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Decision-making theories explain animal behaviour, including human

behaviour, as a response to estimations about the environment. In the case

of collective behaviour, they have given quantitative predictions of how ani-

mals follow the majority option. However, they have so far failed to explain

that in some species and contexts social cohesion increases when conditions

become more adverse (i.e. individuals choose the majority option with

higher probability when the estimated quality of all available options

decreases). We have found that this failure is due to modelling simplifications

that aided analysis, like low levels of stochasticity or the assumption that only

one choice is the correct one. We provide a more general but simple geometric

framework to describe optimal or suboptimal decisions in collectives that

gives insight into three different mechanisms behind this effect. The three

mechanisms have in common that the private information acts as a gain

factor to social information: a decrease in the privately estimated quality of

all available options increases the impact of social information, even when

social information itself remains unchanged. This increase in the importance

of social information makes it more likely that agents will follow the majority

option. We show that these results quantitatively explain collective behaviour

in fish and experiments of social influence in humans.
1. Introduction
In many social species, individuals in a group make choices that are more simi-

lar to each other when conditions are adverse than when they are favourable.

This phenomenon is well documented in groups of moving animals, which

often form tighter groups in response to the detection of a predator [1–6];

but it also takes place in other adverse conditions, such as in the absence of

food [7] or when animals are introduced into an unknown environment [8,9].

In humans, the occurrence of sudden bank runs [10–12] and human stampedes

[13–19] suggests increased aggregation in adversity, although data are insuffi-

cient to draw definitive conclusions. We will use the term super-aggregation in
adversity to describe all these situations, regardless of whether aggregation

occurs in physical space (as in groups of prey fleeing from a predator) or in

the space of possible choices (as in investors deciding what shares to buy

or sell).

Many theories study this phenomenon from a purely social point of view,

investigating why an individual benefits from the company of its conspeci-

fics—the intrinsic benefits of belonging to a group (figure 1a). For example,

both theory and experiments show that belonging to a group may protect

against predators [6,20–23]. In humans, copying others’ behaviour can help

to deflect the responsibility for an anticipated failure [24,25]. These explanations

focus on cases in which aggregation holds an intrinsic benefit (such as collective

defence from a predator), and require that this benefit increases in adversity—
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Figure 1. Super-aggregation in adversity emerges from estimation-based decisions. (a) Scheme of a purely social decision. The focal individual must decide which
group to join and only takes into account the groups themselves. (b) Scheme of a more complete decision-making process. The deciding individual must choose
which group to join, but these groups are also associated with their non-social circumstances (in this example, they are choosing different doors). (c) Bayesian
decision-making predicts super-aggregation in adversity: preference for the majority option (defined as P(Y j B, C )/P(X j B, C ) in equation (2.4)), as a function
of the privately estimated quality for both options (G ¼ P(X j C ) ¼ P(Y j C )).
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an increase that is often not obvious. Here we ask whether

super-aggregation in adversity may emerge even in the

absence of this benefit.

An indirect advantage of being in a group is that the

behaviours of others can inform about the environment.

Therefore, even if belonging to a group holds no intrinsic

value, copying others’ decisions may be the optimal strategy

when reacting to an uncertain environment, and this strategy

may lead to aggregation. The optimal level of aggregation

resulting from this strategy can be calculated using

decision-making theory (figure 1b). These types of models

successfully explain collective behaviour in many animals,

including humans [26–31], but have never been used to

investigate super-aggregation in adversity.

Here we show that Bayesian estimation predicts super-

aggregation in adversity, which was inadvertently present in

some decision-making models [30,31], and absent from others

due to simplifying assumptions [26–29]. Furthermore, we find

that many non-Bayesian decision-making models may also

lead to super-aggregation in adversity, and discuss the con-

ditions in which this will hold. Using simulations, we show

that the effect can be strong enough to reproduce typical obser-

vations of groups of animals under predation risk, and that its

predictions are consistent with existing experimental data.
2. Results
Consider the example of a person who wants to exit a build-

ing, and must choose between two identical looking doors (x
and y; figure 1b). We define the quality of each option as the

probability that it leads safely to the exit. Even assuming that

the presence of other individuals holds no intrinsic value,

their behaviour may give information about the quality of

the two doors: assuming that part of the people also want

to exit the building, and that they may have some infor-

mation about the correct path, a door chosen by the

majority has a higher probability of being the correct option.

Bayes’ theorem allows computing this probability com-

bining social and private information. According to this

theorem, the probability that door y is a good option is

P(Y jB, C) ¼ P(B jY, C)P(Y jC)

P(B jY, C)P(Y jC)þ P(Bj�Y, C)P(�Y jC)
, ð2:1Þ

where Y stands for ‘y is a good option’ and �Y stands for ‘y is a

bad option’. B and C represent the social and private
information, respectively. P(Y j C) is the probability that

option y is good, estimated using only private information;

we therefore define the non-social term as

Gy ¼ P(Y jC) ¼ 1� P(�Y jC). The terms P(B j Y, C) and

P(B j �Y, C) contain all the social information, and we therefore

define the social term as Sy ¼ P(B jY, C)=P(B j �Y, C). While

this term encapsulates all the social information, it also depends

on the non-social information C. An alternative parametrization

that separates better the two types of information is possible but

less compact, and leads to the same conclusions (electronic sup-

plementary material, section S1). With these definitions, Bayes’

theorem in equation (2.1) becomes

P(Y jB, C) ¼
Gy

Gy þ (1� Gy)S�1
y

ð2:2Þ

for option y, and similarly for option x. In our previous work,

we developed the social terms Sx and Sy, obtaining explicit

forms that allow the model’s predictions to be tested with

experimental data [28,30,31]. This particularization is not

necessary here because our results are independent of the

exact form of the social terms. It suffices to note that Sy increases

when social information indicates that y is a good option

(usually as more individuals choose option y), and that Gy

increases when private information indicates that y is a good

option. By convention we will consider that y is the option

chosen by the majority and hence favoured by social

information, meaning that Sy . Sx.

Decisions will be based on the estimated probabilities.

A simple and widespread decision rule is to choose options

according to the ratio of predicted qualities [28,30,32–41].

Then, the probability of choosing option y (Py) is a monotonically

increasing function of the ratio of the estimated probabilities,

Py � P(Y jB, C)

P(X jB, C)
¼

Gy(Gx þ (1� Gx)S�1
x )

Gx(Gy þ (1� Gy)S�1
y )

: ð2:3Þ

When Gx = Gy, private information will bias the decision

towards one of the two options. This bias may be strong

enough to obscure the effect of social information, and it is gen-

erally accepted that social information has more weight when the

decision is most uncertain (i.e. when private information does

not favour any option, Gx ¼ Gy) [42,43]. We will then focus our

analysis on this state of maximum uncertainty, defining G ;
Gx ¼ Gy. Then, equation (2.3) simplifies to

Py � P(Y jB, C)

P(X jB, C)
¼ Gþ (1� G)S�1

x

Gþ (1� G)S�1
y
: ð2:4Þ
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We now define adversity as an event that decreases the qual-

ity of all options. In our example, we may consider the case of a

fire in the building. We assume that the deciding individual

receives some information about the adverse event, such as a

fire alarm going off. The fire alarm does not help to choose

between the two doors (so we still have Gx¼ Gy ; G) but it

lowers the estimated probability that either door leads safely to

the street, because fire could be encountered on the way (so G
decreases).

A simple assumption to explain super-aggregation in

adversity is that social information becomes more relevant

in this context, which in our model would mean a change in

the social terms Sx and Sy. But we aim to show that this

change is not necessary for the result, so we will assume

that these social terms remain constant (i.e. other individuals

are equally reliable with and without the fire). Given that

the social terms remain constant and that the fire alarm

does not favour one door over another, should we expect

super-aggregation around one of the options?

From equation (2.4) we see that, in extremely favourable

conditions (G ¼ 1), there will be no preference for either

option. As adversity increases (G! 0), so does the preference

for the majority option (figure 1c). Super-aggregation in

adversity thus emerges, even when the social terms remain

constant.

More formally, we say that super-aggregation in adver-

sity occurs whenever the probability of choosing the

majority option increases when lowering G, or equivalently,

@Py

@G
, 0: ð2:5Þ

By computing the derivative of equation (2.4), we find that

@Py/@G has the same sign as (S21
y 2 S21

x ), which is negative

as long as y is the majority option (hence Sy . Sx). Therefore,

the Bayesian model shows super-aggregation in adversity

(see Material and methods for a more general derivation).

This derivation shows that agents following Bayesian

estimations show super-aggregation in adversity in a two-

option scenario with symmetric private information. We

will next illustrate with an spatial example that this result

can be generalized to many options and to asymmetric pri-

vate information. Then we will discuss the mathematical

properties that lead to super-aggregation in adversity, and

discuss other models that also lead to it (outside Bayesian

estimation and without using the ratio of the probabili-

ties to estimate the tendency to choose either of them).

Finally, we will contrast our predictions with existing

experimental data.
2.1. Spatial super-aggregation in adversity
So far, we have seen that a Bayesian estimation model

applied to a two-choice scenario shows super-aggregation

in adversity. We now test that an extension of the same

model to groups of moving animals gives the increased

spatial cohesion typically observed in experiments. Our

model draws from extensive work on collective motion

[44–48] but, in contrast to most previous studies, our individ-

uals do not react directly to each other. Instead, individuals

estimate the quality of all points within a given maximum

distance using a many-options version of the Bayesian

model. In this model, social information increases the

expected quality of the space around each individual, and
individuals choose where to go with a probability pro-

portional to each site’s estimated quality (see Material and

methods for details). In favourable conditions, a point close

to other individuals has only slightly higher quality than

the background, so the animals remain relatively dispersed.

When conditions deteriorate, the estimated quality is high

only for high-density regions, so all individuals converge

towards them (figure 2a,b; electronic supplementary material,

movies S1, S2).

The model also shows aggregation when the non-social

estimate of qualities is asymmetric, as, for example, when a

predator approaches the group. We assume that individuals

who perceive the predator update their private information

to a non-uniform map of qualities whose minimum is at

the predator’s position. A simple non-social model of preda-

tor avoidance in which each individual ran straight away

from the predator would predict the group to disperse, its

members following diverging trajectories centred on the

predator’s position. Likewise, in our model the gradient of

privately estimated qualities pushes the individuals away

from the predator. However, the gradient also decreases

the overall quality, producing super-aggregation in adversity

and leading to higher aggregation as a net result (figure 2c,d;

electronic supplementary material, movie S3).

These results illustrate that decision-making can produce

strong spatial super-aggregation in adversity under some

conditions. Furthermore, as the effect emerges from the indi-

viduals’ decision-making algorithm, the prediction is robust

to changes in the dynamical details of the model, making it

applicable across taxa (electronic supplementary material,

figure S1).
2.2. A geometric framework for decision-making
We have seen super-aggregation in adversity in a Bayesian

model, applied to a two-choice case and to a spatial version.

We are still missing an explanation of the origin of the effect

in this model and whether it applies more generally to other

models. To answer these questions, we developed a simple

framework in which many decision theories can be

represented.

We divide the decision in two steps. First, the deciding

individual estimates the quality of the available options

(Qx and Qy for options x and y). In our Bayesian model, the

quality of each option was the probability estimated by

equation (2.1), Qy ¼ P(Y j B, C). In general, we will use ‘qual-

ity’ as a generic name for whatever is relevant to the decision,

including both social and non-social factors. In the context of

evolution, quality measures the fitness value of each option.

In the language of economic decision-making, quality refers

to the utility of each option. These qualities may be estimated

with any model relevant for each particular situation.

For two options, we can visualize the estimated qualities

in a two-dimensional landscape (figure 3a, left). We still

assume symmetric private information (Gx ¼ Gy ; G, where

G now stands for the privately estimated quality), so the pri-

vate estimate falls on the landscape’s diagonal (figure 3a,

red diamond symbol). Social information is then added

(figure 3a, left, green arrow) to the private information to

reach a final estimate (figure 3a, left, blue diamond symbol).

In the second step, a decision rule transforms the esti-

mated qualities into the probability of choosing each option

(figure 3a, right).
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Figure 2. Spatial super-aggregation in adversity. (a) Four frames of a simulation where private information is identical for all locations and changes suddenly at
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Now, we investigate the effect of adversity on the

decision-making process. As before, the effect of adversity

is to lower the privately estimated quality G, moving the esti-

mation to a different point of the quality landscape. To

illustrate this, we may consider an estimation rule simpler

than our Bayesian model: we define the quality of an

option as Qy ¼ Gy þ Sy, where the social term (Sy) remains

constant in adversity (figure 3b). Even in this linear case,

and even if the change in non-social information does not

favour one option over the other, the change in estimated

qualities leads in general to a different probability of choosing

each option (figure 3c, top). The only exception is when the

estimated qualities run along an isoprobability line of the

decision rule (figure 3c, middle). Such a perfect match is unli-

kely except for decision rules with large regions of constant

probability, as, for example, the deterministic rule ‘always

choose the option with highest estimated quality’ (figure 3c,

bottom). This decision rule is used in many simple

models, preventing them from explaining super-aggregation

in adversity [26,27].

Another feature that prevents some probabilistic models

from predicting super-aggregation in adversity is that they
assume mutually excluding options (one of them is good

and the other is bad, so P(x is good) ¼ 1 2 P(y is good))

[26–28]. These models lack a parameter that measures adver-

sity, which would require lowering P(x is good) and P(y is

good) simultaneously, and cannot predict super-aggregation

in adversity.

In general, decision rules are not deterministic and

options are not mutually excluding, so the probability of fol-

lowing the majority will change with adversity. But why do

we usually observe increased (rather than decreased) aggre-

gation in adversity? The geometric framework does not

directly answer this question, but will help us visualize

how super-aggregation in adversity emerges from different

characteristics common to many decision-making models.
2.3. Mechanisms for super-aggregation in adversity
This section will discuss several qualitative mechanisms

that lead to super-aggregation in adversity. The mechanism

considered in most existing models to describe super-

aggregation in adversity [6,20–25] amounts to an explicit

change in the social terms that favours the majority option.
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This change is probably present in many situations, and it is

easy to see that it would change the degree of aggregation.

Here we will focus on another three mechanisms that are

present even when the social terms remain constant.
2.3.1. Relative decision rules
Many decisions depend on the relative value of estimated

qualities, rather than on their absolute value. Examples

range from bacteria to humans, including rules such as

Weber’s Law (which depends on the relative difference

between qualities (Qy 2 Qx)/(Qy þ Qx)), probability match-

ing (which depends on Qy/(Qx þ Qy)), direct ratio rules

(Qy/Qx) and others [28,30,32–41]. All these rules share the

condition that

Py

Px
¼ f

Qy

Qx

� �
, ð2:6Þ

where Px and Py are the probabilities of choosing x and y,

respectively, and f is any monotonically increasing function.

When more than two options exist, a relative decision rule

must fulfil equation (2.6) for every pair of options.

All relative rules have isoprobability lines identical in

shape to those in figure 4a, independently of function f.
With these rules, when the effect of social information on
the estimation remains the same (figure 4a, green arrows),

its impact on the final decision increases in adversity, with

a higher probability of following the majority (figure 4b).

Even when the influence of social information in the qualities

decreases in adversity, the probability to follow the majority

will increase as long as the estimated qualities fulfil

@(Qy=Qx)

@G
, 0: ð2:7Þ

This condition holds both for the non-optimal estimation rule

in figure 4a and for the Bayesian model in equation (2.1) (as

illustrated in figure 1c and derived in equation (4.6) in

Material and methods).

2.3.2. Saturation near the upper bound of qualities
The range of qualities is often bounded, for example, when

there is a limit in the amount of food an animal can consume

or when qualities are probabilities. In this case, as the pri-

vately estimated qualities increase, both the private and the

final estimates converge to the upper bound, so the difference

between them—the contribution of social information—tends

to zero. Adversity lowers the qualities and therefore takes

estimation away from the upper bound, and social infor-

mation can now impact more. This effect takes place in the

Bayesian model in equation (2.2), because the qualities are
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defined as probabilities (figure 4c). Therefore, the Bayesian

model may show super-aggregation in adversity not only

when coupled with a relative decision rule, but also through

the saturation near the upper bound.

To decouple the effects of saturation and relative decision

rules, we considered a decision rule that depends on the

difference of the qualities, Qy 2 Qx (Material and methods).
With this decision rule, Bayesian estimation predicts super-

aggregation in adversity when the initial estimated qualities

are high (dashed line in figure 4d ). In the range of very low

qualities we find the opposite effect, due to the lower

bound of the probability. However, social information

usually pushes the estimation towards the upper bound,

making the range for super-aggregation in adversity wider

than the range for the opposite effect, especially for large

groups (equation (4.16) in Material and methods).

2.3.3. Spread of the qualities through worsening of the
worst-case scenario

A third mechanism was found for the case in which adversity

modifies the values of the potential pay-offs behind each

option, rather than the probability of reaching them. In our

example of two doors, we defined the quality as the prob-

ability to reach the street safely. We may build a more

detailed model by detaching the probability that each door

reaches the street and its consequences (the pay-off behind

each option). A fire alarm does not change the probability

that each door leads to the street, nor the corresponding

pay-off for reaching the street (rhigh). Instead, it decreases

the pay-off for choosing the wrong door from a low value

rlow (detour to street) to an even lower pay-off r0low , rlow

(possibility of dying in a fire). Adversity thus increases the

contrast between a good and a bad choice, effectively rescal-

ing the estimation from the region between rlow and rhigh to a

wider region of the quality landscape between r0low and rhigh

(figure 4e). This rescaling results in a larger contribution of

the social information, leading to super-aggregation in

adversity for both relative and absolute decision rules

(figure 4f ) and for all combinations of the parameters

(Material and methods).

The opposite effect takes place when adversity affects the

gains of a good option, rather than the cost of a bad one

(Material and methods). Therefore, among adverse situations,

we expect the life-threatening ones—characterized by a

deterioration of the worst-case scenario—to produce stronger

super-aggregation in adversity.

Each of these three mechanisms can produce super-

aggregation in adversity by itself, but in general we may

observe several of them reinforcing each other, as, for

example, the solid lines in figure 4d,f .

2.4. Contrast with experimental data
We have tested whether decision models showing super-

aggregation in adversity compare well against experimental

data. We compared the spatial model shown in figure 2

with experimental data of groups of 10 fish (Fundulus
diaphanus) [7]. To modify the private information of the

fish, the authors sprayed different odours uniformly on the

water. Food odour was used to signal favourable conditions,

and alarm odour (released when a fish is killed by a predator)

to signal adversity. Experimenters then measured the distri-

bution of group sizes in each treatment. They found that

odours that signal adversity increased the cohesion in the

fish, measured as a higher probability of finding large

groups (figure 5a, insets). Our spatial model reproduces

these data with an accuracy comparable to that of the

model originally proposed to describe them [7]. Our

approach has the advantage that the theory indicates what

parameter must change across conditions, while in previous
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models the increase in social attraction could be implemented

in several different ways. In our model, all parameters remain

constant across conditions except the private information G,

which we fitted to the data (figure 5a; see Material and

methods for details).

These results are too indirect to conclude that fish are

effectively implementing a Bayesian model with the values

of G recovered by our fit. However, they show that our

prediction for super-aggregation in adversity can be strong

enough to reproduce experimental results.

Super-aggregation in adversity may also take place in

humans, as suggested by the occurrence of sudden bank

runs [10–12] and human stampedes [13–19]. It is, however,

unclear whether these events actually emerge from super-

aggregation, from other causes such as sudden changes in

the private information towards a single preferred option, or

from a combination of both. Tests in these panic situations

are difficult, but our theory suggests that super-aggregation

in adversity should also happen when adversity is unrelated to

life-threatening situations. In these situations our prediction is

easy to test, and we did so using an existing dataset [49].
In this study, the experimental subject had to choose one

out of eight face-down cards and got a reward when the

chosen card was red. The subject could either choose one

card or rely on the opinion of another person—either a pro-

fessor or a student (figure 5b). Subjects were told the

proportion of red cards, so they had private information

about the probability of success. For this dataset, the exper-

imenters expected no relation between this probability of

success and the probability to rely on the other person’s

opinion [49]. However, the data show the trend predicted

by our theory: when subjects rely more on social information

the proportion of good cards is lower (figure 5c; Material and

methods).
3. Discussion
Our main result is that estimations and decisions naturally

imply, without extra hypotheses, super-aggregation in

adversity. It is, therefore, a parsimonious explanation for

the generality of super-aggregation in adversity, which
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should be common to all situations in which estimation

plays a role. This is consistent with the general presence of

super-aggregation in adversity [1–5,7], but of course does

not rule out additional mechanisms in particular situations,

such as collective protection or confusion effects in the case

of predation risk. Interestingly, our approach also makes pre-

dictions that are probably different from other explanations.

This is more dramatically seen in those cases in which our

approach ceases to predict super-aggregation in adversity.

This happens for very adverse situations when the decision

rule is not relative (figure 4d ). Also, we predict the opposite

effect, a form of dispersion in adversity, in the case in which a

higher pay-off decreases.

Our results are complementary to other mechanisms that

may increase aggregation in adversity in specific situations

[20–23], and in fact our geometric framework may naturally

include some of these models. For example, it can reproduce

the selfish-herd hypothesis [21] when the qualities are given

by the probability of surviving a predator attack (electronic

supplementary material, figure S2). In general, it is difficult

to disentangle different mechanisms in a given situation. For

example, the aggregation typically found when animals

explore a new set-up can also be due to increased uncer-

tainty in private information; the decreased aggregation

found experimentally as a response to food odour may be

a mechanism to reduce competition. Our results add a

new potential mechanism, to be considered along with the

classical ones.

Our results apply to the case when the presence of

other individuals in one particular option increases its

expected quality (i.e. we assume that Sy . Sx when y is

the majority option). This may not be the case when social

information is communicated through other means, such

as by how insistently an individual prefers one option.

In this case, the minority may drive the group towards a

given option [50,51] and, while the amplification of the

effect of social information will still exist, it may not lead to

observable super-aggregation. Super-aggregation in adver-

sity may also not exist if competition is strong, outweighing

the benefits of social information. In this case, we might

expect different—perhaps even opposite—trends. Some situ-

ations may be mixed, with super-aggregation in adversity

leading to high density around one of the options, in turn

leading to high competition. For example, super-aggregation

in adversity may lead to most people choosing the same

emergency exit in a building, producing increased compe-

tition for space when the crowd reaches the door and

obstructs it.

Our results may have implications on the neural architec-

tures behind optimal decisions. Optimal decisions leading to

super-aggregation in adversity may not require recomputing

the social terms Sx and Sy, opening the possibility of neural

systems in which social and non-social information are com-

puted by separate modules, but that can nevertheless

combine them optimally and efficiently. This would allow

decision-makers to swiftly adapt their social behaviour to

adverse conditions. Even in situations in which social infor-

mation changes substantially, a first-order approximation

that would emerge from this architecture would be to

update the non-social component and recompute the final

decision before updating the social component. Therefore,

the additional constraint of making fast decisions preserves

super-aggregation in adversity.
Our analysis has focused on symmetric private infor-

mation (all options have the same privately estimated

quality), which corresponds to maximum uncertainty about

what option is better. The mechanisms discussed are also at

work with asymmetric private information, but in this case

it is difficult to decouple the role of private and social infor-

mation. An additional confounder arises if the asymmetry in

private information between the options increases or

decreases in adversity, obscuring the effect of social infor-

mation. For example, many situations are characterized by

a sharp increase in asymmetry: people wandering in a build-

ing usually have different aims, but a fire alarm will direct

everyone towards the exit. This type of aggregation is compa-

tible with our results and fits in our framework, but our

results are applicable even when considering symmetric

options, as, for example, two identical emergency exits or

two equivalent escape routes from a predator. In general,

by sticking to the symmetric case, we have shown that

super-aggregation in adversity does not require any asymmetry

in the private information.

We have seen that super-aggregation in adversity is at the

core of decision-making. This finding does not exclude other

causes for the observed behaviours, but may be taken as a

reference result for decision-making before resorting to

more complex explanations.
4. Material and methods
4.1. Formal definition of super-aggregation in adversity
For a given decision-making model, we will say that super-

aggregation in adversity occurs whenever

@Py

@G
, 0, ð4:1Þ

where Py is the probability to choose the majority option and G is

the privately estimated quality (equal for all options because we

consider symmetric private information).

4.2. Super-aggregation in adversity with relative
decision rules

We start from the definition of super-aggregation in adversity

(equation (4.1)). If there are only two options (x and y), we

must have Px ¼ 1 2 Py. Therefore, decreasing Py necessarily

means decreasing Py/Px, so

@Py

@G
, 0 ,

@(Py=Px)

@G
, 0 ð4:2Þ

and from equation (2.6) we have that

@(Py=Px)

@G
¼ f 0

Qy

Qx

� �
@(Qy=Qx)

@G
, ð4:3Þ

where f 0( . ) is the derivative of f with respect to its argument,

which is always positive because f is by definition a monotoni-

cally increasing function. Therefore,

@(Py=Px)

@G
, 0 ,

@(Qy=Qx)

@G
, 0: ð4:4Þ

Putting together equations (4.2) and (4.4), super-aggregation in

adversity will take place whenever

@(Qy=Qx)

@G
, 0: ð4:5Þ

If the choice is among more than two options, a similarcondition

is sufficient (but not necessary) to produce super-aggregation in
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adversity. The probability to choose the majority option must

decrease if the ratio of this probability with respect to all other

probabilities decreases:

@Py

@G
, 0 (

@(Py=Pi)

@G
, 0 8 i = y: ð4:6Þ

With this and equation (4.4) (which is valid for any two options), we

have that

@(Qy=Qi)

@G
, 0 8 i = y ð4:7Þ

is a sufficient condition for super-aggregation in adversity when

there are more than two options.

For the Bayesian model in equation (2.1), Qy/Qx is given by

equation (2.4). Therefore,

@(Qy=Qx)

@G
¼

S�1
y � S�1

x

(Gþ (1� G)S�1
y )2

: ð4:8Þ

This expression is always negative because squared terms are

always positive and Sy . Sx because y is the majority option.

Therefore, the Bayesian estimation model with a relative decision

rule always produces super-aggregation in adversity.
 8
4.3. Absolute decision rules
We say that a decision rule is absolute when the probability to

choose option y is of the form

Py ¼ F(Qy �Qx), ð4:9Þ

where Qx, Qy are the qualities of options x and y, and F is any

monotonically increasing function.

Absolute decision rules give super-aggregation in adversity

whenever equation (4.1) is fulfilled. From equation (4.9),

@Py

@G
¼ F0(Qy �Qx)

@(Qy �Qx)

@G
, ð4:10Þ

where F0( . ) is the derivative of F with respect to its argu-

ment, which is always positive because F is monotonically

increasing. Therefore, @Py/@G , 0, @(Qy 2 Qx)/@G , 0, so

super-aggregation in adversity will take place whenever

@(Qy �Qx)

@G
, 0: ð4:11Þ

Absolute decision rules may emerge, for example, if the sub-

ject chooses y when Qy . Qx þ h, with h a random number: let

r(h) be the probability density function of h, and F(h) be its

cumulative distribution. Then, the probability to choose y is

equal to the probability to draw a value of h lower than Qy 2 Qx,

Py ¼ P(Qy . Qx þ h) ¼
ðQy�Qx

�1

r(h) dh ¼ F(Qy �Qx): ð4:12Þ

We see that F is a cumulative distribution, which is always mono-

tonically increasing. In figures 1 and 4, we have used

F ¼ (1þ e�Qy�Qx=l)�1: ð4:13Þ

This function is the cumulative distribution of the logistic

distribution, whose probability density function is r(h) ¼

e2h/ll21(1 þ e2h/l)22. We have chosen this distribution because

its cumulative density function has a simple analytical form;

all results hold regardless of the probability distribution that

we choose.

When combined with an absolute decision rule, the Bayesian

model will show super-aggregation in adversity when

@(Qy �Qx)

@G
¼

(Sy � Sx)((1� SxSy)G2 � 2Gþ 1)

(G(Sx � 1)þ 1)2(G(Sy � 1)þ 1)2
, 0: ð4:14Þ

The denominator of this expression is always positive, and

Sy 2 Sx is positive when y is the majority option. Therefore,
the whole expression is negative when

(1� SxSy)G2 � 2Gþ 1 , 0: ð4:15Þ

This inequality has only one solution for G . 0, which is

G .
1

1þ
ffiffiffiffiffiffiffiffiffiffi
SxSy

p : ð4:16Þ

Thus, there is super-aggregation in adversity in the range of

high G, and the opposite effect in the range of low G. The

higher the SxSy, the wider the range for super-aggregation

in adversity.

This result matches the intuition that the upper bound is

more important than the lower one because social information

tends to move the estimation towards the upper bound. In prin-

ciple, an individual choosing option x can indicate both that x is

a good option and/or that y is a bad one. Therefore, this choice

can increase Sx to the same degree as it decreases Sy. However,

experimental data show that social information usually has a

positive net effect, meaning that an individual that chooses x
increases Sx more than it decreases Sy (in our previous work

[30] we defined parameter k to measure this effect. All exper-

imental data, from three different species, were consistent with

k , 1, meaning that social information has a positive net

effect). When social information has a positive net effect, the pro-

duct SxSy increases as more individuals make choices. Therefore,

for large groups (or when behaviours are very informative) the

range of super-aggregation in adversity is very wide. For

example, in our previous study [30] we found that for zebrafish

SxSy ¼ 5n, where n is the total number of individuals that have

already chosen one of the two options. Therefore, equation

(4.16) tells us that a group of 10 zebrafish will show super-

aggregation in adversity for G . 3 � 1024, and a group of 15

for G . 6 � 1026. As a reference, in our experiments (that corre-

sponded to an intermediate level of adversity, with the fish in an

unknown environment but without any direct threat) we found

G � 0.08 [30].
4.4. Model with pay-offs
Let rlow be the reward provided by a bad option, and rhigh be

the reward provided by a good one, with rhigh � rlow � 0. The

estimated quality of option x is its expected pay-off

Qx ¼ krxl ¼ rlow þ (rhigh � rlow)P(xhigh), ð4:17Þ

and similarly for option y. By P(xhigh) we denote the estimated

probability that x has a high pay-off (rhigh), and equation (4.17)

takes into account that P(xlow) ¼ 1 2 P(xhigh). The private

estimate of the quality of the options is

G ¼ rlow þ (rhigh � rlow)Pprivate, ð4:18Þ

where Pprivate is the privately estimated probability that

an option contains a high reward (equal for all options, by

hypothesis). A change in private information may translate

into three different changes in the parameters: (i) a change in

the probability (Pprivate), (ii) a change in the lower pay-off

(rlow) and (iii) a change in the higher pay-off (rhigh). The first

type of change will depend on the specific model we use to

estimate the probabilities (we may use a Bayesian model as in

previous sections, or any other model). Here we will consider

the other two cases, in which the new private information

changes the values of the rewards that the subject expects

to obtain.

First, let us consider the case in which adversity means a

decrease in the lower reward (rlow), and the case of a relative

decision rule (equation (2.6)). From equation (4.18) we have

that @G/@rlow . 0 in all cases. Therefore, any derivative

with respect to G will have the same sign as a derivative

with respect to rlow, and equation (2.7) is now equivalent
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to @(Qy/Qx)/@rlow , 0. We compute this derivative from

equation (4.17), getting

@(Qy=Qx)

@rlow
¼

rhigh(P(xhigh)� P(yhigh))

(rlow þ (rhigh � rlow)P(xhigh))2
: ð4:19Þ

The denominator is always positive because it is squared, and

rhigh is positive by definition. We see that P(yhigh) . P(xhigh)

because y is the majority option, so the derivative is always

negative; super-aggregation in adversity always takes place.

We find the same result for an absolute decision rule. To test

for super-aggregation in adversity, we use equation (4.11), deriv-

ing with respect to rlow instead of G (as explained in the previous

paragraph). We get

@(Qy �Qx)

@rlow
¼ (P(xhigh)� P(yhigh)), ð4:20Þ

which is always negative because P(yhigh) . P(xhigh) when y is

the majority option. Therefore, cohesion always increases with

adversity.

By contrast, cohesion decreases in adversity when the higher

pay-off changes, keeping all other parameters constant. This has

a simple intuitive explanation: in adversity rhigh goes down,

becoming more similar to rlow. Therefore, the difference between

choosing correctly and choosing incorrectly decreases, making

any decision weaker. Mathematically, for relative decision rules

we evaluate the condition in equation (2.7) (in this case deriving

with respect to rhigh instead of G), finding

@(Qy=Qx)

@rhigh
¼

rlow(P(yhigh)� P(xhigh))

(rlow þ (rhigh � rlow)P(xhigh))2
: ð4:21Þ

The denominator of this expression is always positive, as is rlow

by definition. And P(yhigh) . P(xhigh) because y is the majority

option, so the derivative is always positive, meaning that cohe-

sion decreases in adversity when using a relative decision rule.

Now we consider an absolute decision rule (equation (4.11)):

@(Qy �Qx)

@rhigh
¼ (P(yhigh)� P(xhigh)), ð4:22Þ

which is always positive because Py . Px when y is the majority

option.

4.5. Spatial model
To simulate animals in motion, we discretize the space in pixels

(for two-dimensional simulations) or voxels (for three-dimen-

sional simulations). In each iteration, each individual chooses

one pixel and accelerates towards it, up to a maximum accelera-

tion (amax) and never exceeding a maximum velocity (vmax). The

probability to choose a given pixel is proportional to the prob-

ability that it is a good place according to the Bayesian model

in equation (2.1). Following Arganda et al. [30], we expand the

social term as Sy ¼ sNnear, where y here refers to a single pixel

(or voxel), Nnear is the number of individuals within a radius

rinfluence from pixel y and s is a parameter measuring the

reliability of the other individuals. We, therefore, have

P(pixel y is good) ¼ 1

1þ (1� G)=(GsNnear )
: ð4:23Þ

We also incorporate a limited field of view for each individual,

by assuming that an individual can only choose pixels within

a certain radius from itself, rview (this parameter is needed

to make the model computationally tractable even when the

individuals are not restricted to a finite region).

For the results in figure 3a,b and electronic supplementary

material, movie S1, we chose the parameters amax ¼ 0.1, vmax ¼

0.5, rinfluence ¼ 5, rview ¼ 100, s ¼ 3 and G as indicated in figure 3b
(space units are in pixels, and time units in iterations).

For the case of predator avoidance the model confirmed our

prediction of increased cohesion in adversity, but was not
realistic: in many conditions, when the predator appears, indi-

viduals cluster together but fail to run away from it (the social

attraction overcomes the repulsion from the predator). To

obtain more realistic results, we assume that an individual indi-

cates that the location towards which it is heading (rather than its

current location) is a good place. To account for this, we centre

the circle of influence of each individual at the position where

it will be in tprediction steps in the future (assuming it will keep

constant direction and speed), rather than at its current location.

With this addition, animals not only cluster together when the

predator appears, but also tend to align with each other along

the optimal escape route (figure 3c,d; electronic supplementary

material, movie S2; simulations with the same parameters as in

previous paragraph, but with tprediction ¼ 15).

In fact, alignment arises in adversity when individuals pay atten-

tion to future positions rather than current ones (tprediction . 0),

even if there is no predator present (electronic supplementary

material, movie S3; simulations with same parameters as for elec-

tronic supplementary material, movie S1, but with tprediction ¼ 15).

Thus, in our model the group does not need the asymmetry cre-

ated by the predator to reach a consensus direction. But if there

is a predator, the consensus direction will head away from it.

To reproduce the experimental data in figure 5a, we adjusted

the model parameters to mimic the experimental conditions [7].

The experiments were performed in a 100 � 100 � 10 cm tank,

and the experimenters considered that two fish belonged to the

same group when they were closer than 16 cm. Assuming a

scale of 1 pixel cm21, we simulated 10 individuals in a closed

two-dimensional space of 100 � 100 pixels and set rinfluence ¼

16 pixels. When performing the analysis, we considered that

two fish belonged to the same group when they were within

16 pixels. Then we searched the parameter space manually and

non-systematically, finding a good fit for amax ¼ 1, vmax ¼ 12,

rview ¼ 30, s ¼ 10, tprediction ¼ 0 and G as in figure 4a.

4.6. Model for the cards experiment
The experimental design presented social information as a separ-

ate option (figure 5b), so we have implemented the simplest

model that mimics this condition: the subject assumes that the

other person (the professor or the student) has a fixed probability

of making a correct choice (j). And the probability of making a

correct choice by choosing a card is nred/8, where nred is the

number of red cards. We then consider a nine-choice scenario:

the eight cards plus the social option. As the decision rule we

use probability matching, where the probability to choose one

option is proportional to its corresponding probability of success.

Then, the probability to rely on the other’s opinion is

P(rely on the other) ¼ j

jþ 8(nred=8)
: ð4:24Þ

We fit the parameter j to the experimental data by minimizing

the sum of the squared errors between the data and the model,

getting j ¼ 0.624 for the professor and j ¼ 0.328 for the student.
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