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Abstract: Formaldehyde (FA) is a ubiquitous compound used in a wide variety of industries, 

and is also a major indoor pollutant emitted from building materials, furniture, etc. Because 

FA is rapidly metabolized and endogenous to many materials, specific biomarkers for 

exposure have not been identified. In this study, we identified small metabolite biomarkers in 

urine that might be related FA exposure. Mice were allowed to inhale FA (0, 4, 8 mg/m3) 6 h 

per day for 7 consecutive days, and urine samples were collected on the 7th day of exposure. 

Liquid chromatography coupled with time of flight-mass spectrometry and principal 

component analysis (PCA) was applied to determine alterations of endogenous metabolites in 

urine. Additionally, immune toxicity studies were conducted to ensure that any resultant toxic 

effects could be attributed to inhalation of FA. The results showed a significant decrease in the 

relative rates of T lymphocyte production in the spleen and thymus of mice exposed to FA. 

Additionally, decreased superoxide dismutase activity and increased reactive oxygen species 

levels were found in the isolated spleen cells of exposed mice. A total of 12 small molecules 

were found to be altered in the urine, and PCA analysis showed that urine from the control and 

FA exposed groups could be distinguished from each other based on the altered molecules. 

Hippuric acid and cinnamoylglycine were identified in urine using exact mass and fragment 

ions. Our results suggest that the pattern of metabolites found in urine is significantly changed 
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following FA inhalation, and hippuric acid and cinnamoylglycine might represent potential 

biomarker candidates for FA exposure. 
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1. Introduction 

Formaldehyde (FA) is a ubiquitous organic compound that is colorless, flammable and has a 

distinctive strong odor [1]. Exposure to FA occurs in a wide variety of occupations and industries, 

including the construction, textile, paper product, resin, wood composite, insulating material, paint, 

plastic, fabric, adhesive, and cosmetic industries [2,3]. FA is also a major indoor air pollutant emitted 

from building materials, furniture, chipboards, fabrics, as well as in heating and cooking fumes [4,5]. 

Additionally, FA is an endogenous metabolite and essential metabolic intermediate in all cells. 

FA has been recognized as a carcinogen and strong mutagenic agent by the International Agency for 

Research on Cancer, and several studies have shown that FA induces leukemia and formation of 

squamous-cell carcinomas in the nasal mucosa [6].While FA predominantly causes allergic reactions 

such as contact dermatitis and occupational asthma, it can also produce adverse effects on immunity, 

which may alter lymphocyte subpopulations and cytokine levels in exposed individuals [7,8].  

Because FA is both rapidly metabolized and endogenously present [9,10], inhalation of FA does not 

seem to lead to its increased concentration in blood and, therefore, specific biomarkers for FA exposure 

have not been identified. It has been reported that FA concentrations in blood samples obtained from 

volunteers who inhaled 1.9 ppm FA for 40 min did not differ from pre-exposure concentrations [11].  

To differentiate between exogenous and endogenous FA, rats were exposed to stable isotope 

(13C)-labeled FA by inhalation at 10 ppm for 6 h; however, the results showed no subsequent increase in 

blood FA concentrations [12]. 

Regardless of these findings, many investigators are conducting studies to identify biomarkers of FA 

genotoxicity and cytotoxicity in other tissues. In Costa’s study, the frequency of sister chromatic 

exchanges in peripheral blood lymphocytes were significantly increased in FA exposed workers [13].  

A study conducted by Schlosser [14] showed that levels of cross-links were generally higher in workers 

exposed to FA for longer periods, suggesting that DNA–protein cross-links can be used as a marker for 

biological monitoring of FA exposure. In Zhang’s study [15], the leukemia-related chromosome 

changes of monosomy 7 and trisomy 8 were found in the peripheral blood lymphocytes of workers 

exposed to FA; however, other studies have reported conflicting results. In Kun Lu’s study [16], 

exogenous FA DNA-adducts were only found in the nasal passages of rats exposed to FA, which 

supports a cytotoxic mechanism for carcinogenesis in the respiratory nasal epithelium, but does not 

address the mechanism for leukemia. 

In recent decades, metabonomic approaches have been utilized when screening for metabolic 

products in biological fluids and tissues that might be useful for determining the toxicity of various 

compounds [17]. Metabolites are the intermediates and products of metabolism, and must be derived 

from the actions of proteins and the genes that code them [18]. In many cases, observed changes in 

metabolites can be related to a specific chemical exposure, clinical syndrome or disease [19]. 
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Metabonomic approaches have been shown to be useful for monitoring exposure to environmental 

chemicals, determining preclinical toxicities, and identifying biomarkers of disease, and are applicable 

for use with samples obtained by non-invasion methods, such as urine samples [20,21]. 

In this study, we sought to determine whether the profile of endogenous metabolites in urine changed 

following exposure to FA, even though previous studies could not detect significant changes in the 

levels of FA in blood and urine. Assays for immune toxicity were used to determine whether a toxic 

event had been induced, liquid chromatography coupled with time of flight-mass spectrometry 

(LC-TOF-MS) was applied to examine variations of small molecule metabolites, and principal 

component analysis (PCA) was used to identify potential biomarkers. 

2. Results and Discussion 

2.1. Effects of FA on Immune Organs and Function 

Immune cells undergo maturation in the spleen and thymus, and we therefore examined the spleen 

and thymus weights of mice in the three experimental groups; the results are shown in Figure 1.  

There were significant decreases in the spleen and thymus weights of FA exposed mice compared to the 

corresponding weights in control mice. There was also a significant decrease in T lymphocyte 

proliferation in the FA exposed groups (Table 1). These findings agreed with those in previous reports 

which stated that FA produced significant decreases in T-cell numbers and lymphocyte proliferation 

both in vivo and in vitro [7,8,22]. Additionally, previous studies reported that FA metabolism capable of 

generating ROS [17] was observed in the bone marrow, peripheral blood mononuclear cells, liver and 

spleen [23,24]. 

Figure 1. Immune organ coefficients of formaldehyde (FA) exposed mice compared with 

control mice. * Significant difference compared with control group (p < 0.05). 

 

Table 1. T lymphocyte proliferation rates in spleen cells of FA exposed mice. 

Dose (mg/m3) Absorbance (A) Proliferation Rate 

0 0.485 ± 0.022 1 
4 0.235 ± 0.038 * 0.485 
8 0.208 ± 0.032 * 0.429 

* Significant difference compared with control group (p < 0.05). 
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In our current study, the residual levels of ROS and SOD activity were examined, and the results are 

shown in Table 2. ROS levels were significantly increased in the spleen cells obtained from mice 

exposed to 8 mg/m3 FA, and SOD activity was significantly decreased in both the 4 and 8 mg/m3 

exposure groups. Based on these adverse effects on the immune organs and cells, we believe that 

exposure to FA by inhalation caused significant immune toxicity in this study. 

Table 2. ROS level and SOD activity in spleen cells from FA exposed mice. 

Dose (mg/m3) ROS Level (MFI) SOD (U/mg prot) 

0 2718.60 ± 355.47 10.80 ± 3.22 
4 2988.67 ± 394.04 5.33 ± 1.06 * 
8 3683.50 ± 332.06 * 2.26 ± 0.61 ** 

* Significant difference compared with control group (p < 0.05); ** Significant difference compared with 4 mg/m3 

group (p < 0.05). 

We originally sought to determine whether exposure to inhaled FA could produce biochemical 

changes, even if FA could not be detected in the blood and urine. We, therefore, utilized LC-TOF-MS to 

test for variations in the biochemical composition of urine following exposure to FA. 

2.2. LC/MS Fingerprinting of Urine from Mice Exposed to FA, and Principal Component Analysis 

Full-scan detection of quantitative information for urine metabonomics was obtained at the positive 

ion mode. As shown in Figure 2, there were significant differences in the total ion currents, especially 

from 4–12 min, obtained from the urine of mice in the control and FA exposed groups. These results 

suggest that certain endogenous metabolites may have been altered by FA exposure. 

Principal component analysis (PCA) is useful for distinguishing the amounts of biochemical endpoints 

retrieved from individual samples. Changes in metabolites were analyzed using one-way ANOVA  

(p < 0.05, fold-change ≥ 2), and PCA was used to select potential biomarker candidates that could 

differentiate between the control and FA exposed groups. A PCA score plot based on the urine metabolic 

profiles at different dose-points is shown in Figure 3. The urine samples tended to cluster at different 

locations at different doses, and the assembly of samples showed a unique metabolic pattern at each dose. 

In total, the results indicated that urine metabolic patterns significantly changed following FA inhalation. 

2.3. Discrimination of Changed Endogenous Metabolites 

Twelve common metabolites which showed significant alterations at two intervals were selected  

to undergo further analysis with LC-TOF-MS. For further identification, additional databases were 

searched according to exact mass and fragment ions as described in the methods section. Finally, two 

potential biomarker candidates for FA exposure (hippuric acid and cinnamoylglycine) were identified 

(Table 3), and found to be significantly down-regulated in the urine of FA exposed mice. In the present 

study, exposure to FA at concentrations of 4 and 8 mg/m3 produced 0.49- and 0.07-fold changes, 

respectively, in the hippuric concentrations of urine. However, the same FA exposures failed to produce 

dose-dependent changes in concentrations of cinnamoylglycine (0.34- and 0.37-fold changes at FA 

exposures of 4 and 8 mg/m3 respectively). 
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Figure 2. Total ion currents of mouse urine samples obtained from control group (A);  

FA 4 mg/m3 group (B); and FA 8 mg/m3 group (C) after 7 days of FA exposure as 

determined using LC/MS (positive mode). 

 

Figure 3. PCA score plot resulting from urine metabolic profiling of control (■), FA 4 mg/m3 

group (●), and FA 8 mg/m3 group (▲) on day 7. 
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Hippuric acid has been used as a biomarker for exposure to toluene, and is formed by coenzyme A 

catalyzed conjugation of benzoic acid with glycine [25]. Additionally, hippuric acid is a component of 

non-protein nitrogen containing metabolites which result from protein and nucleic acid metabolism, and 

are found in urine [26]. Accordingly, down-regulation of hippuric acid levels has been reported in cases 

of renal disease [27,28]. In the present study, urinary levels of hippuric acid were significantly decreased 

in the FA inhalation group. This result suggests a potential toxicity related to down-regulation of 

hippuric acid; however the mechanism for such toxicity is unclear. Further investigations into this 

mechanism might focus on the liver and kidney toxicities induced by FA. 

Table 3. Identification of significantly different metabolites in the urine of mice by 

LC-TOF-MS analysis. 

No. M + H 
Retention Time 

(min) 
Changes in FA Groups 

MS/MS Fragmentation 

(20V) 
Metabolites 

1 180.0655 6.7560 down 
(10V) 77.0389, 105.0336, 

106.0372 
Hippuric acid 

2 206.0845 1.6843 down 
103.0539, 104.0572,  

131.0485, 132.0515 
Cinnamoylglycine 

3 313.1387 1.4592 down 
85.0284, 120.0439, 189.9947, 

190.9969, 191.9917 
unknown 

4 396.1673 8.5375 down 
97.1007, 115.0574, 125.0948, 

203.1085, 397.1463 
unknown 

5 467.1609 7.0492 down 
261.1174, 305.1073, 306.1103, 

467.1604, 468.162 
unknown 

6 202.1184 1.2264 down 
60.0812, 70.0658, 71.0599, 

85.0289, 100.0757 
unknown 

7 461.2593 7.1166 down 
86.0953, 102.0535, 183.1111, 

217.0805, 243.1319 
unknown 

8 473.2956 8.5641 down 
112.0533, 201.0343, 203.0139, 

215.998, 257.1149 
unknown 

9 105.0369 6.7562 down (low abundance) unknown 

10 326.1070 1.7726 down 
149.0443, 166.0714,  

194.0662, 195.068 
unknown 

11 204.1244 1.2209 down 
57.036, 58.0683, 60.0835, 

71.0605, 85.0308 
unknown 

12 568.27 1.4622 down (low abundance) unknown 

Cinnamoylglycine might be regulated by PPAR-α, a member of the nuclear receptor super family  

that functions in lipid metabolism. This is suggested by the finding that levels of cinnamoylglycine  

were increased nine fold in the urine of mice treated with the PPAR-α activator Wy-14,643 [29]. 

Cinnamoylglycine has also been found concordantly and significantly altered in the tissues and serum of 

mice with kidney cancer [30]. FA might induce down-regulation of cinnamoylglycine levels through 

PPAR-α inhibition. Further investigations into the mechanism of cinnamoylglycine regulation may 

provide new clues for understanding the toxic mechanism of FA. 
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3. Experimental Section 

3.1. Animals and FA Exposure 

All animals’ experiments were carried out in strict accordance with the recommendations of the 

Guide for the Care and Use of Laboratory Animals of the State Committee of Science and Technology of 

the People’s Republic of China. The protocol of experiments was reviewed and approved by the 

Research Ethics Committee of the Southeast University (approval number: 20,120,036).  

Eighteen Balb/C mice (nine males and nine females, weighing 18–22 g) were obtained from the 

laboratory animal center of Nanjing Medical University (Nanjing, China, License Number: SCXK (su) 

2002-0031). The mice were acclimatized for 1 week in a specific-pathogen free animal facility prior  

to administration of substances. The animals were maintained under a 12-h light/12-h dark cycle at  

a temperature of 25 ± 2 °C, and relative humidity of 45%–65%. 

Three male mice and three female mice were randomly assigned to one of three groups consisting of 

two FA (AR, Xilong Chemical Co., Ltd., Shantou, China) exposure groups (4 and 8 mg/m3) and  

a non-exposed control group. Mice in the exposure groups were exposed to FA for 6 h per day for  

7 consecutive days in an 8050 G-inhalation exposure chamber (Hepu, Co., Ltd., Tianjin, China). During 

the inhalation exposure, air samples were collected from the chamber, and FA concentrations were 

monitored. The chamber parameters used during exposure were temperature, 22 ± 1 °C; humidity, 45%; 

gas flow rate, 3 L/min. Urine samples were collected on the 7th day of exposure, and the mice were then 

sacrificed. The spleen and thymus of each mouse were excised and weighed, and the relative organ 

weights were calculated as the ratio of the organ weight and body weight. 

3.2. FA Induced Immune Toxicity to Spleen Cells 

Lymphocyte proliferation studies were conducted as follows. The spleen cells of each mouse  

were isolated respectively, plated at a density of 105 cells/well, and co-cultured with ConA (5 μg/mL)  

in 96-well plates. The cells were cultured for 48 h at 37 °C in an atmosphere of 5% CO2, and  

then centrifuged at 1000× g for 10 min. Lymphocyte proliferation was examined using the  

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide method. ROS levels and SOD 

activity in spleen cells were detected with a reactive oxygen species assay kit (Nanjing Keygen Biotech. 

Co., Ltd., Nanjing, China) and a superoxide dismutase assay kit, respectively (Nanjing Jian Cheng 

Bioengineering Institute, Nanjing, China). 

The oxygen species assay was based on the ROS dependent fluorescence intensity (MFI) as detected 

by a fluorescent probe containing 2',7'-dichlorofluorescin diacetate. SOD activity was defined as the 

reduction rate of superoxide anions determined by a colorimetric method. 

3.3. Sample Preparation and HPLC/MS Analysis 

Non-targeted analyses were used to identify altered patterns of metabolites in urine in an Agilent 

6224 TOF LC-MS system (Agilent), and the molecules obtained from the non-targeted analyses were 

identified by LC/6530 Q-TOF-MS (Agilent, Santa Clara, CA, USA). Urine samples were thawed at 

room temperature and centrifuged at 13,000× g for 15 min at 4 °C. Then, 300 μL of methanol was added 
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to a 100-μL aliquot of urine, and the solution was vortex mixed to precipitate proteins. The supernatants 

were then centrifuged at 13,000× g for 15 min at 4 °C and transferred to auto-sampler vials. For LC-MS 

detection, a 1-μL aliquot of each sample was injected onto a ZORBAX Eclipse Plus C18 column  

(3.00 mm × 100 mm × 1.8 μm, Agilent) housed in TOF LC-MS system. The mobile phases were 0.1% 

formic acid in water (A) and 0.1% formic acid in acetonitrile (B), and the flow rate was 0.4 mL/min.  

The column and auto sampler were maintained at 35 and 4 °C, respectively, and the positive ion mode 

was set for the mass detection. The source parameters used were a drying gas flow rate of 9 L/min,  

gas temperature of 350 °C, nebulizer gas pressure of 40 psig, Vcap of 4000 V, fragmentor of 150 V, 

skimmer of 60 V, and scan range of m/z 50–1000. The tuning calibration solution (Agilent) was used as 

the lock mass (m/z = 121.050873, 922.009798) at a flow rate of 30 μL/min, via a lock spray interface for 

accurate mass measurement. 

The metabolites obtained from non-targeted analyses were identified by MS/MS analysis  

conducted in a targeted MS/MS mode with collision energies of 10, 20, and 40 V, and a scan rate of  

1 (MS/MS) scans/s. 

3.4. Processing of Metabolite Data 

Data obtained from LC-MS studies were analyzed using Masshunter Data Analysis Software  

(Ver B.02.01, Agilent Technologies, Barcelona, Spain). The molecular features of various samples were 

analyzed using Masshunter Qualitative Analysis Software (Agilent Technologies), and methods based 

on the Molecular Feature Extractor (MFE) algorithm. Finally, Masshunter Mass Profiler Professional 

Software (Ver B.02.02, Agilent Technologies) was used to perform non-targeted analyses of extracted 

features, which showed a minimum absolute abundance of 2000 counts and a minimum of two ions. 

Data from PCA analysis were used to identify several distinct variables that might serve as potential 

biomarkers. Compounds from different samples were aligned using an RT window of 0.2% ± 0.15 min 

and a mass window of 10 ppm ± 2.0 mDa. To correct for individual bias, only common features found in 

at least 75% of samples under the same conditions were analyzed. The metabolites with exact masses 

were searched in various databases (METLIN, HMDB, LIPID MAPS and KEGG). 

3.5. Statistics 

The methods used for non-targeted metabonomic analyses are described in the data processing 

section of this paper. Other statistical analyses were performed using SPSS 15.0 software (SPSS, 

Chicago, IL, USA). Multiple comparisons were analyzed using one-way ANOVA, and p-values <0.05 

were regarded as statistically significant. 

4. Conclusions 

Small molecule metabolite biomarker candidates found in the urine of Balb/c mice exposed to 

inhaled FA were investigated using an LC-MS-based metabonomics approach. Significant decreases in 

T lymphocyte proliferation rates in the spleen and thymus were found to characterize the immune 

toxicity induced by FA. Additionally, increased ROS levels accompanied by decreased SOD levels in 

the spleen support the presence of injury to the immune system. Levels of 12 small molecule metabolites 
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were found to be altered in the urine of mice exposed to FA, and PCA analysis showed that urine from 

the control and FA exposed mice could be discriminated based on this information. Hippuric acid and 

cinnamoylglycine with two interval changes were identified using exact mass and fragment ions. The 

molecular mechanisms of how FA induced the decreased urine levels of hippuric acid and cinnamoylglycine 

are still unknown and still need to be resolved. However, several studies have suggested that hippuric 

acid levels are altered in the presence of abnormal liver and kidney function, and cinnamoylglycine is a 

biomarker for activation of PPAR-α and altered in kidney cancer. The decreased levels of hippuric acid 

and cinnamoylglycine in urine might serve as biomarker candidates for FA exposure. Actually, hippuric 

acid and cinnamoylglycine are biomarkers for an adverse effect of FA and appropriate controls for other 

compounds that have a similar effect have to be performed to exclude false positive results. In 

conclusion, our study identified potential new biomarker candidates for FA exposure, and such markers 

may assist in understanding how exposure to high levels of FA can result in serious injuries, even when 

excess FA cannot be detected in blood and urine. 

Acknowledgments 

We acknowledge financial support received from the National Natural Science Foundation of China 

(Grant No.: 81373034), and the Natural Science Foundation of Jiangsu province (Grant No.: BK2011605). 

Author Contributions 

The manuscript was wrote and the experiments were designed by Juan Zhang; the animal experiments 

were performed by Yue Chen and kehong Tan; the LC/MS fingerprinting and discrimination of changed 

endogenous metabolites were performed by Rongli Sun and Haiyan Wei and the quality of the experiment 

and manuscript were controlled by Lihong Yin and Yuepu Pu. The completion of manuscript was through 

contributions from all authors, and all authors approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Reuss, G.; Disteldorf, W.; Gamer, A.O; Hilt, A. Formaldehyde. In Ullmann’s Encyclopedia of 

Industrial Chemistry, 6th ed.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2003; 

Volume 115, pp. 1–34. 

2. Bono, R.; Vincenti, M.; Schiliro, T.; Scursatone, E.; Pignata, C.; Gilli, G. N-Methylenvaline in a 

group of subjects occupationally exposed to formaldehyde. Toxicol. Lett. 2006, 161, 10–17. 

3. Zhong, W.; Que Hee, S.S. Formaldehyde-induced DNA adducts as biomarkers of in vitro human 

nasal epithelial cell exposure to formaldehyde. Mutat. Res. 2004, 563, 13–24. 

4. Hodgson, A.T.; Beal, D.; McIlvane, J.E.R. Sources of formaldehyde, other aldehydes and terpenes 

in a new manufactured house. Indoor Air 2002, 12, 235–242. 

5. Salthammer, T. Formaldehyde in the ambient atmosphere: From an indoor pollutant to an outdoor 

pollutant? Angew. Chem. Int. Ed. Engl. 2013, 52, 3320–3327. 



Int. J. Mol. Sci. 2014, 15 16467 

 

 

6. Straif, K. The IARC monographs, Vol: 100: A review and update on occupational carcinogens.  

In Proceedings of the International Agency for Research on Cancer, Lyon, France, 23 October 2010. 

7. Poirier, M.; Fournier, M.; Brousseau, P.; Morin, A. Effects of volatilearomatics, formaldehydes, 

and phenols in tobacco smoke on viability and proliferation of mouse lymphocytes. J. Toxicol. 

Environ. Health A 2002, 65, 1437–1451. 

8. Baj, Z.; Majewska, E.; Zeman, K.; Pokoca, L.; Dworniak, D.; Paradowski, M.; Tchórzewski, H. 

The effect of chronic exposure to formaldehyde, phenol and organic chlorohydro carbons on 

peripheral blood cells and the immune system in humans. J. Investig. Allergol. Clin. Immunol. 

1994, 4, 186–1891. 

9. Overton, J.H.; Kimbell, J.S.; Miller, F.J. Dosimetry modeling of inhaled formaldehyde: The human 

respiratory tract. Toxicol. Sci. 2001, 64, 122–134. 

10. Heck, H.d’A.; White, E.L.; Casanova-Schmitz, M. Determination of formaldehyde in biological 

tissues by gas chromatography/mass spectrometry. Biomed. Mass Spectrom. 1982, 9, 347–353. 

11. Heck, H.d’A.; Chin, T.Y.; Schmitz, M.C. Distribution of (14C) formaldehyde in rats after inhalation 

exposure. In Formaldehyde Toxicity; Gibson, J.E., Ed.; Hemisphere: Washington, DC, USA, 1983; 

pp. 26–37. 

12. Kleinnijenhuis, A.J.; Staal, Y.C.; Duistermaat, E.; Engel, R.; Woutersen, R.A. The determination of 

exogenous formaldehyde in blood of rats during and after inhalation exposure. Food Chem. Toxicol. 

2013, 52, 105–112. 

13. Costa, S.; García-Lestón, J.; Coelho, M.; Coelho, P.; Costa, C.; Silva, S.; Porto, B.; Laffon, B.; 

Teixeira, J.P. Cytogenetic and immunological effects associated with occupational formaldehyde 

exposure. J. Toxicol. Environ. Health A 2013, 76, 217–229. 

14. Schlosser, P.M.; Lilly, P.D.; Conolly, R.B.; Janszen, D.B.; Kimbell, J.S. Benchmark dose risk 

assessment for formaldehyde using airflow modeling and a single-compartment, DNA–protein 

cross-link dosimetry model to estimate human equivalent doses. Risk Anal. 2003, 23, 473–487. 

15. Zhang, L.; Tang, X.; Rothman, N.; Vermeulen, R.; Ji, Z.; Shen, M.; Qiu, C.; Guo, W.; Liu, S.; 

Reiss, B.; et al. Occupational exposure to formaldehyde, hematotoxicity, and leukemia-specific 

chromosome changes in cultured myeloid progenitor cells. Cancer Epidemiol. Biomark. Prev. 

2010, 19, 80–88. 

16. Lu, K.; Collins, L.B.; Ru, H.; Bermudez, E.; Swenberg, J.A. Distribution of DNA adducts caused by 

inhaled formaldehyde, is consistent with induction of nasal carcinoma but not leukemia. Toxicol. Sci. 

2010, 16, 441–451. 

17. Bouhifd, M.; Hartung, T.; Hogberg, H.T.; Kleensang, A.; Zhao, L. Review: Toxico metabolomics. 

J. Appl. Toxicol. 2013, 33, 1365–1383. 

18. Nicholson, J.K.; Lindon, J.C. Systems biology: Metabonomics. Nature 2008, 455, 1054–1056. 

19. Robertson, D.G.; Watkins, P.B.; Reily, M.D. Metabolomics in toxicology: Preclinical and clinical 

applications. Toxicol. Sci. 2011, 120 (Suppl. 1), S146–S170. 

20. Roux, A.; Lison, D.; Junot, C.; Heilier, J.F. Applications of liquid chromatography coupled to mass 

spectrometry-based metabolomics in clinical chemistry and toxicology: A review. Clin. Biochem. 

2011, 44, 119–135. 

21. Bujak, R.; Daghir, E.; Rybka, J.; Koslinski, P.; Markuszewski, M.J. Metabolomics in urogenital 

cancer. Bioanalysis 2011, 3, 913–923. 



Int. J. Mol. Sci. 2014, 15 16468 

 

 

22. Hosgood, H.D.; Zhang, L.; Tang, X.; Vermeulen, R.; Hao, Z.; Shen, M.; Qiu, C.; Ge, Y.; Hua, M.; 

Ji, Z.; et al. Occupational exposure to formaldehyde and alterations in lymphocyte subsets. Am. J. 

Ind. Med. 2013, 56, 252–257. 

23. Ye, X.; Ji, Z.; Wei, C.; McHale, C.M.; Ding, S.; Thomas, R.; Yang, X.; Zhang, L.  

Inhaled formaldehyde induces DNA-protein crosslinks and oxidative stress in bone marrow and 

other distant organs of exposed mice. Environ. Mol. Mutagen. 2013, 54, 705–718. 

24. Zhang, Y.; Liu, X.; McHale, C.; Li, R.; Zhang, L.; Wu, Y.; Ye, X.; Yang, X.; Ding, S. Bone marrow 

injury induced via oxidative stress in mice by inhalation exposure to formaldehyde. PLoS One 

2013, 8, e74974, doi:10.1371/journal.pone.0074974. 

25. Gonzalez, K.C.; Sagebin, F.R.; Oliveira, P.G.; Glock, L.; Thiesen, F.V. A retrospective study 

analysis of urinary hippuric acidlevels in occupational toxicology exams. Cienc. Saude Colet. 2010, 

15 (Suppl. 1), 1637–1641. 

26. Yang, Y.D. Simultaneous determination of creatine, uricacid, creatinine and hippuric acid in urine 

by high performance liquid chromatography. Biomed. Chroma-togr. 1998, 12, 47–49. 

27. Liebich, H.M.; Bubeck, J.I.; Pickert, A.; Wahl, G.; Scheiter, A.J. Hippuric acid and 

3-carboxy-4-methyl-5-propyl-2-furanpropionic acid in serum and urine. Analytical approaches and 

clinical relevance in kidney diseases. Chromatograph 1990, 500, 615–627. 

28. Zhao, Y.Y.; Lei, P.; Chen, D.Q.; Feng, Y.L.; Bai, X. Renal metabolic profiling of early renal injury 

and renoprotective effects of Poria cocos epidermis using UPLC Q-TOF/HSMS/MSE. J. Pharm. 

Biomed. Anal. 2013, 81–82, 202–209. 

29. Zhen, Y.; Krausz, K.W.; Chen, C.; Idle, J.R.; Gonzalez, F.J. Metabolomic and genetic analysis of 

biomarkers for peroxisome proliferator-activated receptor alpha expression and activation.  

Mol. Endocrinol. 2007, 21, 2136–2151. 

30. Ganti, S.; Taylor, S.L.; Abu Aboud, O.; Yang, J.; Evans, C.; Osier, M.V.; Alexander, D.C.; Kim, K.; 

Weiss, R.H. Kidney tumor biomarkers revealed by simultaneous multiple matrix metabolomics 

analysis. Cancer Res. 2012, 72, 3471–3479. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


