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Abstract: This work reports the development of ultralight interwoven ultrathin graphitic carbon
nitride (g-CN) nanosheets for use as a potential adsorbent in a passive sampler (PAS) designed to
bind Hg2+ ions. The g-CN nanosheets were prepared from bulk g-CN synthesised via a modified
high-temperature short-time (HTST) polycondensation process. The crystal structure, surface
functional groups, and morphology of the g-CN nanosheets were characterised using a battery
of instruments. The results confirmed that the as-synthesized product is composed of few-layered
nanosheets. The adsorption efficiency of g-CN for binding Hg2+ (100 ng mL−1) in sea, river, rain,
and Milli-Q quality water was 89%, 93%, 97%, and 100%, respectively, at natural pH. Interference
studies found that the cations tested (Co2+, Ca2+, Zn2+, Fe2+, Mn2+, Ni2+, Bi3+, Na+, and K+) had
no significant effect on the adsorption efficiency of Hg2+. Different parameters were optimised to
improve the performance of g-CN such as pH, contact time, and amount of adsorbent. Optimum
conditions were pH 7, 120 min incubation time and 10 mg of nanosheets. The yield of nanosheets
was 72.5%, which is higher compared to other polycondensation processes using different monomers.
The g-CN sheets could also be regenerated up to eight times with only a 20% loss in binding efficiency.
Overall, nano-knitted g-CN is a promising low-cost green adsorbent for use in passive samplers or as
a transducing material in sensor applications.
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1. Introduction

Mercury remains one of the most hazardous pollutants causing severe health problems in humans
and animals [1]. Furthermore, mercury is harmful at trace concentrations and in its organic form
can bioaccumulate and biomagnify up the food chain as highly toxic methylmercury (MeHg) [1].
Despite the work of the Minamata Convention, many people remain exposed to potentially hazardous
levels of mercury. For example, mercury that is used to extract the gold from the ore in artisanal
gold mining remains in the tailings dam after the washing process, where it settles out and leaches
into the groundwater [2]. The communities (often poor and remote) living near these gold mines are
exposed to the mercury in the water and soil and to the MeHg in their diet, which can have serious
health implications, especially for children. The long-term monitoring of Hg in these often isolated
and remote locations creates a need for passive samplers (PAS) made from cheap, robust, and selective
adsorbent materials.
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The literature reveals several types of adsorbents that have been investigated for monitoring
or remedial applications regarding metal ions in water. These include carbon nanotubes [3–5], clay
minerals [6], zeolites [7], natural and modified bentonite [8], graphene [9,10], and functionalized
adsorbents [11–13]. The latter have been shown to successfully remove cesium [14,15] palladium [16],
cobalt [17], mercury [18], dysprosium and lutetium [19], and copper [20] from wastewater.

The disadvantage of these materials is their complicated conjugation chemistries and poor
reusability, which limits their application. These materials, although effective adsorbents, either require
a significant number of sample preparation steps, large volumes, or are cost-prohibitive. The search
for an ideal adsorbent material, which is cheap, inexpensive, earth-abundant, green, and is capable of
selectively trapping mercury, remains a challenge.

One possible material that could meet this challenge is graphitic carbon nitride g-CN. Graphitic
carbon nitride is the most stable allotrope of carbon nitride and has a high bandgap energy (2.76 eV),
high porosity, a high number of surface active sites, is earth-abundant, has minimal surface defects
and is non-toxic and metal-free [21]. Moreover, nanosheets derived by the delamination of 2D layered
compounds are regarded as a novel class of nanostructured materials owing to their unique structural
attributes and ultimate two-dimensional anisotropy with extremely small (nano-scale) thicknesses.
These nanosheets also have unique physicochemical properties due to the quantum confinement
effect [21]. For instance, they possess exceptional mechanical, electronic, thermal, optical properties
compared to bulk nanomaterials [21,22]. Similar to graphite, g-CN also has a layered structure with
weak van der Waals interaction between the adjacent C-N layers. Also, the g-CN planes, constructed
via highly ordered tri-s-triazine units, contain many ideal coordination sites, where metal ions can
interact with the lone-pair electrons of nitrogen [23–25]. The single or few-layer structures made up of
thin layers with short inter-layer distances result in fast carrier transport of metal ions [26–28]. Also,
the triazine units, assembled on the thin lamellar structure, create a unique active nanostructure that
has an ultralight “knitted” structure, with a large surface area containing functional coordination
bonds ideal for capturing Hg2+. Importantly, g-CN materials are environmentally friendly, abundant
and inexpensive to produce [29]. So far, the practical application of g-CN (bulk and nanosheets) has
been limited to photocatalytic water splitting, photodegradation of dyes, bio-imaging, photocatalyst
and fluorescence applications [30,31]. It also has potential as an efficient adsorbent for use in PAS
and as a transducer material in sensor applications. In this study, we propose an efficient adsorbent
material based on ultrathin g-CN stratified interwoven “knitted” nanosheets (prepared via a novel
exfoliation method) for adsorbing Hg2+.

2. Material and Methods

2.1. Reagents

A SnCl2 (5% w/v) solution was prepared from SnCl2·2 H2O (analytical grade, Merck, Darmstadt,
Germany) in Milli-Q water containing 3 M H2SO4 (Merck, Darmstadt, Germany). A H2SO4 acid
solution (0.1 M) was prepared from H2SO4 (Merck, Darmstadt, Germany) in Milli-Q water; a KMnO4

solution (0.5% w/v) was prepared from KMnO4 (analytical grade, Merck, Darmstadt, Germany) in
Milli-Q water; and a NaOH solution (10 M) was prepared from NaOH (extra pure, Merck, Darmstadt,
Germany) in Milli-Q water. The dicyandiamide monomer (99%) was purchased from Sigma-Aldrich.
All other reagents are of analytical grade and used as supplied.

2.2. Sample Preparation

A standard stock solution of Hg2+ (10 mg mL−1) was prepared by dissolving an appropriate
amount of HgCl2 (Merck, Darmstadt, Germany) in 0.1 M HCl in isopropanol. Working solutions
(10, 100, and 1000 ng mL−1) were prepared by appropriate dilution of the stock solutions with Milli-Q
water. Working and stock solutions of Hg2+ were prepared daily and stored in the dark at 4 ◦C.
All glassware was cleaned by soaking for 12 h in a 5% detergent solution (Micro-90, Thermo Scientific,
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Strasbourg, France), rinsed with regular tap water followed by Milli-Q water and stored in a sealed
container. All reaction vessels were placed in 50% (v/v) concentrated HNO3 solution and heated at
55 ◦C for two days. After rinsing with Milli-Q water, the glassware was soaked in 10% (v/v) HCl for
24 h at room temperature, rinsed with Milli-Q water, filled with 1% HCl, and stored in polyethylene
plastic bags.

2.3. Synthesis of g-CN Nanosheets

Nanosheets were prepared from the bulk g-CN powder, which was synthesised from the monomer
according to [27] and [28]. In brief, 5 g of dicyandiamide (99%, Sigma Aldrich, St. Louis, MO, USA)
was dried in an inert atmosphere for 1 h, placed in a closed container and transferred to a preheated
furnace oven at 600 ◦C for 2 h. The as-obtained product was then left to cool to room temperature.
The resultant pale yellowish agglomerate was milled to a fine powder with a mortar and pestle. In this
paper, a novel method of thermal oxidation was used to produce the nanosheets. This approach avoids
the use of harsh chemicals [32] and is high-temperature short-time (HTST). Also, this method does
not result in any unexfoliated residue. Next, 3 g of the bulk g-CN was placed in a ceramic container,
covered with aluminium foil and heated to 550 ◦C for 2 h at 5 ◦C/min. The result was a light yellow
powder consisting of g-CN nanosheets. The yield of the final product was 72.5%, which is higher than
that reported in the literature [32].

2.4. Characterization

X-ray diffraction (XRD) patterns were recorded using a high-resolution X-ray powder
diffractometer (PANalytical X’Pert PRO) at a wavelength of CuKα1 = 1.5406 Å. Nanosheet structures
were determined using a Supra 35 VP scanning electron microscope (SEM) and ARSTEM—Atomic
resolution Cs corrected scanning transmission electron microscope (Jeol, JEM-ARM200CF, Peabody,
MA, USA). Height profile and the graphitic nature of the g-CN nanosheets were examined using a
Witec alpha 300 A atomic force microscope (AFM). Fourier transform infrared (FTIR) spectra were
obtained using an IFS 66/S spectrometer (Bruker) equipped with an integrating sphere (OPTOSOL)
while X-ray photoelectron spectroscopy (XPS) measurements of the nanosheets chemical composition
were performed using targeted factor analysis, TFA (Physical Electronics). The pressure in the XPS
analysis chamber was approximately 6× 10−8 Pa. The samples were excited over a spot area of 300 mm2

using monochromatic AlKα1, 2 radiation at 1486.6 eV. The generated photoelectrons were then detected
with a hemispherical analyser positioned at 45◦ to the surface normal. The energy resolution was
approximately 0.5 eV. Survey-scan spectra were acquired with a pass energy of 187.85 eV, while for
C1s, individual high-resolution spectra were recorded with a pass energy of 29.35 eV and an energy
step of 0.125 eV. All spectra were referenced to the main C1s peak of the carbon atoms, which was
assigned a value of 284.8 eV. The spectra were analysed using MultiPak v8.1c software (Ulvac-Phi Inc.,
Kanagawa, Japan, 2006) from Physical Electronics. The C1s spectra were fitted with asymmetrical,
Gauss–Lorentz function. Shirley-type background subtraction was used.

2.5. Cold Vapour Atomic Absorption Spectrometry (CVAAS)

2.5.1. Determination of Hg2+

After 120 min incubation, the Hg2+ solution (100 ng mL−1) with added nanosheets was centrifuged
at 11,000 rpm for 25 min at 22 ◦C, and the supernatant transferred to a clear glass vial for analysis.
The concentration of Hg2+ was determined by CVAAS using a mercury analyser Model Hg-201 (Sanso
Seisakusho Co. Ltd., Tokyo, Japan). An aliquot (1 mL) of the sample was transferred to the reaction
vessel, where it was reduced using a Tin (II) chloride solution and aerated until equilibrium was
reached. Acidic gasses were removed using an acid-gas trap (10% NaOH solution). The mercury
vapour was then introduced into the absorption cell via a four-way valve [33,34]. The amount of
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Hg2+ in the aqueous phase was calculated by comparing the peak height of the sample with the
corresponding peak height of the Hg2+ standard traceable to the NIST 3133 standard.

2.5.2. Determining the Amount of Adsorbed Hg2+

After centrifugation, the remaining g-CN pellet was dried in a desiccator. The total Hg content
was then measured with an RA-915+ Mercury Analyzer fitted with a pyrolysis cell (Lumex-Marketing
Ltd., St. Petersburg, Russia). The instrument is based on differential Zeeman atomic absorption
spectrometry using high-frequency light polarization modulation [35]. The g-CN sample was placed
into a quartz boat, which was inserted into the evaporator and heated to 800 ◦C. The released Hg
was then passed through the catalytic converter, where bound Hg becomes released and detected in
the analytical cell. The amount of Hg in the g-CN material was calculated by comparing the peak
area of the sample with the corresponding peak area of the standard reference material NIST 3133.
To calculate the overall mass balance, the mass of Hg determined in the aqueous phase was summed
with the mass of Hg in g-CN material. The sum was then compared to the theoretical mass of Hg
added before equilibration. All experiments were performed in triplicate. The overall experimental
setup and mode of analysis used in the present work are shown in Scheme 1.

Scheme 1. Schematic representation of the present work. (a) synthesis of nanosheets using the high-
temperature short-time (HTST) polycondensation process, (b) overall method used to analyze Hg2+.

2.5.3. Regeneration

After adsorption, the desorption of Hg2+ on g-CN was performed by washing g-CN with a 0.5 M
HCl solution followed with 90% ethanol. The finer nanosheets of g-CN were shaken (3 h), centrifuged
(12,000 rpm for 25 min), and then washed three times with Milli-Q quality water. The clean sample
was then dried in a vacuum oven at 30 ◦C, after which the g-CN sample was ready to use. This whole
procedure of adsorption and desorption was repeated for ten cycles.



Sensors 2019, 19, 3432 5 of 14

3. Results and Discussion

3.1. Characterisation of the As-synthesized g-CN Nanostructure Material

The morphology of the as-synthesized nanosheets was investigated using SEM, TEM, and AFM,
which confirmed the existence of a few layered nanosheet structures (Figure 1a–f), and the intactness
and visual appearance of the as-synthesized product. Figure 1a shows how the g-CN nanosheets in bulk
material are formed from densely packed agglomerated sheets. The sample was then further exfoliated
using enhanced polycondensation incubation. In the image are stacked piles of individual sheets with
slightly curved edges in a loose lamellar structure (Figure 1b). The observed structure agrees with
that reported in the literature [27,36]. TEM images show even finer details of the as-synthesized g-CN
nanosheets revealing twisted layers in the centre of the TEM grid (Figure 1c). At higher resolution,
the transparent nature of the individual nanosheets becomes apparent (Figure 1d) [37]. From the
AFM images (Figure 1e,f) and respective height profiles, the thickness of the g-CN nanosheets is
approximately 5 and 16 nm.

Figure 1. Morphological characteristics of as-synthesized graphitic carbon nitride (g-CN) nanosheets.
SEM images of g-CN nanosheets showing few-layered lamellar piled together (a and b). HR-TEM
image of g-CN with low (c) and high (d) magnification. AFM images of g-CN nanosheets and the
corresponding height profiles of different regions (e and f).

Fourier-transform infrared spectroscopy was used to characterize the functional groups present
on the nanosheets. The FTIR spectra (Figure 2a) shows a series of broad peaks at 3400 and 3000 cm−1

both characteristics of the stretching vibration of the N–H bond [38]. The vibrations imply that residual
-NH or -NH2 groups remain in the as-obtained g-CN nanosheets [39]. Peaks at 1232, 1312, 1433, and
1404 cm−1 correspond to the typical stretching vibration modes of C=N, while bands near 1544 and
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1632 cm−1 are ascribed to C–N stretching [40]. The sharp peak at 807 cm−1 is an out of plane bending
vibration characteristic of the tri-s-triazine unit [37–39]. The results indicate that amino functionality is
still present, and the surface functional groups of g-CN were retained after exfoliation. The TEM and
AFM observations corroborate the FTIR results.

Figure 2. Structural characteristics of as-synthesized nanosheets. (a) FTIR spectra of g-CN nanosheets
at the frequency range of 500–4000 cm−1, (b) XRD spectra of g-CN nanosheets, (c) Raman signature
profile of the nanosheets with distinct D and G bands, (d) XPS high resolution scan of C1, (e) N1 and (f)
full survey spectrum shows three peaks of carbon, nitrogen and oxygen.

The phase composition of g-CN is revealed by the XRD pattern (Figure 2b). Two peaks occur
at 2θ = 13.27◦ and 27.25◦ which correspond to the structural integrity of the packing motif of the
tris-triazine units (100) and the conjugated aromatic system (002), respectively [25]. The SEM, TEM,
and AFM images also support this observation. These data is firm evidence that few-layer g-CN
nanosheets were successfully achieved. The XRD results are also in agreement with results reported
elsewhere [27,30,36]. The graphitic nature of the material is also revealed in the Raman spectra
(Figure 2c), where the two diagnostic peaks at 1365 and 1547 cm−1 correspond to disordered amorphous
carbon (D band) and graphite (G band), respectively [41]. The band at 1547 cm−1 corresponds to
the C=N stretching vibration and explains the graphitic G band and reveals the graphitic nature
of the sample (Figure 2c). The above results confirm the intactness of the carbon backbone of the
as-synthesized material with peculiar features and signature peaks.

The XPS core level spectra of the g-CN nanosheets show that the structure of carbon and nitrogen
atoms in the as-synthesized sample are similar to the g-CN structure. In the high-resolution XPS
spectra (Figure 2d,e) two distinct peaks are located near 284.86 and 288.15 eV in the C1s spectrum.
The peak at 284.86, is typical for sp2 C–C bonds, while the peak at 288.15 eV corresponds to a sp2-bond
carbon in a N-containing aromatic ring (N=C-N), i.e., the backbone of the carbon species in the g-CN
nanosheets [42]. The N1s spectrum can be deconvoluted into three peaks: 398.6 eV, 400.1 eV, and
401.2 eV. The main peak at 398.6 eV corresponds to sp2 bonded N atom in the triazine rings (N=C-N),
while the lower-intensity peak at 400.1 eV is either a tertiary nitrogen N atom in N–(C)3 or a N atom
bonded to an H atom. The peak at 401.2 eV suggests the presence of an amino-functional group
(C–N–H), originating from the defective condensation of the melon structures. It has been reported
that tri-s-triazine units are interconnected with amino groups between the sheets [42]. In the survey
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spectrum (Figure 2f), only C, N, and O are observed. The O1s signal is likely atmospheric H2O, or CO2

molecules adsorbed on the g-CN surface—something that is confirmed by FTIR (Figure 1a) [43].

3.2. Effect of pH on the Binding of Hg2+ with g-CN

It is known from the literature that pH is a key factor influencing the binding of Hg2+ at the water
adsorbent interface [44]. The adsorption mechanism in the colloidal liquid interaction process depends
on the nature of the adsorbent surface, the target analyte and competition between target ions and
the hydrogen bonds on the available active binding sites on the adsorbent surface [45,46]. This study
investigated the adsorption of Hg2+ over a range of pH values from pH 2 to 10. Figure 3 shows the
effect of pH on the binding efficiency of Hg2+ at a concentration of 100 ng mL−1. The results show how
adsorption increases slowly from pH 2.0 to 6.0, with a sharp increase from pH 6.0 to 7.0. A similar
trend was observed by [47] and [48]. The highest adsorption efficiency was observed at pH 7. In an
acidic solution, the concentration of H+ ions increases. The effect is an increase in the competition
between Hg2+ and H+ ions for the active sites and as a result adsorption efficiency decreases (Figure 3).
Contrary to this, at pH 7 and above (pH 8 and pH 10), the H+ ions can be consummated and permit the
reaction to occur; however, Hg2+ ions in the solution precipitate as the colloidal precipitate Hg(OH)2.
Also, the formation of insoluble metal hydroxide species instead of free Hg2+ ions decreases adsorption
efficiency. In this case, the experiment did not include pH values above pH 10, and the increasing
binding efficiency with increasing pH can be explained by a decrease in competition between H+ and
the positively charged Hg2+ on the g-CN surface. At low pH (pH < 2–4), excessive protonation of
nitrogen’s lone pair of electrons occurs, resulting in a decrease in the number of available sorption sites
for Hg2+ [48]. A pH of 7 is optimal for Hg2+ adsorption.

Figure 3. The % recovery vs pH (2–10) under identical conditions.

3.3. Effect of Contact Time

To establish the optimal binding time of Hg2+ and to understand better the adsorption process,
adsorption was studied as a function of contact time (Figure 4). The adsorption patterns describe
the binding rate of the Hg2+ on the g-CN and is an important characteristic for defining adsorption
efficiency and helps in understanding better the adsorption mechanism [49–51]. Figure 4 shows
the adsorption profiles of Hg2+ vs time. The adsorption on g-CN nanosheets occurs slowly at first
(<60 min) and then increases with 99% recovery being achieved at around 120 min. After 120 min,
time no longer has an effect on adsorption since the binding sites on the g-CN nanosheets are saturated.
This phenomenon is commonly observed in adsorption studies [52].
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Figure 4. Effect of contact time on the binding of Hg2+ (100 ng mL−1) under ideal conditions. Agitation
speed = 210 (rpm), room temperature = 21 ◦C and optimized pH-7.

3.4. Effect of g-CN Concentration on Hg2+ Adsorption

The amount of g-CN is also an important parameter in the determination of binding percentage
and the binding efficiency of Hg2+. Figure 5a shows the amount of g-CN vs the amount of Hg2+

adsorbed by the nanosheets. The results suggest that at an optimised concentration (100 ng mL−1) of
Hg2+, the binding per cent increases as the g-CN content increases. This increase can be attributed to
an increase in surface area, greater competition for binding sites at a higher dose or an insufficient
amount of Hg2+ in solution compared to the number of available binding sites. The decrease in
binding efficiency (5 mg mL−1) is because some of the adsorption sites remain unsaturated during
the adsorption process (Figure 5a). The maximum amount of Hg2+ adsorbed was attained at about
10 mg mL−1 of g-CN and remained the same, even after increasing the amount of g-CN to 20 mg mL−1

(Figure 5a). Any further increase in the g-CN (40 mg mL−1) has a stalking or aggregation effect in the
solution, which affects the adsorption of Hg2+. Using an optimal concentration of g-CN (10 mg mL−1),
different amounts of Hg2+ were tested (Figure 5b). The synthesised nanosheet effectively adsorbs
all three concentration (10, 100 and 1000 ng mL−1) of Hg2+ (Figure 5b). It is worth noting that the
amount of g-CN nanosheets used in this study are much lower than for most of the nanomaterials
based adsorbents used for adsorbing of Hg2+ ions in water, while the adsorption efficiency of the
g-CN obtained by the modified polycondensation process is comparable with that of other adsorbent
materials reported in the literature [16,46,53–66].

Figure 5. Optimal studies of g-CN nanosheets at (a) different concentration of g-CN (5, 10, 20, and
40 mg mL−1) required to saturate Hg2+ (100 ng mL−1) under optimised incubation and (b) binding
efficiency of g-CN nanosheets (10 mg mL−1) at different concentration of Hg2+ (pH 7). The sample
volume was 3 mL.
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3.5. Determination of Hg2+ in Different Matrices

Adsorption experiments were performed in samples of sea, river, rain, and Milli-Q quality water to
test the practical application of the g-CN nanosheets for adsorbing Hg2+ (Figure 6). The procedure and
handling of samples were performed using prescribed standard protocols [33]. The samples were spiked
with a known concentration of Hg2+ (100 ng mL−1) solution. Good recoveries were achieved from
each of the four matrices: 89%, 93%, 97%, and 100%, respectively (Figure 6). The lower recovery (89%)
from seawater can be explained by the higher salinity and presence of solid particles that can interfere
with recovery by competing with Hg2+ for the binding sites on g-CN surfaces (Figure 6). Compared to
seawater, river (93%) and rainwater (97%) have relatively better recoveries. The protonation of ions in
the solution is also an essential parameter in determining binding efficiency. [67] Approximately, 100%
the Hg2+ was removed from the Milli-Q quality water.

Figure 6. Adsorption studies using sea, river, rain, and Milli-Q water spiked with 100 ng mL−1 of Hg2+.
The sample volume was 3 mL.

Selective detection of Hg2+ is challenging due to the presence of different metal ions in
environmental samples. Therefore, the selectivity toward the Hg2+ ions was determined by measuring
recovery in the presence of nine possible interfering ions: Co2+, Ca2+, Zn2+, Fe2+, Mn2+, Ni2+, Bi3+, Na+,
and K+. Figure 7 shows the % recovery of Hg2+ in the presence of each metal ion. The concentration for
each interfering ion was 500 ng mL−1 and 100 ng mL−1 for Hg2+. The results (Figure 7) showed little
or no interference by any of the interfering metal ions and that the g-CN sheets are highly selective
towards Hg2+ under optimum conditions. This selectivity originates from the coordination between
the –NH/NH2 and the Hg2+ ions [68].

Figure 7. Potential influence of metal ions on the % recovery of Hg2+ (100 ng mL−1 Hg2+ and 500 ng
mL−1 of Co2+, Ca2+, Zn2+, Fe2+, Mn2+, Ni2+, Bi3+, Na+, and K+).
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3.6. Regeneration of g-CN for Repeated Trials

The ability to regenerate the g-CN nanosheets using sorption and desorption cycles for Hg2+ is
essential for their long-term use, eco-optimisation, and for reducing device costs. Stable g-CN sheets
also open doors for other opportunities, for example, in sensor applications as potential transducers.
In this case, the adsorbent was regenerated using HCl (0.5 M), and 90% ethanol. Figure 8 shows
the binding efficiency vs the number of regeneration cycles measured in pure water. The sorption
efficiency of g-CN decreases by about 7.3% over seven cycles, after which there is a significant drop-off

although even after ten cycles the amount of Hg2+ adsorbed is only reduced by 20%. This reduction is
likely due to the reduce binding efficiency of the nanosheet by repeated washing and regenerating
steps. The overall results indicate that g-CN is chemically stable and can be regenerated, which makes
it a promising candidate for reusable PAS (adsorbent) and sensor (transducer) applications.

Figure 8. Adsorption–desorption regeneration cycling of g-CN.

4. Conclusions

Simple, cost-effective, and greener interweaved nano-knitted g-CN nanosheets were developed
for the adsorption of Hg2+ from different aqueous matrices. A Modified method utilizing fast
polycondensation and rapid exfoliation produced nanosheets with a > 70% yield. The high content of
reactive functional species selectively bound Hg2+ without the need for spacer ligands, which offers
many advantages over existing Hg2+ passive sampling adsorbents and transducers in Hg sensors.
The g-CN nanosheets were able to rapidly bind and remove Hg2+ ions from aqueous solutions at
environmental pH’s due to the high surface area, porosity, and internal diffusion resistance. The g-CN
nanosheets also have higher adsorption efficiencies and shorter reaction times compared to other
available adsorbents. It was also possible to recover the material (adsorption efficiency 99.5%) using
HCl (0.5 M), and 90% ethanol. The adsorbent can also be regenerated up to 10 times. The present
approach presented here is economical and straightforward, and no further chemical modification
or additional oxidant is required, which simplifies the operation process. The reliability of the g-CN
was ascertained using real aqueous sample matrices (sea, river and Milli-Q quality water) to confirm
its applicability for environmental monitoring applications. Moreover, g-CN nanosheets offer many
benefits including scalability, robustness, rapidity, sensitivity, and selectivity, making this material
potentially useful for environmental and clinical sensors and diagnosis by using g-CN based hybrid
films as biocatalysts.
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