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Introduction
Diffuse large B-cell lymphoma (DLBCL) is the 
most common lymphoid neoplasm, accounting for 
~30% of all non-Hodgkin lymphomas (NHLs). 
DLBCL is not a single entity; rather, it represents 
a heterogeneous group of disorders with distinct 
clinical, pathological, and biological features. The 
broadest category is termed DLBCL-not other-
wise specified (DLBCL, NOS). By definition, 
these patients do not have specific clinical or path-
ological characteristics, but they can be further 
divided into several morphological, molecular, and 
immunohistochemical subgroups.1 The addition 
of rituximab to standard chemotherapy, namely 
cyclophosphamide, doxorubicin, vincristine, and 

prednisone (CHOP), has undoubtedly improved 
the outcomes of all DLBCL patients and has been 
widely accepted as the standard of care. Despite 
this, a considerable proportion of patients either 
relapse or experience primary refractory disease 
and eventually succumb to the disease.2,3

The International Prognostic Index (IPI) is cur-
rently the most robust prognostic tool for patients 
with DLBCL. The IPI was introduced and vali-
dated in the pre-rituximab era.4 Although the 
IPI’s prognostic value has been re-assessed in the 
rituximab era and has been deemed trustworthy, 
it fails to identify patients with less than 50% of 
3-year event-free survival (EFS) who could 
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potentially benefit from other treatment modali-
ties instead of R-CHOP.5,6

Even among patients within the same IPI risk 
group there is a high variability of outcome. This 
may reflect the marked genetic and molecular het-
erogeneity that underlies disease aggressiveness. 
Therefore, many studies have focused on the iden-
tification of biomarkers that may contribute to this 
phenomenon. Several individual prognostic bio-
markers had already been described before the 
introduction of rituximab; albeit, these are incapa-
ble of capturing the great complexity of the under-
lying biological processes. In the early 2000s, gene 
expression profiling (GEP) represented an impor-
tant step towards the elucidation of DLBCL biol-
ogy and heterogeneity, further optimizing its 
prognostic stratification.7–9 GEP studies have iden-
tified different molecular DLBCL subtypes related 
to the cell of origin (COO) as well as several gene 
expression signatures related to the tumor micro-
environment (TME). Both are of prognostic sig-
nificance. In addition, GEP studies have 
highlighted the prognostic value of many genes 
and have led to the discovery of several molecular 
pathways that may serve as therapeutic targets.

The addition of rituximab to the CHOP regimen 
has altered the significance of certain established 
prognostic factors, either as a result of statistical 
reasons (the marked improvement in outcome of 
patients with DLBCL leads to fewer events) or 
directly through its mechanism of action. Therefore, 
previously well-described prognostic biomarkers 
have been re-evaluated in the rituximab era. The 
emergence of novel agents for the treatment of 
DLBCL patients highlights the need for the estab-
lishment of their prognostic relevance for patients 
treated with these therapeutic modalities.

The present review summarizes the current 
knowledge regarding biological prognostic factors 
in DLBCL-NOS in the rituximab era. In addi-
tion, it provides insights into the efficacy of novel 
agents in the frontline therapy of high-risk 
DLBCL patients.

Genetic subgroups of prognostic significance

COO
GEP assessed by DNA microarray allows for  
the simultaneous profiling of the expression of 

thousands of genes in cells while obtaining a 
detailed record of their expression. Alizadeh et al. 
identified two distinct molecular subgroups of 
DLBCL with gene expression patterns indicative 
of different stages of B-cell differentiation, as well 
as highly distinct overall survival (OS). The first 
subgroup was composed of DLBCL with a gene 
expression signature resembling that of germinal 
center B-cells (Germinal Center B-like, GCB), 
whereas the second contained DLBCL with 
expression of genes which are induced during in 
vitro activation of peripheral blood B-cells 
(Activated B-cell, ABC).7 Rosenwald et al. dem-
onstrated the presence of a third molecular sub-
group, called type 3 or unclassified DLBLC, that 
included cases not expressing either set of genes 
characteristic of GCB or ABC subgroups. The 
distribution of cases among these different sub-
groups was 47.9%, 30.4%, and 21%, for GCB, 
ABC, and type 3 DLBCL, respectively. 5-year 
OS rates were significantly higher for the GCB 
DLBCL patients compared with the other sub-
groups independent of their IPI. Furthermore, 
four distinct gene-expression signatures [GCB, 
proliferation, major histocompatibility complex 
(MHC) class II, and lymph node] with prognos-
tic significance were identified.8 The prognostic 
value of DLBCL subtyping by GEP analysis has 
been re-evaluated in the rituximab era. Lenz 
et  al.9 reported that GCB DLBCL patients had 
significantly higher OS and progression-free sur-
vival (PFS) than ABC DLBCL patients, a finding 
highly consistent in several studies.10,11

Based on the above studies, the molecular classi-
fication of DLBCL by COO has been recognized 
as the gold-standard approach for the molecular 
classification of DLBCL and provides valuable 
prognostic information independently of the IPI. 
However, these techniques are not available for 
routine use and require fresh or frozen tissue sam-
ples with adequate amounts of RNA. To over-
come these limitations, many researchers have 
tried to determine COO by applying GEP tech-
niques to formalin-fixed paraffin-embedded tis-
sues (FFPET) with high accuracy.12–19 Among 
the suggested approaches, Lymph2Cx, a digital 
GEP assay based on a panel of 20 genes, has been 
validated and demonstrated its non-inferiority to 
GEP determination of COO.16

The unquestionable prognostic significance of 
COO in DLBCL led many researchers to develop 
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prediction models based on simpler techniques 
such as immunohistochemistry (IHC) in FFPET. 
The IHC algorithms uses antibodies specific to 
GCB and ABC-markers. It assesses protein 
expression in order to classify DLBCL cases as 
either GCB or non-GCB. The most widely uti-
lized of them, Hans algorithm, uses CD10, BCL6 
and MUM1.20 Although in accordance with GEP, 
its prognostic significance in the rituximab era has 
been disputed. A recent meta-analysis showed 
that COO determined by the Hans algorithm was 
predictive of PFS but not OS in patients treated 
with rituximab.21 A recent study by Adulla et al. 
in 359 DLBCL patients confirmed the inferiority 
of the Hans algorithm to predict OS.22 Most strik-
ingly, a recent study by Cho et al.23 failed to dem-
onstrate any prognostic effect of the Hans 
algorithm in PFS or OS; in contrast, COO deter-
mination by Lymph2Cx was strongly predictive 
of both outcomes. The Choi algorithm, devel-
oped in the rituximab era, utilizes CD10, MUM1, 
GCET, FOXP1 and BCL6, allowing for a more 
accurate COO designation;24 however, similar to 
the Hans algorithm, its prognostic significance 
might be limited.21 Several other algorithms 
(Colomo, modified Hans, modified Choi, Visco–
Young, Tally, Muris, Natkuman, and Nyman) 
have been proposed;25–30 albeit, results regarding 
the prognostic significance of these algorithms 
remain equivocal.31

The poor prognostic performance of the IHC 
algorithms could be attributed to their inherently 
binary nature, as they classify cases as GCB or 
non-GCB. Therefore, cases unclassified by GEP 
(type 3) are inevitably misclassified by the algo-
rithms, hindering their prognostic value. 
Moreover, as shown by the Lunenburg Lymphoma 
Biomarker Consortium Study (LLBC), these 
results could be explained by sampling techniques 
and technical issues, as well as by inter-observer 
variation.32 The optimization of staining tech-
niques and scoring criteria has failed to improve 
the prognostic value of IHC algorithms.33 To 
summarize, the IHC algorithms remain subopti-
mal for a prognostically relevant classification of 
DLBCL, and GEP represents the gold-standard 
for COO classification. Of note, novel assays such 
as Lymph2Cx are applicable in FFPET, over-
coming limitations of earlier GEP assays. Other 
novel FFPET-based approaches utilize multiplex 
quantitative real-time polymerase chain reaction 
(qRT-PCR) and next-generation sequencing 

(NGS) in order to target a specific panel of genes. 
These approaches are highly accordant to GEP 
and highly predictive of PFS and OS.34,35

Gene-expression models
Findings from GEP analysis drove researchers to 
pursue prognostic models that incorporate the 
expression of several genes. Lossos et al.36 evalu-
ated a qRT-PCR model based on the expression 
of six genes (LMO2, BCL6, FN1, CCND2, 
SCYA3, and BCL2) that is also applicable in 
FFPET. In the rituximab era, the model has been 
shown to predict OS but not EFS.37,38 Another 
model incorporating four genes of the COO sig-
nature (LMO2, MME, LPP, and FOXP1) and 
two immune-related genes (APOBEC3G and 
RAB33A) has been proposed; however, as it has 
been based in a small cohort of elderly patients 
and has not been externally validated, no conclu-
sions regarding its prognostic significance can be 
drawn.11 In a more simplified approach, Alizadeh 
et  al. created a two-gene model based on the 
expression of LMO2 and a TME-related gene 
(TNFRSF9) in FFPET. The two-gene model was 
an independent predictor of OS, independent of 
COO and IPI. A composite score integrating 
these gene-expression with IPI could stratify 
patients in low-, intermediate- and high-risk 
groups with distinct PFS and OS.39 More recently, 
Green et al. proposed a model incorporating the 
expression of LMO2 and HLADQA1 as well as 
three gene interactions for GCSAMxMIB1, 
GCSAMxCTGF, and FOXP1xPDE4B that pre-
dicted PFS and OS independently of IPI. As the 
complexity of this model might hinder its applica-
bility, a simplified version has been proposed, 
comprising LMO2, BCL2 expression, and IPI. 
This showed comparable performance to the 
more complex model and was validated in an 
independent cohort.40

Apart from qRT-PCR, other gene-expression 
assays have been evaluated for prognostication in 
DLBCL. Among them, quantitative S1 nuclease 
protection assay (qNPA) in FFPET has been used 
to assess the expression of several genes. In this 
context, Rimsza et al.12 demonstrated that a model 
comprising HLA-DRB and MYC expression 
assessed by qNPA could predict OS and PFS.

In conclusion, gene-expression assays applicable in 
FFPET have allowed for the development of 
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prognostic models incorporating gene-expression 
information as well as clinical factors. However, 
lacking external validation, the results of these 
studies should be interpreted cautiously. Moreover, 
no consensus on the optimal combination of genes 
for the prediction of the clinical outcome as well as 
the methodology for gene-expression assessment 
have been reached. This has largely hindered the 
reproducibility of results. Of interest among the 
investigated genes, LMO2 has been consistently 
associated with favorable outcome; however, fur-
ther studies are needed to elucidate the appropri-
ate gene combination that would comprise a widely 
accepted prognostic model.

Novel molecular subgroups
Recent reports have highlighted the presence of 
residual heterogeneity in DLBCL prognosis, even 
among the well-characterized COO subgroups. 
Several studies have tried to refine the molecular 
classification of DLBCL in this context. Reddy 
et  al. integrated whole exome sequencing and 
transcriptome sequencing to identify 150 driver 
genes in 1001 DLBCL patients. Their mutational 
and gene-expression profiles were used to con-
struct a prognostic model that outperformed 
other established prognostic approaches such as 
COO determination and IPI. According to this 
model, 39 subgroups emerged, with significant 
discrepancies in OS. The subgroup with the most 
dismal prognosis comprised cases with MYC 
genetic and/or gene-expression aberrations irre-
spective of COO. In contrast, GCB-DLBCL with 
CD70 alterations represented the subgroup with 
the most favorable outcome.41

In another approach, Schmitz et  al. utilized 
whole-exome and transcriptome sequencing, 
array-based DNA copy-number analysis, and tar-
geted resequencing of 372 genes in 574 DLBCL 
cases. They managed to classify 44.8% of cases 
into four distinct subgroups: MCD (combined 
MYD88L265P and CD79B mutations), BN2 (BCL6 
fusions and NOTCH2 mutations), N1 (NOTCH1 
mutations), and EZB (EZH2 and BCL2 rear-
rangements). The MCD and N1 subtypes where 
mostly composed of ABC-DLBCL, EZB com-
posed mostly of GCB-DLBCL, whereas BN2 
was equally prevalent in all COO groups. The 
four subtypes had statistically significant differ-
ences in PFS and OS; the 5-year OS for the 
MCD, N1, BN2, and EZB subtypes were 26%, 

36%, 65%, and 68%, respectively. Within the 
ABC subgroup, BN2 represented the subtype 
with the most favorable OS and PFS, whereas N1 
and MCD had dismal prognosis compared with 
ABC-NOS and BN2; within the GCB subtype, 
EZB subtype demonstrated inferior survival com-
pared with GCB-NOS. Notably, MCD and BN2 
demonstrated recurrent B-cell receptor (BCR)-
dependent NF-κB activation, and N1 revealed a 
T-cell gene-expression signature with potential 
therapeutic implications.42

Most recently, Chapuy et al. analyzed 304 DLBCL 
samples for recurrent low-frequency alterations, 
mutations, somatic copy number alterations 
(SCNAs), and structural variants (SVs). They 
identified five DLBCL subsets (C1-C5) with dis-
tinct clinical behavior. Within the ABC group, C1 
(BCL6 SVs and NOTCH2 mutations) represents 
a subgroup with favorable prognosis, whereas C5 
(gains in BCL2 and/or mutations in MYD88L265P, 
CD79B, ETV6, PIM1, GRHPR, TBL1XR1, and 
BTG1) showed inferior outcome. On the other 
hand, two subgroups were identified within the 
GCB group, those being C3 (BCL2 mutations 
and SVs along with mutations in epigenetic modi-
fiers, KMT2D, CREBBP, and EZH2) which was 
characterized by inferior outcome, and C4 with 
favorable prognosis characterized by aberrations 
in BCR/PI3K signaling, NF-κB and RAS/JAK/
STAT pathway (mutations in CD83, CD58, and 
CD70, RHOA, GNA13, and SGK1, CARD11, 
NFKBIE, and NFKBIA, and BRAF, STAT3).

The remaining cluster, named C2, is composed 
of COO-independent DLBCL with biallelic inac-
tivation of TP53 as well as copy loss of CDKN2A, 
and RB1. It demonstrated an intermediate OS 
between C1, C4 and C3, C5.43 It should be noted 
that the C1, C3, and C5 groups partially overlap 
with the BN2, EZB, and MCD groups outlined 
by Schmitz et al.42

Lacy et al. proposed a similar classification scheme 
based on the targeted sequencing of 928 DLBCL 
FFPET samples. Five distinct subsets were iden-
tified (MYD88, BCL2, SOCS1/SGK1, TET2/
SGK1, and NOTCH2), which significantly over-
lap with those described by Schmitz et al.42 and 
Chapuy et  al.43 Indeed, MYD88 overlaps with 
MCD and C5, BCL2 with EZB and C3, and 
NOTCH2 with BN2 and C1. Regarding SOCS1/
SGK1 and TET2/SGK1, overlap is seen with the 
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C4 subgroup; however, they might represent dis-
tinct subgroups, based on the augmented expres-
sion of TET2 and BRAF in the latter. Moreover, 
although both subgroups have relatively good 
prognosis, the former group is associated with a 
more favorable outcome.44

Almost concurrently, Wright et  al. proposed a 
refinement of the classification scheme by Schmitz 
et al.,42 aiming to eliminate the previously unclas-
sifiable cases. In this context, they proposed two 
additional subgroups named A53 and ST2. The 
former aligns with the C2 subgroup by Chapuy 
et  al.,43 as it is composed of cases enriched for 
TP53 mutations, whereas the ST2 aligns with the 
TET2/SGK1 subgroup which was described pre-
viously. Similarly, to the previous classification 
schemes, significant differences in clinical out-
come were noted among different subgroups.45

A considerable portion of DLBCL remains 
unclassified, even by the implementation of the 
novel approaches discussed so far; as a result, 
prognostic ability is hampered. Alkodsi et al. pro-
posed a classification scheme which is based on 
the somatic hypermutation (SHM) patterns of 36 
target genes. They managed to identify four dis-
tinct subgroups named SHM1-4 that allowed 
prognostic stratification of patients within the 
ABC and GCB subtypes, but also within unclas-
sified DLBCL. In this scheme, ABC is subdi-
vided into SHM2 with aberrant activation of the 
BCR signaling pathway and the worse outcome 
among all SHM subgroups, while SHM4 is char-
acterized by BCL6 fusions as well as CD70 and 
BCL10 mutations. On the other hand, GCB 
group is subdivided into SHM1 with high fre-
quency of BCL2 and MYC aberrations in addi-
tion to mutation of chromatin modifying genes, 
showing poor outcome with conventional immu-
nochemotherapy, and SHM3 exhibits aberrant 
JAK/STAT signaling and the most favorable out-
come compared with the other subgroups.46

The inter-correlation of the novel genetic sub-
groups is depicted in Figure 1. Key genetic fea-
tures of each subgroup are summarized in Tables 1 
and 2. To summarize, genomic studies have dis-
entangled the complex genomic infrastructure of 
DLBCL, allowing for the subclassification of 
cases in prognostically relevant subgroups with 
shared genetic aberrations. Although most of the 
techniques used in the described studies might be 

time-consuming and excessively expensive to be 
applied in clinical practice, targeted NGS, which 
in addition, is applicable in FFPET, might repre-
sent an appealing approach for genetic classifica-
tion in general practice. For this to occur, 
validation in prospective studies is needed. 
Nonetheless, classification in well-characterized 
genetic subgroups might provide the basis for 
designing of meaningful preclinical and clinical 
studies.

The tumor microenvironment
Although the role of the TME has been widely 
established in other lymphoid malignancies such 
as Hodgkin lymphoma, its role in DLBCL 
remains controversial. In 2008 Lenz et al. identi-
fied two gene-expression signatures, stromal-1 
and stromal-2, which reflected discrepant com-
position of TME in DLBCL. The favorable stro-
mal-1 signature, associated with a phenotype 
characterized by abundant extracellular matrix 
and infiltration by histocytes, was enriched for 
genes encoding for the major components of the 
extracellular matrix and the anti-angiogenic fac-
tor thrombospondin, along with modifiers of col-
lagen synthesis and proteins implicated in the 
remodeling of extracellular matrix. In contrast, 
the less favorable signature stromal-2 was mainly 
enriched for genes encoding for markers of 
endothelial cells and regulators of angiogenesis, 
and it was characterized by high blood-vessel 
density.9 However, the lack of reproducible meth-
odology in FFPET hampered its applicability, 
despite the clear prognostic implications of TME. 
Nonetheless, vascular endothelial growth factor 
receptor 2 (VEGFR2) expression and high 
microvessel density, assessed by IHC, correlate 
with poor outcome,47,48 as opposed to expression 
of VEGFR1, which has been associated with a 
more favorable prognosis.48 Notably, IHC expres-
sion of HIF1a might confer improved prognosis 
in DLBCL, despite promoting angiogenesis, 
through upregulation of several genes within the 
favorable stromal-1 signature.49 As expected, 
IHC expression of SPARC, overexpressed within 
the favorable stromal-1 signature, has been asso-
ciated with improved OS and PFS independently 
of IPI; however, its prognostic effect is restricted 
within the ABC subgroup.50 An IHC-based pre-
dictive model incorporating the non-GCB sub-
type, low expression of SPARC (<5%), and high 
microvessel density has been suggested.51

https://journals.sagepub.com/home/tah


Therapeutic Advances in Hematology 12

6 journals.sagepub.com/home/tah

Several studies have assessed the prognostic role of 
immune composition of TME in DLBCL. 
Ciavarella et  al. demonstrated that higher 

proportions of myofibroblasts, dendritic cells, and 
CD4+ T cells correlated with superior OS, 
whereas activated natural killer (NK) and plasma 

Figure 1. Schematic representation of the relationship between cell-of-origin (COO), genetic (Wright et al.45), and 
somatic hypermutation (Alkodsi et al.46) subgroups in diffuse large B-cell lymphoma (DLBCL). The upper panel 
depicts the relative proportion of germinal center-like B cells (GCBs), activated B cell (ABC), and unclassified, 
among all DLBCL cases. The intermediate panel depicts the molecular subgroups, identified by gene-expression 
profiling; their relative position to the upper panel correlates to the association of these subgroups with COO 
(the A53 subgroup is not depicted on this Figure as there is no correlation with COO). The lower panel depicts the 
somatic hypermutation subgroups; the chromatic code of the upper part of each bar depicts the correlation of 
each subgroup to COO, whereas the chromatic code of the lower part depicts correlation to molecular subgroups. 
The relative width of each bar corresponds to the relative proportion of each subgroup among all DLBCL cases.

Table 1. Key genetic features and 5-year overall survival by molecular diffuse large B-cell lymphoma (DLBCL) subgroups, identified 
by gene-expression profiling, by Schmitz et al.,42 Chapuy et al.,43 Lacy et al.,44 and Wright et al.45.

Molecular subgroups Key genetic aberrations 5-year overall survival

Schmitz et al.42 Chapuy et al.43 Lacy et al.44 Wright et al.45

BN2 C1 NOTCH2 BN2 BCL6, NOTCH2, TNFAIP3, SPEN, 
BCL10, TMEM30A

67%

 C2 A53 TP53, TP53BP1 63%

EZB C3 BCL2 EZB-MYC+ BCL2, EZH2, KMT2D, TNFRSF14, 
CREBBP, GNA13, MEF2B, IRF8

48% (DHITsig-positive)

EZB-MYC- 82% (DHITsig-negative)

C4 TET2/SGK1 ST2 SGK1, TET2, ZFP36L1 84%

SOCS1/SGK1 SOCS1, SGK1, CD38 80%

MCD C5 MYD88 MCD MYD88, CD79A/B, PIM1, TBL1XR1, 
PRDM1, SPIB, BTG1/2, CDKN2A

40%

N1 N1 NOTCH1, ID3, KLHL6 27%
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cells (PCs) correlated with inferior outcome. TME 
gene-expression profiling identified three clusters 
(low, intermediate, high-expression) that predicted 
OS independently of COO. A classification scheme 
integrating COO and TME subtypes has also been 
proposed.52 A high number of FOXP3+ regula-
tory T-cells have been associated with inferior out-
comes in most of these studies.53,54 Moreover, 
lymphoma-associated macrophages (LAMs) play 
a crucial part within the TME; however, distinct 
subsets of LAMs may occur in opposing modes. 
M2 macrophages are immunosuppressive and pro-
mote tumor evasion, whereas M1 macrophages 
induce immune response and exert anti-lympho-
matic action. Therefore, studies of individual mac-
rophage markers have yielded conflicting results.55 
To overcome this inherent limitation, Stagger 
et  al.56 constructed a LAM interaction signature 
(LAMIS) that was applied to 466 FFPET sam-
ples, demonstrating that high expression of this 
signature was predictive of inferior PFS and OS, 
irrespective of IPI and COO.

Most recently, the role of the programmed cell 
death protein 1 (PD-1)/PD-L(ligand)1 axis has 
been highlighted as a key mechanism of immune 
evasion, both in solid tumors and in DLBCL. 
When PD-L1 is expressed by tumor cells, it inter-
acts with PD-1 in T-cells leading to T-cell anergy 
and immune evasion.57 PD-L1 overexpression is 
observed in ~20% of DLBCL cases due to gains, 
amplification, or rearrangements affecting the 
PD-L1 locus.58 Several studies have shown that 
the overexpression of PD-L1 by tumor cells cor-
relates with poor OS and PFS, independent of 
IPI and COO.59–61 Notably, PD-L1 expression 
strongly correlates with Epstein–Barr virus infec-
tion and the ABC subtype;61 on the other hand, 
PD-1 expression by T-cells within the TME 
might predict a more favorable outcome.62,63 
Other mechanisms of immune evasion include 
the downregulation of several genes comprising 
the MHC class II and inactivating mutations of 
the B2M gene, encoding for β2-microglobulin as 
well as downregulation of CD58, which is involved 
in NK cell responses.64 An association between 
these immune evasion mechanisms and OS has 
been noted.65–68

To evaluate the role of different subsets of immune 
cells in the TME, Keane et al. assessed the expres-
sion of immune effector and checkpoint genes in 
252 FFPET DLBCL. They demonstrated that 

the expression of immune effectors (T/NK) cor-
relates with the expression of markers associated 
with macrophages and the PD/PD-L1 axis. Thus, 
the anti-lymphomatic action exerted by the for-
mer cells is truncated. Therefore, the CD4*CD8: 
M2*PD-L1 ratio, assessed by digital hybridiza-
tion, was used to stratify patients in two prognos-
tic groups irrespective of IPI and COO. Patients 
with a high ratio experienced more favorable PFS 
and OS, as well as better response rates to 
R-CHOP compared with patients with low ratio.69

In a pivotal transcriptomic study of more than 
4000 DLBCL samples, Kotlov et al. characterized 
four clusters termed germinal center-like (GC-like), 
mesenchymal (MS), inflammatory (IN), and 
depleted (DP). GC-like cluster resembles the cel-
lular composition of normal germinal center, 
whereas MS is characterized by increased endothe-
lial cells and fibroblasts as well as abundant extra-
cellular matrix. Both clusters, enriched within the 
GCB subgroup, are associated with favorable PFS 
and OS. On the other hand, IN cluster, character-
ized by a highly inflammatory TME rich in neu-
trophils and macrophages and the DP cluster, 
showing a deserted TME, are associated by infe-
rior prognosis, irrespective of COO designation. 
Notably, the TME clusters are distributed across 
all genetic subgroups, suggesting that a classifica-
tion system based on the composition of TME 
may serve an auxiliary role to the genetic classifi-
cation for the prognostic characterization, and 
therapeutic management of DLBCL patients.70 
The validation of recent findings in large prospec-
tive studies and the development of simplified 
techniques for application in FFPET is needed  
for the adoption of TME clustering in clinical 

Table 2. Key genetic aberrations of somatic hypermutation subgroups in 
diffuse large B-cell lymphoma (DLBCL), identified by Alkodsi et al.46.

Subgroup Key genetic features

SHM1 EZH2, KMT2D, CREBBP, MYC, BCL2, GNA13, GNA12, P2RY8, 
Chr7, Chr8 gains

SHM2 MYD88, CD79B, CDKN2A, PIM1, MPEG1, ETV6, IRF4, Chr3, 
Chr18 gains

SHM3 SOCS1, STAT3, STAT6, TNFAIP3, SGK1, IRF8, Chr3, Chr7 
Chr18 gains

SHM4 BCL6, CD70, BCL10, SPEN, MYD88 (not L265P), HLA-A,B,C

Chr, Chromosome.
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practice. Until then, the considerable prognostic 
role of TME can be assessed by IHC of specific 
markers implicated in angiogenesis or immune 
response as well as targeted sequencing. A graphi-
cal representation of the TME clusters based on 
their cellular composition of TME is depicted in 
Figure 2.

Double-hit, triple-hit, and  
double-expressor lymphomas
BCL2 is overexpressed in 47-58% of DLBCL 
patients.71 In the GCB subgroup and particularly 
within the EZB genetic subgroup, BCL2 upregula-
tion is mainly attributed to the rearrangement 
t(14;18)(q32;q21).72 In contrast, the ABC sub-
group is characterized by the 18q21 chromosome 
locus gain/amplification.73 In the rituximab era, 
BCL2 rearrangement remain predictive of signifi-
cantly inferior OS among patients with the GCB 
subtype, irrespective of MYC status. On the other 
hand, BCL2 amplification or gains are predictive of 
inferior OS and PFS within the ABC subgroup.74,75 
BCL2 overexpression has retained its prognostic 
ability solely within the GCB subgroup.76,77 MYC 

rearrangements can be identified in 5-14% of 
DBCL patients, and more commonly with the 
GCB subgroup.78 The rearrangement t(8;14)
(q24;q32) represents the most typical, bridging 
MYC to the immunoglobulin heavy chain gene 
locus; however, in 53% of these cases, the partner is 
not an immunoglobulin (IG) gene.79 Although 
numerous studies have demonstrated the negative 
prognostic effect of MYC rearrangements on PFS 
and OS, as well as on central nervous system (CNS) 
relapse risk, the prognostic significance of isolated 
MYC rearrangements has been disputed.80–83 It has 
been shown that cases with isolated MYC rear-
rangements demonstrate an OS and PFS approxi-
mating that of non-rearranged cases. This highlights 
that the detrimental effect of MYC rearrangements 
is highly dependent on a second genetic hit, par-
ticularly in BCL2 or BCL6 and TP53, which are 
found in up to 80% of cases.84,85 Similarly, overex-
pression of the MYC protein, which is demon-
strated in ~30% of DLBCL cases, has been 
considered an independent prognostic factor for 
OS and PFS irrespective of the underlying mecha-
nism; however, its prognostic effect is modified by 
concurrent BCL2 or BCL6 genetic aberrations or 

Figure 2. Schematic representation of the predominant cells in the microenvironment of the four DLBCL 
subgroups with prognostic significance, described by Kotlov et al.70 (GC-like, germinal center-like; MS, 
mesenchymal; IN, inflammatory; and DP, depleted).
LEC, lymphatic endothelial cells; PMN, polymorphonuclear cells; Th, T-helper cells; Treg, T-regulatory cells. (Created with 
BioRender.com).

https://journals.sagepub.com/home/tah


SG Papageorgiou, TP Thomopoulos et al.

journals.sagepub.com/home/tah 9

overexpression of the respective proteins.85 BCL6, 
located in the 3q27 chromosome, represents a 
major marker of GCB origin;20,86 albeit, BCL6 rear-
rangements are twice as common within the ABC 
subgroup87 and confer a negative effect to OS and 
PFS as is evident in a recent meta-analysis.88 On 
the other hand, BCL6 overexpression, mainly 
attributed to gene mutations, represents a promi-
nent feature of the GCB subgroup.87 High BCL6 
mRNA and protein expression have been, and still 
are, strong predictors of favorable outcome in 
DLBCL patients.89,90 It should be noted, however, 
that the prognostic significance of BCL6 rearrange-
ments and overexpression might reflect its higher 
prevalence within the prognostically significant 
GCB and ABC subgroups, respectively.

In 58–63% of the cases, the MYC rearrangement 
is accompanied by at least one additional rear-
rangement, most commonly of BCL2 or BCL6. 
Cases harboring MYC and BCL2 or BCL6 rear-
rangements are termed double-hit (DH) lympho-
mas, whereas concurrent rearrangement of all 
three genes characterizes the subset of triple-hit 
(TH) lymphomas.91 In the 2016 revision of WHO 
classifications, DH and TH lymphomas with 
DLBCL morphological features were excluded 
from the DLBCL-NOS category, and have been 
assigned to a new diagnostic entity termed high-
grade B-cell lymphomas (HGBL) with MYC and 
BCL2 and/or BCL6 (HGBL-DH/TH).1 
HGBL-DH/TH accounts for 7.9% of tumors 
with DLBCL morphology; among them, 
DH-BCL2 and TH lymphomas represent more 
than 80% of cases, whereas DH-BCL6 lympho-
mas are relatively rare, accounting for 18.6% of 
cases. Most strikingly, DH-BCL2 and TH lym-
phomas are almost invariably associated with the 
GCB subgroup, whereas DH-BCL6 is distrib-
uted equally among COO subgroups.92

DH and TH have been associated with an inferior 
outcome, predicting an aggressive clinical course 
and poor response to R-CHOP.82,85,93,94 As 5-year 
OS and PFS has been reported to be rather poor 
(27% and 18%, respectively) in R-CHOP treated 
patients,85 more aggressive therapeutic approaches 
have been suggested; however, several ongoing 
controversies should be highlighted. First, DH 
and TH are not invariably associated with overex-
pression of the respective proteins. Several studies 
have demonstrated that these cases, which repre-
sent a non-negligible proportion of ~20% of DHs, 

have a more favorable prognostic profile.85,95,96 
Moreover, the prognostic significance of DH-BCL6 
cases remains equivocal. Older studies demon-
strated that DH-BCL6 is associated with dismal 
outcomes;97,98 in contrast, more recent studies 
have showed that the co-occurrence of MYC and 
BCL6 re-arrangements is not associated with an 
inferior outcome in DLBCL.99,100 Recent findings 
have also underscored the differential role of the 
partner gene in MYC rearrangement in prognosis 
among DH and TH DLBCL patients. A recent 
large study by Rosenwald et al.101 showed that DH 
and TH cases harboring MYC rearrangements to 
non-immunoglobulin genes showed no significant 
differences in terms of OS and PFS, compared 
with non-DH/TH cases. Moreover, cases with 
gene amplifications rather than rearrangements 
have been identified, however the prognostic  
significance of these abnormalities remains 
controvertial.102

Previous limitations have led researchers to utilize 
GEP to identify DH and TH cases with genuine 
prognostic significance. Ennishi et al. identified a 
104-gene DH signature (DHITsig) which char-
acterizes most DH/TH cases. This signature was 
identified in 27% of cases within the GCB sub-
group; among them, only one half were DH/TH 
by fluorescence in situ hybridization (FISH). 
Most strikingly, it was shown that DHITsig-
positive (DHITsig +ve) cases had dismal out-
come, accompanied by poor response rates to 
R-CHOP, irrespective of their MYC, BCL2, and 
BCL6 rearrangement status.103 Further analysis 
using whole-genome sequencing identified 
genetic alterations to MYC and BCL2 which are 
undetectable by conventional FISH in most of 
the non-DH/TH DHITsig +ve cases. Notably, 
six out of 20 analyzed cases harbored rearrange-
ments cryptic to conventional FISH, whereas 
genetic events affecting both MYC and BCL2 
were identified in seven additional cases.104 
Almost concurrently, Sha et al. identified a molec-
ular high-grade (MHG) gene expression signa-
ture characteristic of DH/TH cases which extends 
beyond them, within the GCB subgroup. This 
signature was predictive of inferior outcome irre-
spective of DH/TH status.105 The two genetic sig-
natures are highly correlated and characterize 
tumors originating from the intermediate germi-
nal center zone, particularly enriched within the 
EZB subgroup. Tumors within the EZB sub-
group can be further classified by the presence of 
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DHIT signature into EZB-MYC+ and EZB-
MYC-. EZB-MYC+ might represent highly 
aggressive tumors arising from a dark zone with a 
5-year OS of 48%. In contrast, EZB-MYC- 
tumors, arising from the light zone, have a more 
favorable prognosis (5-year OS: 82%).45 DHITsig 
+ve DLBCL shows high proliferation and 
immune evasion, owing to the frequent loss of 
MHC antigens and their lymphocyte-depleted 
microenvironment.103,105 Indeed, the DHITsig 
+ve subgroup was significantly enriched within 
the DP TME subgroup by Kotlov et al.70 Notably, 
stratification by TME composition retains its 
prognostic significance even in this subgroup.

Lymphomas with a high co-expression of MYC 
and BCL2 proteins are called double expressor 
lymphomas (DE) and should not be confused 
with DH/TH lymphomas as they do not represent 
a distinct biological subgroup but a prognostically 
relevant subcategory. MYC and BCL2 protein co-
expression by IHC is present in 21%-29% of 
DLBCL patients and undoubtedly confers poor 
prognosis (5-year OS: ~40%).85,106 Furthermore, 
MYC/BCL2 co-expression was also associated 
with poor prognosis in another large study of 893 
DLBCL patients treated with R-CHOP (5-year 
OS: 30% versus 75%).107 DEs are more common 
within the ABC subgroup, particularly when 
HGBL-DH/TH are excluded, contributing to the 
inferior prognosis of cases fitting in this sub-
group.80 The underlying mechanism of DE differs 
among COO subgroups; within GCB, overex-
pression is attributed to gene re-arrangements, 
whereas in the ABC subgroup, overexpression 
represents the sequela of a complex genetic inter-
play involving gene amplifications and aberrations 
in B-cell receptor and NF-kB signaling.77 Recently 
Horn et al. proposed a prognostic model based on 
MYC protein expression and MYC rearrange-
ment status in combination with BCL2 and BCL6 
expression status. MYC rearrangements, MYChigh, 
BCL2high, and BCL6low protein expression were 
predictive of inferior survival independently of 
IPI.90 Recently, the incorporation of CD37, MYC, 
and BCL2 to the R-IPI has shown to augment its 
prognostic power.108 The distribution of genuine 
and cryptic DH, DE, and DHITsig +ve cases 
among GCB and ABC subgroups along with their 
overlap is depicted in Figure 3.

In conclusion, DE and DH lymphomas seem to 
predict a more aggressive clinical course, underly-
ing the need for early identification, and 

potentially treatment intensification as well as the 
introduction of novel agents; however, limitations 
of the current IHC and FISH methods hamper 
the classification in biologically distinct sub-
groups. In this context, gene-expression signa-
tures might serve for the accurate distinction 
between these subgroups. Notably, a DHITsig 
module has been incorporated in the Lymph3Cx 
assay for COO characterization, allowing for the 
application in FFPET in clinical practice.

Other biomarkers
TP53 mutations, found in ~20% of DLBCL 
patients among both COO subgroups, tend to be 
more common among cases with MYC rearrange-
ments. TP53 mutations correlate with unfavora-
ble disease characteristics and predict inferior OS 
and PFS independent of IPI and COO.109–111 In 
contrast, the prognostic significance of TP53 
deletions and or del(17p) in the absence of a 
mutated allele remains controversial.109,112 In 
regards to IHC, strong TP53 expression (in at 
least 50% of the malignant cells) might be an 
independent predictor of shorter OS;113 however, 
the absence of a concurrent TP53 mutation 
negates the prognostic significance of the respec-
tive protein overexpression.109

High proliferation rate, reflected by high expres-
sion of Ki-67, has been predictive of inferior out-
comes in DLBCL, as demonstrated by a recent 
meta-analysis.114 In addition, recent research has 
shown that the prognostic value of Ki-67 might 
be more pronounced within the non-GCB 
subgroup.115,116

De novo CD5+ DLBCL, accounting for 5–22% 
of DLBCL cases, represents a distinct immuno-
histochemical subgroup within DLBCL-NOS.117 
Most commonly of ABC origin (82%), this sub-
group highly correlates with double MYC/BCL2 
overexpression.118 CD5+ cases tend to present 
with more advanced disease, whereas CNS recur-
rence is particularly high (13% versus 5% for 
CD5- DLBCL).119 Despite the introduction of 
rituximab, the prognosis for CD5+ DLBCL 
remains dismal, with 5-year OS and PFS rates of 
35.5% and 29.6% respectively, and high CNS 
relapse rates.120–122 The aggressiveness of CD5+ 
DLBCL has been attributed to several mecha-
nisms, including the inhibition of BCR signaling 
as well as the overexpression of IL-10, BCL2, 
cyclin D2, and CXCR4.117
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Patients with reduced CD20 expression and 
high CD19 expression (discordant CD20), iden-
tified through flow cytometry (FCM), have been 
shown to have inferior OS independently of their 
IPI.123,124 Notably, IHC assessment might not 
be a reliable method for estimation of CD20 
expression level compared with FCM; albeit, the 
latter requires fresh tissue samples. To overcome 
the inherent limitation of FCM, a semi-quanti-
tative IHC method has been developed for the 
assessment of CD20 expression in FFPET, veri-
fying the prognostic significance of low CD20 
expression.125

CD30 was overexpressed in 14% of patients and 
was correlated with superior 5-year OS and PFS 
independent of COO and IPI. CD30+ DLBCL 
demonstrated a distinct GEP signature, charac-
terized by the downregulation of NF-κB and BCR 
pathways, potentially explaining the favorable 
profile of this DLBCL subset. Interestingly, a 
strong correlation between CD30 expression and 
EBV infection has been observed. As a side note, 
EBER seems to negate the favorable effect of 
CD30, as cases co-expressing EBER and CD30 
had a dismal outcome.126

With regards to molecules implicated in apopto-
sis, the role of BCL2 has been thoroughly assessed 
previously, in contrast to other genes that have 
not been evaluated as much. Recently, it has 
been shown that high BCL2L12 expression, 
assessed both at the mRNA level and via IHC, 
confers a more favorable outcome in patients 
with DLBCL, irrespective of COO and IPI.127 
Expression of other anti-apoptotic genes such as 
BIRC5 (survivin) and XIAP has been reported to 
confer an adverse effect on prognosis,128,129 while 
results regarding CFLAR (c-FLIP) are contra-
dictory.130,131 On the other hand, the expression 
of CASP3 and CDKN1A, a downstream effector 
of TP53, may correlate with favorable out-
come.132,133 Markovic et  al.134 have created an 
apoptotic score based on the IHC expression of 
CASP3, CD95, CFLAR, BIRC5, XIAP, and 
BCL2 that predicts OS, whereas Pasanen et al.135 
have designed a prognostic score among GCB 
DLBCL patients which is based on the cell cycle-
regulating proteins PDKN1A, PDKN1B, 
PDKN2A, and TP53.

The expression of PKCβ and p-AKT, two com-
ponents of the PIK3/AKT signaling pathway, 

correlates with adverse outcome.136,137 Moreover, 
expression of phosphotyrosine STAT3, enriched 
in ABC cases, has been associated with inferior 
outcomes in DLBCL patients. Notably, an 
11-gene STAT3 activation signature has been 
shown to predict decreased OS, both in the entire 
DLBCL cohort as well as in the ABC subgroup as 
described by Huang et al.138 Adverse prognostic 
significance has also been attributed to the expres-
sion of indoleamine 2,3-dioxygenase (IDO)139 
and SKP2.140,141

Circulating cell-free DNA
Circulating cell-free DNA (cfDNA) represents 
DNA fragments released from apoptotic or 
necrotic cells into the circulation. As DLBCL is 
characterized by high cell turnover, several stud-
ies have evaluated the role of cfDNA in DLBCL 
prognosis. High levels of cfDNA at diagnosis 
have been shown to correlate with high tumor 
burden, advanced stage, high LDH levels, and 
high IPI score, as well as inferior OS and PFS in 
DLBCL.142 In the largest prospective study of 
217 DLBCL patients, Kurtz et al. demonstrated 
that cfDNA levels at diagnosis assessed through 
deep sequencing (CAPP-seq) were predictive of 
EFS independently of IPI. Applying the same 
technique, Scherer et al.143 achieved stratification 

Figure 3. Schematic representation of the distribution of double-hit (DH), 
double-expressor (DE), and double-hit gene expression signature (DHITsig) 
diffuse large B-cell lymphoma (DLBCL) cases among the germinal 
center B-cell (GCB) and activated B cell (ABC) subgroups. DHITsig+ 
cases, harboring BCL2 and MYC rearrangements cryptic to conventional 
fluorescence in situ hybridization (FISH) are termed cryptic DH (DHcr). The 
area of each circle corresponds to the relative prevalence of each group 
among DLBCL cases.
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of DLBCL cases among the COO subgroups, 
demonstrating high accordance with COO desig-
nated by IHC in FFPET. Notably, early decreases 
in cfDNA 21 days into treatment were highly pre-
dictive of the response to R-CHOP and EFS.144 
Global methylation patterns in cfDNA have also 
been found to predict OS and response to treat-
ment.145,146 Most importantly, several studies 
have shown that targeted NGS might be applica-
ble in cfDNA. These studies, apart from validat-
ing the prognostic and predictive role of overall 
cfDNA burden, provide evidence that cfDNA 
could be used for the genetic characterization of 
DLBCL cases.147 Intriguingly, it was recently 
shown that cfDNA could be used for the stratifi-
cation of patients in the prognostic genetic sub-
groups proposed by Wright et al.,45 allowing for 
an in-depth, minimally-invasive prognostic evalu-
ation of patients.148

Therapeutic implications
The addition of rituximab to the standard CHOP 
regimen has improved survival of DLBCL 
patients irrespective of COO; however, the ABC 
subtype still confers adverse prognosis compared 
with the GCB-subtype, retaining its significant 
prognostic effect even in the relapsed/refractory 
(R/R) setting. Therefore, current research focuses 
on the design of novel therapies that target spe-
cific oncogenic pathways which are activated and 
play a crucial role in the pathogenesis of the 
disease.

A hallmark of ABC DLBCL is constitutive acti-
vation of the NF-kB pathway through aberrant 
BCR signaling and MYD88 activation.149 
Although thought to represent independent path-
ways converging to NF-κB activation, co-occur-
rence of CD79B and MYD88L265P mutations in a 
significant subset of ABC DLBCL (namely the 
MCD subgroup) suggest at a potential interplay 
between the two pathways. Most recently, the 
My-T-BCR supercomplex was identified, com-
prising BCR, MYD88, and TLR9, leading to 
NF-κB and mTOR pathway activation.150

The significance of the NF-kB pathway in the 
pathogenesis of DLBCL led to the investigation 
of the proteasome inhibitor bortezomib, which 
inhibits NF-κB by preventing proteasomic degra-
dation of IκBα.151 Although initial results had 
been promising, a large randomized phase III trial 

showed that the addition of bortezomib in the 
standard R-CHOP did not confer any benefit to 
the PFS or OS of newly diagnosed DLBCL 
patients, irrespective of the COO.152 The disap-
pointing performance of this agent in DLBCL 
could reflect its unspecific mode of action, high-
lighting the need for more targeted treatment 
modalities.

Lenalidomide is an immunomodulatory drug 
with multiple effects, including inhibition of the 
NF-kB activity through the downregulation of 
IRF4 and SPIB.153 Results of the ECOG-
ACRIN1412 phase II trial demonstrated that the 
addition of lenalidomide to R-CHOP could 
reduce the risk of progression or death by 33%, 
irrespective of COO. It should be noted that the 
effect of lenalidomide was more robust within the 
ABC subgroup.154 Surprisingly, the ROBUST 
phase III trial which was based on 570 newly 
diagnosed ABC DLBCL patients did not show 
any difference between the lenalidomide-R-
CHOP (R2-CHOP) arm and the arm of standard 
R-CHOP treatment in terms of PFS.155 There 
may be many reasons that explain this difference 
in the two trials apart from their inherent differ-
ences in the study design, such as the higher dos-
age of lenalidomide in the ACRIN trial or the 
significantly longer time lag between the diagno-
sis and initiation of treatment in the ROBUST 
trial.156 Nonetheless, lenalidomide may represent 
a promising agent for tumors within the MCD 
and BN2 subgroups which consistently overex-
press IRF4. More studies focusing on these sub-
groups are needed.

Several components of the BCR pathway have 
been proposed as potential therapeutic targets in 
DLBCL. Among them, the inhibition of Bruton’s 
tyrosine kinase (BTK) by ibrutinib is the most well 
studied. The recently published results of the 
phase III Phoenix trial, which compares ibrutinib-
R-CHOP with R-CHOP for newly diagnosed 
patients with ABC DLCBL demonstrated that the 
addition of ibrutinib prolongs PFS and OS in 
younger (<60 years) patients with ABC DLBCL. 
The differential effect of ibrutinib by age could be 
explained by the increased number of serious 
adverse events in older patients, leading to devia-
tion from treatment schedule or treatment discon-
tinuation.157 In terms of genetic subgroups, MCD, 
BN2, and A53 might represent the most BCR-
dependent tumors among the ABC subgroup; 
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therefore, ibrutinib might be particularly beneficial 
for tumors falling within these subgroups. Notably, 
co-occurrence of CD79B and MYD88L265P muta-
tions, a hallmark of the MCD subgroup, predicts 
high sensitivity to ibrutinib.158 A recent phase II 
study of ibrutinib and lenalidomide, in combina-
tion with R-CHOP, showed promising results.159 
Other inhibitors of the proximal components of 
the BCR pathway, such as fostamatinib (syk inhib-
itor) and enzastaurin (PCKβ inhibitor) have shown 
limited effect in DLBCL;160,161 on the other hand, 
JNJ-67856633, a MALT-1 inhibitor, showed effi-
cacy in preclinical studies and is currently investi-
gated in a phase I trial in DLBCL patients 
(NCT03900598).162

Activation of the PI3K pathway represents an 
important oncogenic event in most DLBCL 
cases. Within the ABC subgroup, PI3K activation 
occurs mainly as a sequela of BCR activation and 
leads to NF-κB activation; in contrast, in GCB 
DLBCL it represents the result of PTEN inacti-
vating mutations and leads to activation of the 
AKT/mTOR pathway.163 Idelalisib, a selective 
PI3Kδ inhibitor, showed disappointing results in 
DLBCL; however, preclinical data have demon-
strated that simultaneous inhibition of PI3Kα 
and δ is needed to exert cytotoxicity in ABC 
DLBCL.164 Consistently, copanlisib, which is a 
PI3Kα/δ inhibitor, has shown encouraging results 
as a monotherapy in the R/R setting, particularly 
for the ABC subgroup.165 Buparlisib, a pan-PI3K 
inhibitor, has also been evaluated in a phase II 
trial; albeit, the effect in DLBCL has been lim-
ited.166 Preclinical data on the synergetic effect of 
PI3Bα/δ and BTK inhibitors triggered research-
ers to investigate the efficacy of the combination 
of PI3K inhibitors and ibrutinib.167 For MK-2206, 
an AKT inhibitor which had shown promising 
results in preclinical models, the results in the 
clinical setting have been rather disappointing.168 
Regarding mTOR inhibitors, everolimus and 
temsirolimus have demonstrated activity in the 
R/R setting; however, in the frontline setting, 
adjuvant therapy with everolimus after R-CHOP 
did not improve the disease-free survival (DFS) 
of high-risk patients.169 Recently, a phase I trial 
evaluated the safety of everolimus in combination 
with R-CHOP for newly diagnosed DLBCL; 
although the combination has been deemed safe, 
its superiority to standard R-CHOP treatment 
has not yet been evaluated.170 In conclusion, 
more studies are needed to evaluate the effect of 

PI3K/mTOR inhibitors in DLBCL. It should be 
noted that, based on GEP studies, the MCD, 
BN2, ST2 and EZB subgroups might benefit 
more from this therapeutic approach.45

BCL2 plays an essential role in DLBCL patho-
genesis, particularly within the MCD, BN2, and 
EZB genetic subgroups. In this context, veneto-
clax, a selective BCL2 inhibitor, has been evalu-
ated in DLBCL. A recent phase II study of 208 
newly diagnosed patients demonstrated that the 
addition of venetoclax to R-CHOP provided 
improved OS and PFS compared with standard 
treatment. Notably, venetoclax was effective even 
in cases not expressing BCL2, although the effect 
was more robust in BCL2+ patients.171 Based on 
this finding, venetoclax might be beneficial in the 
treatment of DH/TH lymphomas, although this 
should be confirmed by randomized trials.

The JAK/STAT pathway is also implicated in the 
pathogenesis of a subset of DLBCL, correspond-
ing to the MCD and ST2 genetic subgroups. JAK 
inhibition might represent a promising treatment 
approach in this subset.45 A preliminary phase I 
trial has shown modest efficacy of pacritinib, a 
JAK1/2 inhibitor, in R/R DLBCL patients.172

The finding that EZH2 is mutated in up to 22% 
of GCB DLBCLs, comprising the EZB subgroup, 
has drawn attention to the role of hypomethylat-
ing agents in DLBCL treatment.173 An EZH2 
inhibitor called tazemetostat has shown promis-
ing results. Interim results of a phase II trial in 
R/R DLBCL showed an ORR of 40% in patients 
with DLBCL harboring EZH2 mutations, com-
pared with 18% in patients with wild-type 
EZH2.174 A phase I trial has also shown the feasi-
bility and safety of tazemetostat in combination 
with R-CHOP in the frontline setting.175

In contrast to Hodgkin lymphoma and solid 
tumors, checkpoint inhibitors have yielded disap-
pointing results in NHL, potentially because of 
the low prevalence of PD-L1 overexpression in 
DLBCL.176 However, checkpoint inhibitors com-
bined with other agents might be effective in a 
subset of DLBCL patients with high PD-L1 
expression. Durvalumab has recently been evalu-
ated in combination with R-CHOP or R2-CHOP 
for the frontline treatment of high-risk patients, 
including a considerable number of DH/TH. The 
combination demonstrated its efficacy and safety, 
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but randomized phase III trials are needed to 
establish its efficacy.177 A potential evidence-
based approach for treatment selection, which 
takes into account the molecular subgroups of 
DLBCL, is presented in Table 3.

Therapeutic approach for DH/TH lymphomas
Based on their aggressive nature, DH/TH lym-
phomas require a more intensified therapeutic 
approach. A meta-analysis of retrospective stud-
ies compared with OS and PFS of DH lym-
phoma patients treated with the standard 
R-CHOP on the one hand, to more intensified 
treatment protocols such as dose-adjusted 
R-EPOCH (rituximab, etoposide, doxorubicin, 
cyclophosphamide, vincristine, prednisone), 
Hyper-CVAD, and R-CODOX-M/IVAC on the 
other. Treatment with dose-adjusted R-EPOCH 
yielded a median PFS of 22.2 months, compared 
with 12.1 months with R-CHOP, as well as a 
34% reduction in progression-risk; however, no 
effect on OS was noted.178 Most recently, the 
phase III ALLIANCE trial did not demonstrate 
a survival benefit for patients treated with dose-
adjusted R-EPOCH compared with treatment 
with R-CHOP; however, MYC-rearranged 
cases, and DH/TH cases were significantly 
underrepresented within the study population. 
Therefore, extrapolation of the results in this 
subgroup would not be advised.179 Nonetheless, 
the results of a phase II trial on MYC-rearranged 
DLBCL cases showed promising results, with 
2-year PFS and OS of 71% and 76.7% respec-
tively.180 Given the lack of randomized trials 
focusing on DH/TH HGBL, dose-adjusted 
R-EPOCH represents an encouraging frontline 
treatment approach for these patients.

Other agents have been tried in order to mitigate 
the inferior prognosis of DH/TH. Venetoclax, in 
combination with dose-adjusted R-EPOCH, has 
been evaluated in a phase I trial which demon-
strated acceptable safety and efficacy, leading to 
its current evaluation in a phase II/III trial.181 
Tazemetostat and other epigenetic modulators 
might also prove effective in the treatment of DH/
TH. Other novel agents, such as bromodomain, 
and external domain (BET) inhibitors and Aurora 
kinase inhibitors might also be effective, as they 
work by disrupting downstream MYC signaling. 
These agents are still in preclinical or early clini-
cal trials.182,183 The therapeutic agents that might 

be effective in the subset of DH/TH are summa-
rized in Table 4.

Conclusions
Several lines of evidence have been published 
with regards to the prognostic biomarkers of 
DLBCL in the rituximab era. Past established 
prognostic factors have been disputed in the 
rituximab era, whilst there are still conflicting 
data on the prognostic value of innovative bio-
markers. The retrospective nature of most stud-
ies, the lack of validation within large prospective 
trials, the lack of reproducible techniques, and 
the use of different cut-offs (especially regarding 
certain IHC markers) are some of the reasons that 
studies have failed to reflect the underlying com-
plexity of the disease pathophysiology. Moreover, 
significant inter-correlation of individual bio-
markers as well as correlation between biomark-
ers and IPI categories confound the results of the 
studies. In the effort to evaluate these prognostic 
biomarkers, a great variety of methods, including 
IHC, GEP, NGS, and genomic hybridization 
have been trailed, but very few are applicable in 
clinical practice due to cost-related factors and 
lack of reproducibility.

Among the evaluated prognostic biomarkers, 
COO, concurrent rearrangements of MYC/BCL2/
BCL6, the characterization of DH/TH HGBL, 
and the overexpression of MYC/BCL2, character-
izing DE lymphomas, remain the more robust 
tools to identify high-risk patients that might need 
treatment intensification and incorporation of 
novel target treatment modalities. However, it 
should be acknowledged that most studies have 
failed to demonstrate a survival benefit by differ-
entiating the therapeutic approach in these 
patients. The wide genetic heterogeneity of 
tumors, even within the same COO subgroup, 
might explain why individualized treatment sim-
ply based on COO classification has providing dis-
appointing results. Most recently, GEP studies 
have managed to partially elucidate the complex 
genetic and transcriptomic landscape of DLBCL 
identifying gene-expression signatures, allowing 
for the classification of DLBCL cases in prognos-
tically relevant genetic subgroups. The same 
method has been employed for disentangling the 
complex composition of the TME and elucidating 
its prognostic significance. Efforts to translate the 
results of these studies into techniques applicable 
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Table 3. Summary of major prognostic biomarkers in DLBCL.

Prognostic factor Effect on prognosis Comments

Cell of origin (COO)

 ABC by GEP, Lymph2Cx7–19 UF  

 Non-GCB by IHC20–31 UF# Inferior to GEP in prognostication

 LMO236–40 F  

Molecular subgroups45

 MCD, N1, A53 UF  

 BN2, ST2 F  

 EZB F, if DHITsig-negative  

UF, if DHITsig-positive  

Somatic hypermutation subgroups46

 SHM1, SHM2 UF  

 SHM3, SHM4 F  

BCL2

 Overexpression76,77 UF# In absence of MYC overexpression: no effect on OS

 Rearrangement74,75 UF# In absence of MYC rearrangement: no effect on OS

MYC

 Overexpression85 UF# In absence of BCL2 overexpression: no effect on OS

 Rearrangement80–85 UF# In absence of BCL2 rearrangement: no effect on OS

BCL6

 Overexpression89,90 F# Strong correlation with ABC subgroup: potential 
confounder

 Rearrangement88 UF# Strong correlation with GCB subgroup: potential 
confounder

DH/TH82,85,93,94 UF The role of DH-BCL6 is equivocal.97–110

Non-IG partner gene in MYC rearrangement: no 
effect in OS101

Double-expressor85,86,107 UF  

DHITsig/MHG103–105 UF  

TP53

 Mutations109–111 UF  

 Overexpression109,113 UF# Overexpression in the absence of TP53 mutation: 
No association with OS

CD5120–122 UF  

Low CD20123–125 UF  

(continued)
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Prognostic factor Effect on prognosis Comments

CD30126 F# Potential role of brentuximab vedotin, UF in EBER-
positive cases

Ki-67114 UF  

TME composition  

 GB-like, MS subgroups70 F  

 IN, DP subroups70 UF  

 Stromal-2 expression9 UF  

 Stromal-1 expression9 F  

  High CD4*CD8:M2*PD-L1 
ratio69

F  

 High LAMIS expression56 UF  

 VEGFR2/VEGFR147,48 UF  

 HIF-1a49 F  

 SPARC50,51 F  

 MHC-II loss65–68 UF  

  PD-L1 (expressed by 
tumor cells)59–61

UF Potential role of immune checkpoint inhibitors

  PD-1 (expressed in 
TME)62,63

F  

 FOXP353,54 UF#  

Cell-cycle regulation and apoptosis

 BCL2L12127 UF  

 BIRC5129 UF  

 XIAP128 UF  

Other

 PKCβ137 UF  

 p-AKT136 UF  

 STAT3138 UF  

Circulating cell-free 
DNA142–148

UF  

#Studies show conflicting results regarding the prognostic effect of this biomarker.
ABC, activated B-cell; COO, cell of origin; DH/TH, double/triple-hit lymphomas; DHITsig, double-hit signature; DLBCL, 
diffuse large B-cell lymphoma; DP, depleted; F, favorable; GB-like, germinal center-like; GCB, germinal center B-cell; 
GEP, gene-expression profiling; IG, immunoglobulin; IHC, immunohistochemistry; IN, inflammatory; LAMIS, lymphoma-
associated macrophage interaction signature; MHG, molecular high-grade; MS, mesenchymal; OS, overall survival; TME, 
tumor microenvironment; UF, unfavorable.

Table 3. (Continued)
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in clinical practice are being made. In this context, 
Lymph2Cx, the gold standard for COO determi-
nation, can be expanded to allow for identification 
of DHITsig+ cases in true need of a more intensi-
fied treatment approach. Similarly, targeted NGS 
can be used to stratify patients among the novel 
genetic subgroups that might benefit from specific 
novel agents. Notably, these techniques have been 
validated for application in FFPET; therefore, 
their use can be expanded in clinical practice. 
More intriguingly, liquid biopsies and targeted 
NGS in cfDNA might revolutionize prognostica-
tion in DLBCL. Genetic characterization of cases, 
and classification in COO and genetic subgroups 
through studies in cfDNA might overcome limita-
tions pertaining to the quantity and quality of 

biotic samples and allow for the evaluation of 
dynamic changes in the genetic landscape of 
DLBCL during treatment and follow-up. 
Considering the TME, the translation of the 
recent findings into clinically applicable methods 
for stratifying patients in prognostic subgroups is 
eagerly anticipated.

As knowledge regarding the complex genetic 
landscape of DLBCL accumulates, the ultimate 
goal is a comprehensive evaluation of the gene-
expression and mutational profile, both in the 
tumor cells and TME of each DLBCL case, 
which might allow for more precise prognostica-
tion and provide the basis for individually-tailored 
treatment of DLBCL patients.

Table 4. Potential therapeutic agents by molecular subgroup of DLBCL45. Potential therapeutic approaches for 
double/triple-hit lymphomas (DH/TH) are also noted.

Subgroup Potential therapeutic agents

BN2 BTK inhibitors (ibrutinib, acalabrutinib, zanibrutinib)

 Lenalidomide

 PI3K/mTOR inhibitors (copanlisib, buparlisib, everolimus)

A53 BTK inhibitors

ST2 JAK/STAT inhibitors (ruxolitinib, pacritinib)

 PI3K inhibitors

MCD BTK inhibitors

 Lenalidomide,

 JAK/STAT inhibitors

N1 Immune checkpoint inhibitors (nivolumab, pembrolizumab, durvalumab)

EZB EZH2 inhibitors (tazemetostat)

 PI3K inhibitors

 BCL2 inhibitors (venetoclax)

DH/TH R-da-EPOCH (rituximab, dose-adjusted etoposide, vincristine, cyclophosphamide, 
doxorubicin, prednisone)

 BCL2 inhibitors

 EZH2 inhibitors

 PI3K inhibitors

BCL2, B-cell lymphoma 2; BTK, Bruton’s tyrosine kinase; DH/TH, double/triple-hit; EZH2, enhancer of zest homolog 2; 
JAK, Janus kinase; mTOR, mechanistic target of rapamycin; PI3K, Phosphoinositide-3 kinase; STAT, signal transducer and 
activator of transcription.
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