 0.9652 0.1205 0.9687 488

Deep_GRU 0.1578 0.9588 0.1320 0.9651 258

LSTM 0.1968 0.9577 0.2120 0.9496 314

GRU 0.1928 0.9519 0.1617 0.9555 187

Attn_Deep_BI_LSTM 0.2602 0.9476 0.3100 0.9325 113

https://doi.org/10.1371/journal.pone.0266198.t003
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using bi-directional LSTM recurrent layer in encoder and decoder with additional attention

layer, both the training and validation accuracy were lower than the chosen baseline

architectures.

Fig 4 shows the improvement of training accuracy and loss compared to the validation over

epochs for the architecture utilizing bi-directional GRU as a recurrent layer. However, the

improvement in accuracy was very small after approximately 60 epochs. It is notable that, the

loss and accuracy of both training and validation are almost identical, with a very small gener-

alization gap. Moreover, both loss and accuracy reach a point of stability at the end of training

epochs. This typically indicates that the model is a good fit.

Fig 4. Training vs validation. (a) Training vs validation accuracy for Deep_BI_GRU Model. (b) Training vs validation

loss for Deep_BI_GRU Model.

https://doi.org/10.1371/journal.pone.0266198.g004
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Table 4 illustrates proposed architectures ordered by mean accuracy for 1-gram, 2-gram,

3-gram, and 4-gram BLEU score on the test set. Surprisingly, the best-performing architecture

was the one based on bi-directional GRU layers, despite the expectations that the introduction

of attention would improve accuracy. Nevertheless, the bi-directional LSTM with attention

and deep GRU performed less than baseline architectures.

Additionally, the bi-directional GRU architecture achieved a higher mean accuracy. How-

ever, the gap between this architecture and attention-based architectures is fairly high, which

indicates that attention might not be helpful in this case. Fig 5 shows box plots of results distri-

bution for each architecture for 1-gram and 4-gram BLEU scores. The leading architecture

(Deep_BI_GRU), when evaluated with a 1-gram BLEU score shows a maximum accuracy of

100% and a median accuracy of 98.5% approximately where the first quartile is above 96%. In

other words, generated sequences accuracy distribution is right-skewed with a minimum accu-

racy of 92%, which indicates a high quality in generated sequences when compared to original

sequences. On the other hand, the LSTM architecture shows more diversity in results with a

lower mean accuracy of 96% approximately and a minimum accuracy below 92%. Finally, the

bi-directional LSTM with attention model shows even higher variations in generated

sequences quality where the minimum falls below 88%. clearly proposed architectures have

consistent accuracy distributions over 4-gram BLEU scores where the bi-directional GRU

architecture is explicitly performing better than other architectures.

4.5 Discussion

The fast-paced development of sequencing methods has made influenza protein sequencing a

standard segment of the influenza research process and vaccine determination. The recently

discovered influenza protein sequences are saved in influenza databases like the NCBI influ-

enza virus resource (IVR) database. If effective sequence-based antigenic prediction tools can

be created, much of the burden of influenza monitoring may be alleviated. This work

highlighted the process of generating an antigenic variant for influenza H1N1 viruses with lit-

tle antigenic data. Moreover, a model based on additional antigenic data would better reflect

the overall structure behind antigenic variation. To the best of authors knowledge, and at the

time of writing this paper, there is no study in the literature that uses a generative modeling

technique to address the problem of the influenza virus antigenicity.

In this work, a single-step methodology was adopted that does not require feature engineer-

ing, and it is not dependent on virus discovery chronological order in training or prediction.

Hence, this methodology requires less computational effort. Furthermore, integrating this

Table 4. n-gram BLEU accuracy (%) of the proposed models.

Model Mean accuracy

BLEU-1 BLEU-2 BLEU-3 BLEU-4

Deep_BI_GRU 97.57% 91.44% 86.02% 82.70%

Deep_LSTM 97.28% 90.44% 84.46% 80.95%

Deep_BI_LSTM 97.14% 89.57% 83.07% 79.01%

Attn_Deep_BI_GRU 96.36% 85.49% 75.42% 70.71%

LSTM 95.74% 82.61% 69.23% 63.19%

Deep_GRU 95.45% 81.66% 67.51% 61.29%

Attn_Deep_BI_LSTM 94.92% 81.10% 67.41% 60.84%

GRU 90.21% 75.17% 60.61% 54.33%

https://doi.org/10.1371/journal.pone.0266198.t004
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methodology into existing influenza virus databases will alleviate a colossal part of antigenic

pair identification and vaccine design.

Finally, the metric utilized in this work namely BLEU is generally accepted in NLP prob-

lems. Since there is no conventional computational method for measuring the quality of gener-

ated sequences, the BLEU score is seen as an effective metric in measuring the quality of

generated sequences.

Fig 5. Accuracy distribution. (a) BLEU-1 accuracy distribution. (b) BLEU-4 accuracy distribution.

https://doi.org/10.1371/journal.pone.0266198.g005
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5 Conclusion

Throughout this work, antigenicity data was used along with influenza H1N1 HA sequences to

generate the antigenic pair of influenza viruses. Exploiting the advancement in deep learning

to evaluate different architectures to find the best suitable architecture for the task at hand.

The main gain in this research is obtaining an end-to-end model avoiding feature engineering,

utilizing a single-step prediction, and evading chronological order training. This work opens a

new door towards generating the antigenic pair of an influenza virus depending on the anti-

genic distance in a novel way. This work can help to reduce the time consumed to define the

antigenicity of a newly discovered H1N1 influenza virus relying on the virus HA sequence and

antigenic distance. Furthermore, this work can accelerate vaccine selection and manufactur-

ing. As demonstrated in this search generative modeling techniques are viable for addressing

the influenza subtype H1N1 antigenicity problem. For future work, the authors are planning

to experiment with different generative methodologies to generate the antigenic variant for

influenza type A viruses and attempt to devise a general method for all different subtypes.
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