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With the widespread adoption of e-Healthcare and telemedicine applications, accurate, intelligent disease diagnosis systems have
been profoundly coveted. In recent years, numerous individual machine learning-based classifiers have been proposed and tested,
and the fact that a single classifier cannot effectively classify and diagnose all diseases has been almost accorded with. This has seen a
number of recent research attempts to arrive at a consensus using ensemble classification techniques. In this paper, a hybrid system
is proposed to diagnose ailments using optimizing individual classifier parameters for two classifier techniques, namely, support
vector machine (SVM) and multilayer perceptron (MLP) technique. We employ three recent evolutionary algorithms to
optimize the parameters of the classifiers above, leading to six alternative hybrid disease diagnosis systems, also referred to as
hybrid intelligent systems (HISs). Multiple objectives, namely, prediction accuracy, sensitivity, and specificity, have been
considered to assess the efficacy of the proposed hybrid systems with existing ones. The proposed model is evaluated on 11
benchmark datasets, and the obtained results demonstrate that our proposed hybrid diagnosis systems perform better in terms
of disease prediction accuracy, sensitivity, and specificity. Pertinent statistical tests were carried out to substantiate the efficacy of

the obtained results.

1. Introduction

The proliferations of computer usage across all aspects of life
have resulted in accumulating a large number of systematic
and related data. This has necessitated identifying useful
patterns from raw datasets as the next logical step forward.
Thus, data mining, a broad discipline encompassing classifi-
cation, clustering, association, prediction, estimation, and
visualization tasks [1], has emerged as a dynamic and signif-
icant field of research to address theoretical challenges as well
as practical issues. Data mining and knowledge engineering
techniques have been successfully applied to numerous areas,
like education, pattern recognition, fraud detection, and
medicine [2, 3].

The application of data mining and knowledge engineer-
ing techniques in the medical domain plays a prime role in
the diagnosis of diseases and prognostication [4]. It assists
healthcare professionals and doctors to analyze and predict

diseases [5] and is often commonly referred to as medical
engineering. Numerous machine learning algorithms have
been developed to extract useful patterns from raw medical
data over the years [6]. These patterns have been utilized
for disease prediction using classification and clustering
strategies. Medical research focuses on employing data min-
ing for prediction of a broad range of diseases, including
breast cancer [7], heart diseases [8], Parkinson’s disease [9],
hepatitis, and diabetes, only to name a few.

Over the years, several supervised machine learning tech-
niques such as classification as well as several unsupervised
machine learning techniques like clustering have been
applied to available medical information [10, 11]. Individual
classifiers, ensembles thereof, and hybrid systems have often
been used to diagnose various diseases. Several techniques
have been applied on medical data to improve such diag-
nosing efficacy, regarding performance parameters such as
prediction accuracy, sensitivity, and specificity [12, 13].
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This paper presents a hybrid system for diagnosis and
prediction of numerous diseases using optimized parameters
for classifiers. The classifier parameters are optimized using
evolutionary algorithms to enhance classification perfor-
mance. By juxtaposing the proposed parameter optimization
step within existing classifier mechanisms, our method
provides improved prediction accuracy. In this paper, 16
classifiers are executed in which two basics are with and
without resampling, 6 hybrid intelligent systems without
resampling and 6 hybrid intelligent systems with resampling
technique. In summary, this paper presents a comparative
analysis of parameter optimized versions of two classifiers,
namely, support vector machine (SVM) and multilayer
perceptron (MLP) for medical data. It has been concluded
from experimental results presented in this paper that our
proposed hybrid system outperforms state of the art (single
or ensemble) for classifying medical data. To contrive the
parameter optimization, we have employed three popular
evolutionary algorithms, namely, particle swarm optimiza-
tion (PSO), gravitational search algorithm (GSA), and firefly
algorithm (FA) for optimizing parameters of SVM and
MLP classifiers. Accordingly, we study the performance
of six alternative hybrid systems for classifying medical
data towards a diagnosis of such diseases. The performance
of the proposed hybrid intelligent techniques is compared
with the recent literature results (both simple and ensemble
classifiers [14-16]). This hybrid intelligent system shows
better performance than the recently published ensemble
classifiers on 11 benchmark datasets.

The rest of this paper is organized as follows: A brief
exposition of existing researches has been dealt with in
Section 2, specifically focusing on several machine learning
algorithms employed for processing medical datasets. The
problem formulation of our proposed weighted multiobjec-
tive optimization for the classifying problem dealt with has
been presented in Section 3. Section 4 provides the rudimen-
tary steps and key features of the evolutionary algorithms
employed for the parameter optimization of SVM and MLP
classifiers, namely, particle swarm optimization (PSO), grav-
itational search algorithm (GSA), and firefly algorithm (FA).
A very basic introduction of the two classifiers employed,
namely, SVM and MLP, has been discussed in Section 5.
Section 6 elaborately explains the development of the pro-
posed hybrid classification system for disease diagnosis along
with their key components and design principles involved.
The performance of the proposed hybrid scheme is tested
over 11 benchmark medical datasets, and Section 7 provides
a brief account of the experimental setup and the experi-
ments conducted and summarizes the results obtained. This
section also presents a statistical analysis of obtained results
for validating the acceptability of obtained statistical results.
The conclusions of the research have been presented in
Section 8.

2. Related Work

There have been abundant attempts to analyze and diagnose
ailments employing machine learning algorithms. This
section gives a summary of the efforts in this field to put
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the contribution of our work in perspective. These researches,
however, vary considerably in terms of classifiers applied and
nature of systems employed; for example, some are simple
and others are hybrid whereas some others present ensemble
systems. There are also major varieties in terms of objective
functions chosen, single or multiobjective formulation, the
number of datasets on which these methods have been
applied, performance parameters employed for validating
the efficacy, and so forth.

Among the different disease datasets that have been
studied in the literature, heart disease diagnosis has been very
prominent within medical engineering circles, and a wide
variety of machine learning techniques have been explored
towards diagnosing the same. References [17-38] include
some prominent contributions towards diagnosing heart dis-
eases from various aspects using myriad machine learning
techniques, details of which are presented hereafter. Chitra
and Seenivasagam [18] proposed a cascaded neural network
(CNN) classifier and support vector machine (SVM) to diag-
nose heart diseases. The performance of CNN and SVM was
compared based on the accuracy, sensitivity, and specificity.
Pattekari and Parveen [19] suggested an intelligent system,
which used a naive Bayes classifier that was further improved
by developing ensemble-based classifiers. Das et al. [17]
developed a neural network ensemble model for heart disease
diagnosis. The proposed technique used Statistical Analysis
System (SAS) enterprise guide 4.3 programs for data prepro-
cessing and SAS Enterprise miner 5.2 programs for recogniz-
ing the heart disease by combining three neural networks
ensemble. The technique was further improved by com-
bining other neural networks and was also used for various
datasets. Das et al. [37] described an SAS-based Software
9.1.3 for diagnosing valvular heart diseases. The proposed
method used a neural network ensemble. Predicted values,
posterior probabilities, and voting posterior probabilities
were applied.

Masethe and Masethe [21] used J48, naive Bayes,
REPTREE, CART, and Bayes Net for diagnosing the efficacy
of heart diseases. High accuracy was obtained using a J48
tree. Shaikh et al. [22] evaluated the performance of three
classifiers, namely, k-NN, naive Bayesian, and decision tree
based on four parameters, namely, precision, recall, accuracy,
and F-measure. k-NN produced higher accuracy than other
methods. Bhatla and Jyoti [26] compared naive Bayes, deci-
sion tree, and neural networks for the said diagnosis. For
the decision tree, genetic algorithm and fuzzy logic were
employed, and results presented used TANAGRA tool.

Kavitha and Christopher [23] performed classification
of heart rate using a hybrid particle swarm optimization
and fuzzy C-means (PSO-FCM) clustering. The proposed
method performed feature selection using PSO. The fuzzy
C-means cluster and classifier are combined to enhance
the accuracy. Enhanced SVM was used for classifying heart
diseases. The hybrid system could be trained to shorten the
implementation time. Alizadehsani et al. [24] evaluated
sequential minimal optimization (SMO), naive Bayes, bag-
ging with SMO, and neural networks. They employed rapid
miner tool, and high accuracy was obtained using bagging
with SMO. Abhishek [38] employed j48, naive Bayes, neural
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networks with all attributes for diagnosing heart diseases
with the WEKA machine learning software and concluded
that j48 outperformed others regarding accuracy.

Jabbar et al. [20] used association mining and genetic
algorithm in conjunction with heart disease prediction. The
proposed method used Gini index statistics for association
algorithm and crossover, the mutation for the genetic
algorithm. They further employed a feature selection tech-
nique for improved accuracy. Ordonez et al. [36] presented
an improved algorithm to determine constrained association
rules by two techniques: mapping medical data and identify-
ing constraints. The proposed method used mining attri-
butes. Constrained association rules and parameters were
used for the mapping. The technique produced interesting
results by comparing this association rule with classification
rule. Shenfield and Rostami [25] introduced a multiobjec-
tive approach to the evolutionary design of artificial neural
networks for predicting heart disease.

Parthiban and Subramanian [27] developed a coactive
neurofuzzy inference system (CANFIS) for prediction of
heart diseases. The proposed model combined CANFIS,
neural network, and fuzzy logic. It was then integrated with
a genetic algorithm. Results showed that GA was useful
for autotuning of the CANFIS parameters. Hedeshi and
Abadeh [28] performed PSO algorithm with a boosting
approach. The proposed method used fuzzy rule extraction
with PSO and enhanced-particle swarm optimization 2
(En-PSO2). Karaolis et al. [35] used myocardial infarction
(MI), percutaneous coronary intervention (PCI), and coro-
nary artery bypass graft surgery (CABG) models. The pro-
posed method used C4.5 decision tree algorithms. Results
were compared based on false positive (FP), precision,
and so forth. By further investigation with various datasets
and employing extraction rule algorithms further, better
results were obtained.

Kim et al. [30] proposed a fuzzy rule-based adaptive cor-
onary heart disease prediction support model. The proposed
method had three parts, namely, introducing fuzzy member-
ship functions, a decision-tree rule induction technique, and
fuzzy inference based on Mamdani’s method. Outcomes
were compared with neural network, logistic regression, deci-
sion tree, and Bayes Net. Chaurasia and Pal [31] offered three
popular data mining algorithms: CART (classification and
regression tree), ID3 (iterative dichotomized 3), and decision
table (DT) for diagnosing heart diseases, and the results pre-
sented demonstrated that CART obtained higher accuracy
within less time.

Olaniyi et al. [29] used neural network and support
vector machine for heart diseases. Their proposed method
used multilayer perceptron and demonstrated that SVM
produced high accuracy. Yan et al. [32] proposed that multi-
layer perception with hidden layers is found by a cascade
process. For the inductive reasoning of the methods, the
proposed method used three assessment procedures, namely,
cross-validation, hold out, and five bootstrapping samples for
five intervals. Yan et al. [33] utilized multilayer perception for
the diagnosis of five different cases of heart disease. The
method employed a cascade learning process to find hidden
layers and used back propagation for training the datasets.

Further improvements to the accuracy were achieved by
parameter adjustments. Shouman et al. [34] identified gaps
in the research work for heart disease diagnosis. The pro-
posed method applied both single and hybrid data mining
techniques to establish baseline accuracy and compared.
Based on the research, hybrid classifier produced higher
accuracy than a single classifier.

Sartakhti et al. [39] presented a method for diagnosis
of hepatitis by novel machine learning methods that
hybridize support vector machine and simulated annealing
process. The proposed method used two hyperparameters
for radial basis function (RBF) kernel: C and gamma.
For all potential combinations of C and gamma interval,
k-fold cross-validation score had been calculated. Results
demonstrated that tuning SVM parameters by simulated
annealing increased the accuracy. Calisir et al. [40] developed
the principle component analysis and least square support
vector machine (PS-LLSVM). The suggested method was
carried out in two steps: (1) the feature extraction from
hepatitis disease database and feature reduction by PCA
and (2) the reduced features are fed to the LSSVM classi-
fier. Li and Wong [41] proposed C4.5 and PCL classifier.
The outcomes were compared between C4.5 (bagging,
boosting, and single tree) and PCL, and it was concluded
that PCL produced higher accuracy than C4.5 based on
their observations.

Weng et al. [42] investigated the performance of different
classifiers which predicts Parkinson’s disease. The proposed
method used an ANN classifier based on the evaluation
criteria. Jane et al. [43] proposed a Q-back propagated time
delay neural network (Q-BTDNN) classifier. It developed
temporal classification models that performed the task
of classification and prognostication in clinical decision-
making system. It used to feed forward time-delay neural
network (TDNN) where training was imparted by a Q-
learning-induced back propagation (Q-BP) technique. A
10-fold-cross-validation was employed for assessing the
classification model. The results obtained were considered
for comparative analysis, and it produced high accuracy.
Giriiler [44] described a combination of the k-means
clustering-based feature weighting (KMCFW) method
and a complex-valued artificial neural network (CVANN).
The suggested method considered five different evaluation
methods. The cluster centers were estimated using the KMC.
Results obtained showed very high accuracy.

Bashir et al. [45] presented an ensemble framework for
predicting people with diabetes with multilayer classification
using enhanced bagging and optimized weighting. The pro-
posed HM-BagMOOV method used KNN approach for
missing data imputation and had three layers, namely, layer
1 containing naive Bayes (NB), quadratic discriminant anal-
ysis (QDA), linear regression (LR), instance-based learning
(IBL), and SVM; layer 2 included ANN and RF; and layer 3
used multilayer weighted bagging prediction. The outcome
showed that it produced good accuracy for all datasets. Iyer
et al. [46] prescribed a method to diagnose the disease using
decision tree and naive Bayes. The proposed method used
10-fold cross-validation. The technique had been further
enhanced by using other classifiers and neural network



techniques. Choubey and Sanchita [47] used genetic
algorithm and multilayer perceptron techniques for the
diagnosis of diabetics. The suggested methodology was
implemented in two levels where genetic algorithm (GA)
was used for feature selection and multilayer perceptron
neural network (MLP NN) was used for classification of
the selected characteristics. The results produced excellent
accuracy that was further increased by considering receiver
operating characteristic (ROC).

Kharya [48] used various data mining techniques for the
diagnosis and prognosis of cancer. The proposed method
used neural network, association rule mining, naive Bayes,
C4.5 decision tree algorithm, and Bayesian networks. The
results showed that decision tree produced better accuracy
than other classifiers. Chaurasia and Pal [49] investigated
the performance of different classification techniques on
breast cancer data. The proposed method used three clas-
sification techniques, namely, SMO, k-nearest neighbor
algorithm (IBK), and best first (BF) tree. The results dem-
onstrated that SMO produced higher accuracy than the
other two techniques. In this article [50], an expert system
(ES) is proposed for clinical diagnosis which is helpful for
decision making in primary health care. The ES proposed
used a rule-based system to identify several diseases based
on clinical test reports.

Alzubaidi et al. studied ovarian cancer well [51]. In this
work, features are selected using a hybrid global optimization
technique. The hybridization process has involved mutual
information, linear discriminate analysis, and genetic algo-
rithm. The performance of the proposed hybrid technique
is compared with support vector machine. This hybrid tech-
nique has shown significant performance improvements
than support vector machine.

Gwak et al. [52] have proposed an ensemble frame-
work for combining various crossover strategies using
probability. The performance of this context had tested
over 27 benchmark functions. It showed outperformance
on eight tough benchmark functions. This ensemble frame-
work further can be efficiently used for feature selection of
big datasets.

Hsieh et al. [53] have developed and ensemble machine
learning model for diagnosing breast cancer. In this model,
information-gain has been adopted for feature selection.
The list of classifiers used for developing ensemble classifier
is neural fuzzy (NF), k-nearest neighbor (KNN), and the
quadratic classifier (QC). The performance of ensemble
framework is compared with individual classifier perfor-
mance. The results demonstrate that ensemble framework
has shown better performance than single classifier.

Review of existing literature for disease diagnosis tech-
niques with machine learning indicates that there exists a
plethora of individual classifiers as well as ensemble tech-
niques. However, from such studies, it was also been
conclusively evident that no individual classifier gives high
prediction accuracy for different disease datasets. This has
led to abundant ensemble classifiers for disease diagnosis,
compromising the simplicity that an individual classifier
offers. To this end, this paper indulges in designing a
hybrid system that focuses on providing generalized
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performance across a broad range of benchmark datasets.
The most significant contribution of the proposed hybrid
disease classifiers is that unlike most research works men-
tioned before that targets a specific disease, this paper
validates the efficacy of the proposed hybrid classifiers
across six different diseases collected over eleven datasets.
For instance, among all heart disease, related diagnosis
systems only [33] consider five different datasets for the
said disease. Also, there are very few attempts in validating
diagnosis efficacy over multiple diseases. Shen et al. [54]
and Bashir et al. [14] are few exceptions that validate
their results for four and five different diseases, respectively.
The proposed classifiers employ novel parameter optimi-
zation approaches using a few recent evolutionary algo-
rithms, detailed design of which has been presented in
subsequent sections.

3. Problem Formulation

In this paper, we deal with classifying data from different dis-
ease datasets using a hybrid technique that optimizes the
parameters of SVM and MLP classifiers for improved disease
prediction. The list of objective functions to be targeted while
solving the said classification problem include (i) prediction
accuracy, (ii) specificity, and (iii) sensitivity, which has been
considered very commonly for this problem in existing liter-
ature [55-57]. Each of these objective functions captures
some aspect of quality of disease classification. In this sense,
the problem studied in this paper is a multiobjective optimi-
zation problem.

All the aforementioned measures are computed in terms
of the following values: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN), and their signifi-
cance is defined as follows: TP: total number of positives that
are correctly identified as positive; TN: total number of
negatives that are identified as negatives; FP: total number
of negatives that are incorrectly identified as positives;
and FN: total number of positives that are wrongly identified
as negatives.

The objective functions considered for optimization in
this work are prediction accuracy (PAC), specificity (SPY),
and sensitivity (SEY). To model these functions, two random
indicator variables are introduced for all the data objects to
compute TP, TN, FP, and FN. These are X,; and X,,, where
these are defined as follows:

Xy =I{CL;=PC;=C, }; (1)
X,=I{CL;=PC;=C_},

where C, represents the actual class label is positive (+), C_
represents the actual class label is negative (—), PC; represents
predicted class label of ith data object, and CL, represents the
actual class label of the ith data object. At any point of the
time, the sum of the entire indicator random variable values
is equal to 1; that is, ZJZZIXU =1,Vi.

Let the classifier being developed for classifying a given
dataset be a binary classifier and the dataset has N instances
with m, positive and m, negative instances. Therefore,
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TP= ) X,
i=1
IN
TN= ) X,,

N
FN=m - TP=m,~ ¥ X;,
i=1

N
FP=m, - TN=m,— ) X,.
i=1

The performance parameters for the classifiers can thus
be obtained using the following three equations:

TP+ TN
Prediction accuracy (PAC) = TP + TN + EP + FN

_ ZZlXil + ZZIX’Q

b
m; +m,

N
TN VX,
Specificity (SPY) = TN TP 21:1 2 (4)
n,

N
™ Y X,

Sensitivity (SEY) = TPTEN
my

()

The aim of this research is to arrive at optimal values of
classifier parameters through evolution such that some max-
ima are attained for PAC, SPY, and SEY. It is worthwhile to
mention that even different sets of classifier parameter values
with same PAC can have different values for SPY and SEY.
Thus, there exist tradeofts among (3), (4), and (5).

Any multiobjective optimization problem can then be
solved either by converting the objective functions into a sin-
gle linear or nonlinear objective function or by computing
Pareto fronts using the concept of nondominance [58].

In this paper, a linear combination of objective functions
has been taken to form a single linear compound objective
function due to the requirement of additional computational
effort for finding Pareto fronts in every iteration.

Maximize Z = W, * PAC+ W, *SPY + W, *SEY,

N N N
CXa+ ) X X
Maximize Z = W * Z’:l 1 =172 W, % L":l 2
my +m, m,
N
Zi:lX“
+ Wy =22 —
m
(6)
subject to the constraints
W+ W,+W,=1, (7)
1>W,;>0Vi, (8)
U, > CLASSIFIER PAR; > L, Vi, (9)

where CLASSIFIER_PAR,; is the ith sensitive parameter of
the considered classifier, (7) represents the totality condition

of the weights, (8) guarantees the nonnegativity condition,
and (9) checks that the ith classifier parameter values is
within the specified bounds.

4. Evolutionary Algorithms

In this section, we present a summary of the three evolu-
tionary algorithms employed to optimize the parameters of
SVM and MLP for classifying medical datasets for disease
diagnosis. The discussions are restricted only to provide a
brief overview. Detailed information and possible variations
of these algorithms are beyond the scope of this paper.

4.1. Gravitational Search Algorithm (GSA). Gravitational
search algorithm (GSA) is one of the population-based
stochastic search methods initially developed by Rashedi
et al. in the year 2009 [59]. GSA is inspired by Newton’s
gravitational law in physics, where every particle in the uni-
verse attracts every other particle with a force that is directly
proportional to the product of their masses and inversely
proportional to the square of the distance between them.
GSA has been successfully applied to solve several engineer-
ing optimization problems [60, 61].

In GSA, several masses are considered on a d-dimen-
sional space. The position of each mass resembles a point
in the solution space of the problem to be solved. The fitness
values of the agent, worst (), and best () are used to compute
the force (F) of mass. Equations corresponding to these
parameters are provided in

_ fit;(t) — worst(t)
~ best(t) — worst(t)”

q;(t) (10)

i(t)
M(t)= <, (11)
ijl%'(t)
best(t) = min{fit, (¢): Vk}, (12)
worst(t) = max{fit,(t): Vk}. (13)

To update the position of mass (x¢(t+1)), velocity
(v4(t)) needs to be updated first. The velocity of the mass
at the time (¢ + 1) majorly depends on the values of velocity
and acceleration at that time instant t. Acceleration of the
ith mass at instant ¢ is (a?(t)) depending on forces of all other
heavy masses based on (14). The equation corresponding to
the acceleration is given in (15). Equations corresponding
to updating process of mass position and mass velocity are
provided in (16) and (17).

M.(HM.
Fi(t) = ZjEkbest,j#irandj <G(t) % (xf(t) - x?(t))) ’

(14)

_ )
al(t)= M)’ (15)
VA(t+1) =rand, x V4(t) + al(t), (16)



X{(t+1)=X{(t)+ Vi(t+1), (17)
where rand; and rand; lie between 0 and 1. “€” is a
small value. The distance between agents i and j is
denoted by R;(t). The best k agents are denoted with
kbest. G is a gravitational constant which is initialized
with G, at the beginning, and with the progress in time,
the value of G decreases.

4.2. Particle Swarm Optimization (PSO). In 1995, Dr.
Kennedy and Dr. Eberhart developed a population-based
speculative computational optimization procedure called
particle swarm optimization based on the social behavior
of living organisms like fish schools and bird flocks [62].
In PSO, the particles are randomly initialized. Position and
velocity of the particles are represented as X; and V, respec-
tively. The fitness function is computed for each particle.
Personal best (pBest) and global best (gBest) are the two
important factors in PSO. Each particle has its own personal
best, which is the particles’ individual best so far achieved
until a time instant . Global best is the overall best of all
particles upto the time instant ¢. The algorithm is executed
for a certain number of iterations. At each iteration, veloc-
ity is updated for all particles using a velocity updating
scheme [63] as depicted in

Via(t) =w* Viy(t=1) + ¢; xrand() * (pBest;; = Xj4(t — 1))
+ ¢, *rand() * (gBest,; — X;;(t - 1)),
(18)

where w represents the inertia weight, ¢; and ¢, are the per-
sonal and global learning factors, and rand() is a random
number between [0,1].

The following equation updates the new position of
the particle:

Xé(t)=X3(- 1)+ V(D) (19)
The basic steps of PSO are given in Algorithm 1.

4.3. Firefly Algorithm (FA). The firefly algorithm is a recently
proposed bioinspired, evolutionary metaheuristic that mimics
the social behavior of firefly species. Fireflies produce short
and rhythmic flashes, the pattern of which characterizes
particular species. The artificial, firefly-inspired algorithm
makes certain assumptions regarding its functioning, such
as unisexual fireflies for ensuring that all artificial fireflies
attract each other and that the attractiveness is proportional
to their brightness to define the potential of relative firefly
movements. The brightness of a firefly is defined based on
the problem at hand that it needs to optimize. For the mini-
mization problem, the brightness may be the reciprocal of the
objective function value. The pseudocode of the basic firefly
algorithm as given by Yang in [64] has been depicted in
Algorithm 2. The list of equations used in firefly algorithm
is given as follows:

X=X+ Vi, (20)

Vi= ﬁoe—rrzd(Xi - Xj) +a(rand-0.5), (21)
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For each particle
Initialize position and velocity randomly
End
t=1
Do
For each particle
Calculate fitness function
If fitness value > pBest Then
Set current fitness value as pBest
End
Update particle with best fitness value as gBest
For each particle
Calculate new velocity using equation (18)
Update position using equation (19)
End
t=t+1
While (t < maximum iterations)
Post process the result.

ArcoriTHM 1: Pseudocode for particle swarm optimization.

ry=d(X;-X;) = |[X; = X
= Euclidean distance between X; and X;, (22)

B(r)=Bye """ wherem>1,

where 8, Y, a € [0, 1].

Each firefly position is updated based on (20). The
velocity of ith firefly is based on a fraction of attractiveness
in the distance between fireflies X; and X; in an m-dimen-

sional space and also on «, a small random value in the range
0 to 0.2; the equations related to velocity are given in (21)
and (22).

5. Classification Techniques

Two classification techniques are used, and the basic
details of these techniques are discussed in the subse-
quent sections.

5.1. Multilayer Perceptron. Multilayer perceptron (MLP) is
the most commonly used supervised feed forward artifi-
cial neural network. It is a modification of the linear per-
ceptron algorithm. It consists of many nodes that are
arranged in several layers. In general, MLP contains three
or more processing layers: one input layer for receiving
input features, one or more hidden layers, and an output
layer for producing classification results based on the
classes [65].

Each node is represented as an artificial neuron which
converts the input features into output using a weighted
sum of inputs and activation function.

The weighted input is given by

V=) W;X,+0,
Yi=fi(Vi),
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Objective function f (X), X = (xy, ..., X4)

Randomly generate initial fireflies’ positions as X; (i=1,2,...,n)
Light intensity I; at x; is determined by f (x;)

Define light absorption coefficient, y

Old_Solutions = {X;,X,, ..., Xy }
While (t < MaxGeneration)
New_sol = {};
fori=1:n
fo

i

rj=1:
if (£(X;) > f(X;)) then
End if

Update(r, e ")

End for j
End for i

Old_Solutions = Z[1...n]
End while

X =Move 4 (X;, Xj);
New_sol = New_sol U {X};

Evaluate new solutions, update light intensity

Z =Rank (Old_Solutions, New_sol)

Post process results and visualization

ArGoriTHM 2: Pseudocode representation of the basic firefly algorithm.

where V is the weighted sum of input features, W represents
weights, X represents the input features, and ® is the bias
based on the classes.

The activation function is denoted by flx). The most
frequently used activation functions are sigmoids. They are
as follows:

fvi)= tanh(vi), L (24)
fv)=Q1+e") .

The multilayer perceptron is trained using back propaga-
tion (BP). The weight update equation used in BP is given in

Wi — wj; + 18, x;; + alwy(n—1)  where 127,a20.
(25)

The parameter’s learning rate () and momentum («)
are evolved using evolutionary algorithms presented in
Section 4. A very basic MLP algorithm is provided in
Algorithm 3 [66, 67].

There is a chance of being caught at a local minimum
during the process of back propagation learning, and hence,
to overcome it in this research article, learning rate and
momentum values are evolved using 3 evolutionary search
algorithms (CSO, IWO, and FF). A 3-layer neural network
has been executed with an input layer, one hidden layer,
and an output layer. The size of the input layer is equal to
the number features of the data, and also, the size of the
output layer is nothing but the number classes. The size of
the hidden layer is the average of input and output layer sizes.
Moreover, the performance of these three algorithms is
compared in the simulation and is discussed in the Results
and Discussion of this paper.

W=0and ®=0
Repeat
Fori=1to L layers do
If Y,(W;X; +©;) <= then
Fori=1 to N nodes do
If|V,-X;+d;| <=1 then

V=V, +AY)X|
d;=d; + 1Y,
End if
End for
0=0+1Y,
End if
End for

Until termination expression

ArGoriTHM 3: MLP training algorithm.

5.2. Support Vector Machine. Support vector machine (SVM)
is one of the supervised machine learning algorithms, which
are often used for binary classifications. It was originally
developed by Vapnik in 1979 [68]. The training data is in
the form of instance-value pairs (x;, y;). The SVM classifier
finds an optimal hyperplane to separate negative and positive
classes, and it is represented by F(x) =w'-x+ b =0.

Based on the class labels, two hyperplanes are formed,
which are as follows:
F(x)=w'-x+b>0 for positive instances (y;= +1) and
F(x)=w'-x+b<0 for negative instances (y;= —1), where
w is the weight vector, x is input vector, and b is bias.
Classifications are made on the hyperplanes thus formed.

The optimization problem formed during the develop-
ment of soft margin classifier is as follows:
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F1GURE 1: Schematic representing the flow of steps in the proposed hybrid disease diagnosis system.

1
Minimize Z = — <w, w> + CZ.E,-,
2 i (26)

subjectto Y, (<w;, x> +b) > (1-¢&;).

The parameter cost (C) mentioned in (26) will be evolved
using the evolutionary algorithms mentioned in Section 4.

6. Hybrid Intelligent System for Diagnosing
Diseases

Diagnosing diseases from data collected from many patients
with a varied degree of a specific disease is a classification
problem. In medical information systems, single classifiers
as well as ensemble classifiers have been studied for the dis-
ease diagnosis problem. In this section, we present the design

of hybrid systems that employ evolutionary algorithms as
well as classification techniques to classify diseases based on
data. A few hybrid systems have been developed to optimize
the parameters of the classifiers [69, 70]; however, the pre-
mises of such classifiers are different application domains.
The performance of any classifier broadly depends on
three factors, namely, the technique used for the classifica-
tion; data statistics (regression, entropy, kurtosis, standard
deviation, number of features considered for training, size
of the training data, etc.); and parameters of the classifier
(learning rate, depth of the tree, maximum number of child
nodes allowed for a parent node in the decision tree, pruning,
fuzzy membership functions, activation functions, etc.). In
this paper, we focus on optimizing the parameter classifiers
using evolutionary algorithms, and thus, our designed system
qualifies as a hybrid system. Figure 1 illustrates a schematic
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. Pre-processing the data.
. Select the classifier used for classification.

. Develop the objective function (Single/ Multi).

AN U1 B W N —

the objective function constructed in step4.
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8. Post process the result obtained in step 7.

. Identify the parameters to be optimized for the classifier chosen in step3.
. Pick out the optimization technique to be used for parameter optimization of the classifier selected in step-3 based on

. Do the chosen optimization technique over the selected classifier for a finite iteration.

ALGORITHM 4: Basic steps of hybrid intelligent system.

block diagram of the proposed hybrid system depicting the
major steps to be carried out to arrive at disease diagnosis.
The rectangle with dotted border illustrates the main empha-
sis of this paper. It represents that in this paper, we have stud-
ied how two classifiers, namely, SVM and MLP, perform as
far as disease diagnosis is concerned. The parameters of these
two classifiers have been optimized using three evolutionary
algorithms, namely, PSO, GSA, and FA, with the goal of
maximizing quality of diagnosis in terms of PAC, SPY, and
SEY; or simply said, the goal is to optimize the three
objectives as has been explained in Section 3. This has been
depicted in the left half of the dotted rectangle in Figure 1.
The basic steps involved in the hybrid system are summa-
rized in Algorithm 4.

Preprocessing stage handles missing data of a feature by
inserting most popular data or interval estimated data for
that feature. As a part of preprocessing, features have also
been normalized using min-max norm with the goal of
reducing training phase time of classifiers, which takes quite
some time due to the varied range of the feature values. In
step 3, we have employed two classifiers (SVM and MLP).
In step 4, the parameters selected for evolving in SVM are
COST whereas for MLP, two parameters, namely, learning
rate and momentum, have been selected for evolution. The
range of these three parameters (cost, learning rate, and
momentum) has been set as [0, 1]. In step 5, the objective
function selected is either a single objective or multiobjective.
If the method of optimization is multiobjective optimization,
then for the sake of simplicity or uniformity, convert all the
objective functions into either maximization or minimiza-
tion. The multiple objectives considered for multiobjective
optimization are given in (3)-(9). In step 6, three evolution-
ary algorithms (cat swarm optimization, gravitational search
algorithm, and firefly algorithm) are selected as optimization
techniques to find the optimum parameter values for the
considered classifiers with respective to the multiple objec-
tives: prediction accuracy, sensitivity, and specificity. Equa-
tions corresponding to multiobjective optimization are
given in (3)-(9). In step 8, postprocessing of the results found
in step 7 has to be done based on the optimization model
selected in step 5. If the optimization model is single objective
optimization, then to check the performance of the evolu-
tionary algorithm, several statistical values like max, mini-
mum, mean, median, and so forth have to be computed. If
the selected optimization model is multiobjective (or
weighted multiobjective) optimization model, the quality of

nondominated solutions must found using the metrics like
spacing, generational distance, and so forth.

The hybridization process ensures that the population
of the evolutionary algorithms is constructed based on
the classifier parameters by satisfying parameter bounds.
During the execution of evolutionary algorithms, popula-
tion fitness is computed by substituting the performance
parameter values of the classifier executed on the dataset
in step 4.

Once all the three EAs are executed individually, optimal
parameter values for each of the two classifiers (SVM and
MLP) are found, and subsequently, these six HISs are
compared based on their fitness values. That HIS having
the best fitness value for a particular dataset is considered
as the proposed HIS for that particular dataset. The objective
function and parameter values of the best hybrid intelligent
system are treated as final optimal values.

By combining the two classifiers and the three evolution-
ary optimization techniques for optimizing chosen classifier
parameters, a number of hybrid intelligent systems have been
obtained as possible alternatives. These alternative hybrid
intelligent systems (HISs) have been termed as GSA-based
SVM (GSVM), FA-based SVM (FSVM), PSO-based SVM
(PSVM), GSA-based MLP (GMLP), FA-based MLP (FMLP),
and PSO-based MLP (PMLP). These six HISs are tested on all
the eleven benchmark datasets considered in this work, once
without employing resampling and then using resampling
technique. Hence, these HISs produce a set of sixteen results
for each of the disease datasets, eight for SVM and eight for
MLP. Out of these eight results, one is for the basic classifier
(only SVM and only MLP) without data resampling, another
for the same with resampling data, and the remaining six are
for the three evolutionary algorithms each, once with original
data and again with resampling data. The benchmark datasets
are tested with ADABOOST version of SVM and MLP. How-
ever, on average, the ADABOOST results are not competitive
with the instance-based supervised resampling technique in
Weka, and the corresponding performances are given in
Table 1. Moreover, we continued our experiments using
instance-based supervised resampling technique.

7. Simulations and Results

To check the performance of the proposed hybrid system,
11 medical datasets of various diseases are considered. These
data have been collected from the UCI repository [71], and
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TaBLE 1: Comparison of basic, resampling, and ADABOOST versions of SVM and MLP.

Dataset MLP SVM RMLP RSVM ADA-MLP ADA-SVM
Cleveland 79.2079 82.8383 93.72 85.0886 76.23 82.5083
Statlog 77.4074 84.07 86.6667 83.7037 77.777 84.07
Spect 79.4 81.65 88.38 88.764 79.4007 80.8989
Spectf 76.03 79.40 90.2622 82.397 76.03 77.9026
Eric 77.99 78.95 88.51 83.73 77.9904 77.9904
WBC 95.28 96.85 97.1388 96.5665 95.5651 96.7096
Hepatitis 81.94 85.16 90.3226 85.8065 78.7097 78.9097
Thyroid 96.28 89.77 98.1395 78.6047 97.2093 85.1163
Parkinson 91.28 86.15 96.4103 90.2564 92.3077 87.6923
Pima Indian diabetics 7513 77.47 79.2969 76.0417 73.9583 77.3438
BUPA liver 71.59 70.14 68.1159 54.4928 71.3043 62.029

R: filter-based supervised instance resampling; ADA: ADABOOST.

TaBLE 2: Summary of datasets used.

S. number Dataset Size

1 Cleveland 303x 14
2 Statlog 270 x 14
3 Spect 267 x23
4 Spectf 267 x 45
5 Eric 209x 8
6 WBC 699 x 10
7 Hepatitis 155x20
8 Thyroid 215x6
9 Parkinson 195 %23
10 Pima Indian diabetics 768 X9
11 BUPA 345x7

the same form the basis of almost all performance evalua-
tions in disease diagnosis. A detailed account of the datasets
employed in this paper has been summarized in Table 2.
All the six hybrid system alternatives and basic classifier tech-
nique have been executed on each of the 11 datasets, once
without resampling of the dataset and then repeated with
resampled dataset.

All the three evolutionary algorithms are executed for
50 iterations by considering 20 agents per iteration. These
algorithms have been implemented in Java. Weka 3.7.4
tool class libraries have been used for the implementation
of SVM and MLP. Instance-based resampling, which is
available in Weka, has been used for resampling purposes.
For experimentation purposes, the datasets considered are
divided into testing and training sets, and a 10-fold cross-
validation is used to that effect. To compare the performance
of our proposed hybrid system for the datasets employed, we
have compared results we have obtained with the results pre-
sented in three very recent papers that use the same datasets
(not all 11 datasets, only a subset is utilized by these papers).
References [14] through [16] are recent literature, and they
have been referred to in our work as the base papers for every
dataset (as has been earmarked in legends in Figure 2). The
results of datasets corresponding to diseases like breast

cancer, hepatitis, BUPA liver, Pima, Cleveland, and Parkin-
son have been compared with those of [14], whereas the
results of Statlog, Spect, Spectf, and Eric have been compared
with those of BagMOOV [15]. Thyroid disease results alone
are compared with those of [16]. In this work, the highest pri-
ority is given in favor of prediction accuracy. Hence, w,, w,,
and w; in (6) correspond to 0.95, 0.05/2, and 0.05/2,
respectively.

7.1. Statistical Analysis. In this section, we present a number
of statistical analyses for the results obtained from our
proposed hybrid system. The following subsections provide
details about how these analyses are done.

7.1.1. Signed-Rank Test. The statistical analysis was done
using Wilcoxon signed-rank test [72]. It tests the performance
of all the techniques. The null hypothesis and alternative null
hypothesis are set as follows:

H,: median(X) is equal to median(Y).
H,: median(X) is not equal to median(Y).

The objective values corresponding to FMLP overall
disease datasets are tested over rest of the five techniques
on all disease datasets, once with and next without resam-
pling for each of the hybrid system alternatives, namely,
FSVM, GSVM, PSVM, GMLP, and PMLP.

The Wilcoxon signed-rank test was executed with the
level of significances 0.01 and 0.05. The Matlab function
“signrank()” was used to perform the statistical analysis
and the conclusions arrived upon has been presented in
Tables 3, 4, 5, and 6.

7.1.2. Student’s t-Test. Student’s ¢-test is used to test whether
the sample X derived from a normal distribution can have the
mean m without knowing standard deviation [73]. We
execute FMLP for 20 times, and we also noted the best per-
formance in each iteration. Student’s t-test is executed on
the three objectives: prediction accuracy (PAC), sensitivity
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(SEN), and specificity (SPE). Null hypothesis and alternative
hypothesis are set as follows:

Hy: puy=m, H: uy#m.

Student’s t-test is performed by using ttest() func-
tion available in MATLAB. The performance of this test
for various parameter values has been summarized in
Tables 7 and 8.

7.2. Performance Metrics. The important distinct goals of
multiobjective optimization are (1) finding solutions as
close to the Pareto-optimal solutions as possible and (2)
finding solutions as diverse as possible in the obtained
nondominated front. In this work, to test the first goal
is tested using generational distance (GD) and the sec-
ond target is tested by computing spacing [58]. In the
metric computation, two sets are used, namely, Q and
P*, where Q is the Pareto front found by test algorithm
and P* is the subset of true Pareto-optimal members.
Before computing these metrics, the data in Q is to be
normalized since various objective functions will have
different ranges.

Generational distance (GD): Veldhuizen introduces this
metric in the year 1990 [74]. This metric finds an average
distance between the members of Q and P* as follows:

1
GD:(ZLSI‘df) p/|Q|. For p=2, the parameter d; is the
Euclidean distance between the members of Q and the

nearest member of P*: d, :minLill Zi‘:zl(f’m —f;l(k)) ,

where f:‘n(k) is the mth objective function value of the kth
member of P*. An algorithm having a small value of GD is
better. The members in P* are having a maximum value for
at least one objective function.

Spacing (SP): Schott introduces this metric in the
year 1995 [75]. This metric finds the standard deviation
of different d; values. It can be calculated as follows: S=

—2 . i
VWIQNT (d, - ), where d, = min g X2, [, £

and d is the mean value of d;’s. A good algorithm will be
having a minimal SP value. The set Q is caught by executing
FMLP for 50 iterations with each iteration having 20 agents.
In every iteration, the Pareto fronts are stored in external
memory. The metrics for GD and SP for all the three objec-
tives with and without resampling are given in Table 9.

7.3. Results and Discussion. The best values found in all the
hybrid systems are discussed as follows.

7.3.1. Cleveland Dataset. The performance of all the 8 tech-
niques (2 basic machine learning and six hybrid systems)
over Cleveland dataset is depicted in Table 10. PMLP shows
best sensitivity (84.79%), whereas FMLP shows better results
for all the other performance parameters, like accuracy
(85.8%), specificity (87.5%), F-measure (85.74%), recall
(85.8%), and precision (85.91%) without resampling. On
the contrary, with resampling, PMLP shows the best
accuracy (94.1%), but for all the other parameters, like sensi-
tivity (93.49%), specificity (94.77%), F-measure (94.05%),
recall (94.05%), and precision (94.07%), PMLP (GMLP,
FMLP) shows best results. A comparison of Cleveland
result with the state-of-the-art result is given in Table 11.
Table 10 summarizes the performance of the proposed
hybrid alternatives for the Cleveland dataset, and Table 11
compares this performance with best results obtained in
recent literature.

7.3.2. Statlog Dataset. The performance of all the 8 tech-
niques (2 machine learning and six hybrid systems) over
Statlog dataset with and without resampling is given in
Table 12. The highest accuracy, sensitivity, specificity, F-
measure, recall, and precision without resampling are
achieved by FMLP, PMLP, FMLP, FMLP, FMLP, and FMLP,
respectively; best values found have been bolded for easy
identification in Table 12. The highest accuracy, sensitivity,
specificity, F-measure, recall, and precision with resampling
are achieved by GMLP, GMLP, FMLP, GMLP, GMLP, and
GMLP, respectively; best values found have been bolded for
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TABLE 3: Signed-rank test at LOS 0.01 on resampled data.
Dataset Objectives PSVM GSVM FSVM PMLP GMLP
P value H P value H P value H P value H P value H
PAC 3.69E-05 1 3.69E-05 1 3.69E-05 1 8.75E-05 1 8.125E-5 1
Cleveland SEN 4.4E-05 1 2.98E-05 1 3.69E-05 1 6.875E-5 1 1.13E-5 1
SPE 3.69E-05 1 4.4E-05 1 44E-05 1 8.125E-5 1 4.375E-5 1
PAC 3.69E-05 1 2.98E-05 1 3.69E-05 1 6.11E-05 1 2.31E-05 1
Statlog SEN 3.69E-05 1 3.69E-05 1 4.4E-05 1 3.69E-05 1 4.4E-05 1
SPE 2.98E-05 1 4.4E-05 1 3.69E-05 1 4.4E-05 1 4.4E-05 1
PAC 4.4E-05 1 4.4E-05 1 4.4E-05 1 0.000963 1 5E-05 1
Spect SEN 4.4E-05 1 7.23E-05 1 4.4E-05 1 0.007533 1 0.009141 1
SPE 2.98E-05 1 3.69E-05 1 3.69E-05 1 2.98E-05 1 3.69E-05 1
PAC 2.98E-05 1 4.4E-05 1 3.69E-05 1 5.17E-05 1 0.000726 1
Spectf SEN 4.4E-05 1 4.4E-05 1 8.51E-05 1 0.000629 1 0.00082 1
SPE 4.4E-05 1 4.4E-05 1 3.69E-05 1 2.98E-05 1 0.000627 1
PAC 4.4E-05 1 4.4E-05 1 4.4E-05 1 0.875 0 3.69E-05 1
Eric SEN 4.4E-05 1 44E-05 1 4.4E-05 1 5.2E-05 1 3.69E-05 1
SPE 3.69E-05 1 2.98E-05 1 2.98E-05 1 3.69E-05 1 3.69E-05 1
PAC 4.37E-05 1 3.55E-05 1 4.37E-05 1 1 0 5E-05 1
WBC SEN 4.4E-05 1 3.69E-05 1 4.4E-05 1 0.5625 0 0.006127 1
SPE 4.4E-05 1 4.4E-05 1 4.4E-05 1 0.4375 0 6.11E-05 1
PAC 4.4E-05 1 3.69E-05 1 3.69E-05 1 0.4375 0 8.4375 1
Hepatitis SEN 4.37E-05 1 5.2E-05 1 3.69E-05 1 8.75E-6 1 5.7126E-5 1
SPE 4.4E-05 1 3.69E-05 1 3.69E-05 1 1.15E-5 1 2.3123E-5 1
PAC 4.4E-05 1 3.69E-05 1 3.69E-05 1 4.4E-05 1 4.4E-05 1
Thyroid SEN 4.4E-05 1 4.4E-05 1 2.98E-05 1 4.4E-05 1 2.98E-05 1
SPE 4.4E-05 1 3.69E-05 1 4.4E-05 1 6.577E-5 1 0.007533 1
PAC 4.4E-05 1 4.4E-05 1 3.69E-05 1 3.69E-05 1 4.37E-05 1
Parkinson SEN 4.4E-05 1 2.98E-05 1 4.4E-05 1 0.006855 1 3.2366E-5 1
SPE 4.4E-05 1 4.4E-05 1 3.69E-05 1 2.98E-05 1 3.69E-05 1
PAC 4.4E-05 1 4.4E-05 1 4.4E-05 1 3.69E-05 1 1E-04 1
Pima Indian diabetics SEN 3.69E-05 1 3.69E-05 1 2.98E-05 1 3.69E-05 1 2.98E-05 1
SPE 4.4E-05 1 4.4E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1
PAC 4.4E-05 1 3.69E-05 1 44E-05 1 4.4E-05 1 3.69E-05 1
BUPA liver disease SEN 4.4E-05 1 3.69E-05 1 4.4E-05 1 44E-05 1 4.4E-05 1
SPE 3.69E-05 1 3.69E-05 1 3.69E-05 1 2.31E-05 1 2.31E-05 1

easy identification in Table 12. A comparison of Statlog
result with the state-of-the-art result is given in
Table 13. The highest prediction accuracy for Statlog is
85.9% (without resampling) and 90.7 (with resampling).
The performance of all the considered techniques over
Statlog dataset with resampling is better than without
resampling. Table 12 summarizes the performance of pro-
posed hybrid alternatives for this dataset, and Table 13
compares this performance with best results obtained in
recent literature.

7.3.3. Spect Dataset. The performance of all the 8 techniques
(2 machine learning and six hybrid systems) over Spect
dataset with and without resampling is given in Table 14.
The highest accuracy, sensitivity, specificity, F-measure,
recall, and precision without resampling are achieved by

FMLP, FSVM, FMLP, EMLP, FMLP, and FMLP, respec-
tively, with the values 85%, 88.4%, 74.2%, 83.3%, 85%, and
83.9%. The highest accuracy, sensitivity, specificity, F-mea-
sure, recall, and precision with resampling are achieved by
GMLP (PMLP), GMLP (EMLP, PMLP), GMLP (PMLP),
PMLP (GMLP), GMLP (PMLP), and GMLP (PMLP),
respectively, with the values 89.5%, 91.9%, 77.3%, 89.2%,
89.5%, and 89.1%. A comparison of Spect result with the
state-of-the-art result is given in Table 15. The highest
prediction accuracy for Spect is 85% (without resampling)
and 89.5 (with resampling). The performance of all the
considered techniques over Spect dataset with resampling is
better than without resampling. Table 14 summarizes the
performance of proposed hybrid alternatives for this dataset,
and Table 15 compares this performance with best results
obtained in recent literature.
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TABLE 4: Signed-rank test at LOS 0.05 on resampled data.

Dataset Objectives PSVM GSVM FSVM PMLP GMLP
P value H P value H P value H P value H P value H
PAC 3.69E-05 1 3.69E-05 1 3.69E-05 1 8.75E-5 1 8.125E-5 1
Cleveland SEN 4.4E-05 1 2.98E-05 1 3.69E-05 1 6.875E-5 1 1.542E-4 1
SPE 3.69E-05 1 4.4E-05 1 4.4E-05 1 8.125E-5 1 4.375 1
PAC 3.69E-05 1 2.98E-05 1 3.69E-05 1 6.11E-05 1 2.31E-05 1
Statlog SEN 3.69E-05 1 3.69E-05 1 4.4E-05 1 3.69E-05 1 4.4E-05 1
SPE 2.98E-05 1 4.4E-05 1 3.69E-05 1 4.4E-05 1 4.4E-05 1
PAC 4.4E-05 1 4.4E-05 1 4.4E-05 1 0.000963 1 5E-05 1
Spect SEN 4.4E-05 1 7.23E-05 1 4.4E-05 1 0.007533 1 0.009141 1
SPE 2.98E-05 1 3.69E-05 1 3.69E-05 1 2.98E-05 1 3.69E-05 1
PAC 2.98E-05 1 4.4E-05 1 3.69E-05 1 5.17E-05 1 0.000726 1
Spectf SEN 4.4E-05 1 4.4E-05 1 8.51E-05 1 0.000629 1 0.00082 1
SPE 4.4E-05 1 4.4E-05 1 3.69E-05 1 2.98E-05 1 0.000627 1
PAC 44E-05 1 4.4E-05 1 4.4E-05 1 8.75E-5 1 3.69E-05 1
Eric SEN 4.4E-05 1 4.4E-05 1 4.4E—-05 1 5.2E-05 1 3.69E-05 1
SPE 3.69E-05 1 2.98E-05 1 2.98E-05 1 3.69E-05 1 3.69E-05 1
PAC 4.37E-05 1 3.55E-05 1 4.37E-05 1 1.3982E-5 1 5.38E-05 1
WBC SEN 4.4E-05 1 3.69E-05 1 4.4E-05 1 5.625E-5 1 0.6127 0
SPE 44E-05 1 4.4E-05 1 4.4E-05 1 4.235E-5 1 6.11E-05 1
PAC 4.4E-05 1 3.69E-05 1 3.69E-05 1 4.375E-5 1 8.475E-5 1
Hepatitis SEN 4.37E-05 1 5.2E-05 1 3.69E-05 1 0.875E-5 1 1.873E-5 1
SPE 4.4E-05 1 3.69E-05 1 3.69E-05 1 1.321E-5 1 1.098E-5 1
PAC 4.4E-05 1 3.69E-05 1 3.69E-05 1 44E-05 1 4.4E-05 1
Thyroid SEN 4.4E-05 1 4.4E-05 1 2.98E-05 1 4.4E-05 1 2.98E-05 1
SPE 4.4E-05 1 3.69E-05 1 4.4E-05 1 0.026577 1 0.007533 1
PAC 4.4E—-05 1 4.4E-05 1 3.69E-05 1 3.69E-05 1 4.37E-05 1
Parkinson SEN 4.4E-05 1 2.98E-05 1 4.4E-05 1 0.006855 1 0.032366 1
SPE 4.4E-05 1 4.4E-05 1 3.69E-05 1 2.98E-05 1 3.69E-05 1
PAC 4.4E-05 1 4.4E-05 1 4.4E-05 1 3.69E-05 1 1E-04 1
Pima Indian diabetics SEN 3.69E-05 1 3.69E-05 1 2.98E-05 1 3.69E-05 1 2.98E-05 1
SPE 4.4E-05 1 4.4E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1
PAC 4.4E—-05 1 3.69E-05 1 4.4E-05 1 4.4E-05 1 3.69E-05 1
BUPA liver disease SEN 4.4E-05 1 3.69E-05 1 4.4E-05 1 4.4E-05 1 4.4E-05 1
SPE 3.69E-05 1 3.69E-05 1 3.69E-05 1 2.31E-05 1 2.31E-05 1

7.3.4. Spectf Dataset. The performance of all the 8 techniques
(2 machine learning and six hybrid systems) over Spectf
dataset with and without resampling is given in Table 16.
The highest accuracy, sensitivity, specificity, F-measure,
recall, and precision without resampling are achieved by
FMLP, FSVM, FMLP, PSVM, FMLP, and FMLP, respec-
tively, with the values 82.4%, 88%, 83.3%, 80.6%, 82.4%,
and 82.6%. The highest accuracy, sensitivity, specificity,
F-measure, recall, and precision with resampling are
achieved by PMLP, GSVM, PMLP, PMLP, PMLP, and
PMLP, respectively; best values found are bolded for easy
identification in Table 16. A comparison of Spectf result with
the state-of-the-art result is given in Table 17. The highest
prediction accuracy for Spectf is 82.4% (without resampling)
and 90.6% (with resampling). The performance of all the
considered techniques over Spectf dataset with resampling

is better than without resampling except in specificity.
Table 16 summarizes the performance of proposed hybrid
alternatives for this dataset, and Table 17 compares this
performance with best results obtained in recent literature.

7.3.5. Eric Dataset. The performance of all the 8 techniques
(2 basic machine learning and six hybrid systems) over
ERIC dataset is depicted in Table 18. FMLP shows best
results for parameters like accuracy (81.34%), specificity
(79.1%), F-measure (81.02%), and recall (81.34%), whereas
GMLP shows better results for sensitivity (88.41%) and
precision (82.5%) without resampling. On the contrary,
with resampling, GMLP shows best results for parameters
like accuracy (91.39%), sensitivity (88.78%), specificity
(93.69%), F-measure (91.40%), recall (91.39%), and precision
(91.48%). A comparison of ERIC result with the state-of-the-
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TaBLE 5: Signed-rank test at LOS 0.01 on without resampled data.
Dataset Objectives PSVM GSVM FSVM PMLP GMLP
P value H P value H P value H P value H P value H
PAC 3.69E-05 1 3.69E-05 1 3.69E-05 1 2.98E-05 1 2.98E-05 1
Cleveland SEN 4.4E-05 1 2.98E-05 1 4.4E-05 1 0.004662 1 8.51E-05 1
SPE 4.4E-05 1 4.4E-05 1 44E-05 1 4.4E-05 1 3.69E-05 1
PAC 2.98E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1 4.4E-05 1
Statlog SEN 0.035645 0 3.69E-05 1 6.14E-05 1 4.4E-05 1 2.98E-05 1
SPE 4.4E-05 1 4.4E-05 1 4.4E-05 1 4.4E-05 1 3.69E-05 1
PAC 3.69E-05 1 4.4E-05 1 4.4E-05 1 4.4E-05 1 3.69E-05 1
Spect SEN 8.5E-05 1 3.69E-05 1 3.69E-05 1 4.4E-05 1 5.17E-05 1
SPE 4.4E-05 1 4.4E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1
PAC 4.4E-05 1 4.4E-05 1 3.69E-05 1 4.4E-05 1 3.69E-05 1
Spectf SEN 2.98E-05 1 4.4E-05 1 4.4E-05 1 4.4E-05 1 4.4E-05 1
SPE 4.4E-05 1 3.69E-05 1 4.4E-05 1 2.98E-05 1 3.69E-05 1
PAC 4.4E-05 1 4.4E-05 1 4.4E-05 1 3.69E-05 1 4.375E-05 1
Eric SEN 4.4E-05 1 44E-05 1 6.14E-05 1 0.000542 1 4.4E-05 1
SPE 4.4E-05 1 3.69E-05 1 3.69E-05 1 4.37E-05 1 3.69E-05 1
PAC 7.23E-05 1 0.000117 1 0.000943 1 0.005267 1 1E-04 1
WBC SEN 3.69E-05 1 4.4E-05 1 3.69E-05 1 0.000544 1 8.51E-05 1
SPE 0.007263 1 0.032366 0 0.000826 1 0.00003 1 4.37E-05 1
PAC 4.4E-05 1 3.69E-05 1 4.4E-05 1 4.4E-05 1 4.4E-05 1
Hepatitis SEN 3.69E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1
SPE 5E-05 1 4.4E-05 1 6.11E-05 1 2.98E-05 1 3.69E-05 1
PAC 4.4E-05 1 4.4E-05 1 3.69E-05 1 4.4E-05 1 4.4E-05 1
Thyroid SEN 0.005738 1 0.000725 1 0.000726 1 3.69E-05 1 4.4E-05 1
SPE 4.4E-05 1 4.4E-05 1 3.69E-05 1 4.37E-05 1 3.69E-05 1
PAC 4.4E-05 1 3.69E-05 1 4.4E-05 1 3.69E-05 1 4.4E-05 1
Parkinson SEN 3.69E-05 1 3.69E-05 1 3.69E-05 1 6.14E-05 1 4.359E-05 1
SPE 4.4E-05 1 3.69E-05 1 4.4E-05 1 4.4E-05 1 3.69E-05 1
PAC 4.4E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1 4.4E-05 1
Pima Indian diabetics SEN 3.69E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1
SPE 3.69E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1 3.55E-05 1
PAC 4.4E-05 1 3.69E-05 1 4.4E-05 1 4.4E-05 1 3.69E-05 1
BUPA liver disease SEN 4.4E-05 1 0.00509 1 0.00646 1 4.4E-05 1 44E-05 1
SPE 3.69E-05 1 3.69E-05 1 3.69E-05 1 6.11E-05 1 3.69E-05 1

art result is given in Table 19. Table 18 summarizes the
performance of the proposed hybrid alternatives for the
ERIC dataset, and Table 19 compares this performance with
best performance in recent literature.

7.3.6. Wisconsin Breast Cancer (WBC) Dataset. The perfor-
mance of all the 8 techniques (2 basic machine learning
and six hybrid systems) over breast cancer dataset is
depicted in Table 20. GMLP shows best accuracy (97%)
and precision (97.04%), whereas PSVM shows better
results for the parameters like sensitivity (95.08%), speci-
ficity (98.02%), and F-measure (97%), and GMLP and
PSVM together show the best result for recall (97%) with-
out resampling. On the contrary, with resampling, FMLP
shows the best accuracy (98%), but for all the other
parameters, like sensitivity (96.61%), F-measure (98%),

recall (98%), and precision (98%), PMLP (FMLP) shows
best results and PSVM (GSVM and FSVM) shows best
results for specificity (99.55%). A comparison of breast
cancer result with the state-of-the-art result is given in
Table 21. Table 20 summarizes the performance of the
proposed hybrid alternatives for the breast cancer dataset,
and Table 21 compares this performance with best results
obtained in recent literature.

7.3.7. Hepatitis Dataset. The performance of all the 8 tech-
niques (2 basic machine learning and six hybrid systems)
over Hepatitis dataset is depicted in Table 22. PMLP shows
best results for specificity (90.55%), F-measure (86.77%),
recall (87.1%), and precision (86.6%), whereas GSVM
(PSVM and FSVM) shows better results for the parameters
like accuracy (87.1%) and sensitivity (73.08%) without
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TABLE 6: Signed-rank test at LOS 0.05 on without resampled data.

Dataset Objectives PSVM GSVM FSVM PMLP GMLP
P value H P value H P value H P value H P value H
PAC 3.69E-05 1 3.69E-05 1 3.69E-05 1 2.98E-05 1 2.98E-05 1
Cleveland SEN 4.4E-05 1 2.98E-05 1 4.4E-05 1 0.004662 1 8.51E-05 1
SPE 4.4E-05 1 4.4E—-05 1 4.4E-05 1 4.4E—-05 1 3.69E-05 1
PAC 2.98E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1 4.4E-05 1
Statlog SEN 0.035645 1 3.69E-05 1 6.14E-05 1 4.4E-05 1 2.98E-05 1
SPE 4.4E-05 1 4.4E-05 1 4.4E-05 1 4.4E-05 1 3.69E-05 1
PAC 3.69E-05 1 4.4E-05 1 4.4E-05 1 4.4E-05 1 3.69E-05 1
Spect SEN 8.5E-05 1 3.69E-05 1 3.69E-05 1 4.4E-05 1 5.17E-05 1
SPE 4.4E-05 1 4.4E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1
PAC 4.4E-05 1 4.4E-05 1 3.69E-05 1 4.4E-05 1 3.69E-05 1
Spectf SEN 2.98E-05 1 4.4E-05 1 4.4E-05 1 44E-05 1 4.4E-05 1
SPE 4.4E-05 1 3.69E-05 1 4.4E-05 1 2.98E-05 1 3.69E-05 1
PAC 4.4E-05 1 4.4E-05 1 4.4E-05 1 3.69E-05 1 0.4375 0
Eric SEN 4.4E—-05 1 4.4E-05 1 6.14E-05 1 0.000542 1 4.4E-05 1
SPE 4.4E-05 1 3.69E-05 1 3.69E-05 1 4.37E-05 1 3.69E-05 1
PAC 7.23E-05 1 0.000117 1 0.000943 1 0.005267 1 1E-04 1
WBC SEN 3.69E-05 1 4.4E-05 1 3.69E-05 1 0.000544 1 8.51E-05 1
SPE 0.007263 1 0.032366 1 0.033826 1 0.039203 1 4.37E-05 1
PAC 4.4E-05 1 3.69E-05 1 4.4E-05 1 4.4E-05 1 4.4E-05 1
Hepatitis SEN 3.69E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1
SPE 5E-05 1 4.4E-05 1 6.11E-05 1 2.98E-05 1 3.69E-05 1
PAC 4.4E-05 1 4.4E-05 1 3.69E-05 1 4.4E-05 1 4.4E-05 1
Thyroid SEN 0.005738 1 0.000725 1 0.000726 1 3.69E-05 1 4.4E-05 1
SPE 4.4E-05 1 4.4E-05 1 3.69E-05 1 4.37E-05 1 3.69E-05 1
PAC 4.4E-05 1 3.69E-05 1 4.4E-05 1 3.69E-05 1 4.4E-05 1
Parkinson SEN 3.69E-05 1 3.69E-05 1 3.69E-05 1 6.14E-05 1 0.043059 1
SPE 4.4E-05 1 3.69E-05 1 4.4E-05 1 4.4E-05 1 3.69E-05 1
PAC 4.4E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1 4.4E-05 1
Pima Indian diabetics SEN 3.69E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1
SPE 3.69E-05 1 3.69E-05 1 3.69E-05 1 3.69E-05 1 3.55E-05 1
PAC 4.4E-05 1 3.69E-05 1 4.4E-05 1 4.4E-05 1 3.69E-05 1
BUPA liver disease SEN 4.4E-05 1 0.00509 1 0.00646 1 4.4E-05 1 4.4E-05 1
SPE 3.69E-05 1 3.69E-05 1 3.69E-05 1 6.11E-05 1 3.69E-05 1

resampling. On the contrary, with resampling, FMLP (PMLP
and GMLP) shows best results for parameters like accuracy
(92.26%), sensitivity (80.77%), specificity (94.57%), F-mea-
sure (92.14%), recall (92.26%), and precision (92.08%). A
comparison of Hepatitis result with the state-of-the-art result
is given in Table 23. Table 22 summarizes the performance of
the proposed hybrid alternatives for the Hepatitis dataset,
and Table 23 compares this performance with best results
obtained in recent literature.

7.3.8. Thyroid Dataset. The performance of all the 8 tech-
niques (2 machine learning and 6 hybrid systems) over
thyroid dataset with and without resampling is given in
Table 24. The highest accuracy, sensitivity, specificity, F-
measure, recall, and precision without resampling is achieved
by FMLP, FMLP (PMLP), FMLP, FMLP, FMLP (PMLP), and

FMLP (PMLP), respectively, best values found have been
bolded for easy identification in Table 24. The highest accu-
racy, sensitivity, specificity, F-measure, recall, and precision
with resampling are achieved by PMLP (fMLP), FMLP
(PMLP), PMLP (EMLP), PMLP (FMLP), PMLP (EMLP),
and PMLP (FMLP), respectively, with the values 98.6%,
98.2%, 98.74%, 98.6%, 98.6%, and 98.6%. A comparison of
thyroid result with the state-of-the-art result is given in
Table 25. The highest prediction accuracy for thyroid is
97.7% (without resampling) and 98.6% (with resampling).
The performance of all the considered techniques over
thyroid dataset with resampling is better than without
resampling. Table 24 summarizes the performance of pro-
posed hybrid alternatives for this dataset, and Table 25
compares this performance with best results obtained in
recent literature.
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TaBLE 7: Results of Student’s t-test on without resampled data.

Dataset name Obj Alpha=0.01 Alpha=0.05
H P value Lower bound Upper bound H P value Lower bound  Upper bound
PAC 0 0.107409014  93.63760552 9415613048 0  0.107409014  93.70719481 94.08654119
Cleveland SEN 0 0.119440215 93.37174786 93.52239194 0  0.119440215 93.39196524  93.50217457
SPE 0 0.110406058 94.4269811 94.85972715 0 0.110406058  94.48505832 94.80164993
PAC 0 0.198452296  89.40087856  89.71350963 0  0.198452296  89.4428356 89.67155259
Statlog SEN 0 0.113684201 87.8202939 88.13645358 0 0.113684201 87.8627245 88.09402298
SPE 0 0.085172965 90.21689475  90.78345951 0  0.085172965  90.29293128  90.70742299
PAC 0  0.09899382 88.79823642 89.22375777 0 0.09899382 88.85534404  89.16665015
Spect SEN 0 0.102037465  91.52271275 9198167028 0  0.102037465  91.58430772 91.92007531
SPE 0 0.094031375  75.19513272 75.64666638 0  0.094031375  75.25573136 75.58606775
PAC 0 0.091447714  89.90632221 90.34258368 0  0.091447714  89.96487122  90.28403467
Spectf SEN 0 0.085170746  93.2108793 93.62575965 0  0.085170746  93.26655883  93.57008011
SPE 0 0.086020283  75.50805229 76.1105871 0 0.086020283  75.58891622  76.02972317
PAC 0 0.123534674  89.66246147  90.03031881 0 0.123534674  89.71183022 89.98095006
Eric SEN 0 0.127198304 87.50689214  87.66497294 0  0.127198304  87.52810757 87.64375751
SPE 0 0.166768736  91.88301746 9198548668 0  0.166768736  91.89676947 91.97173467
PAC 0 0.104809721  97.89345297 98.02702302 0  0.104809721  97.91137891 98.00909708
WBC SEN 0 0.103386039  96.30307823  96.68720924 0  0.103386039  96.35463101 96.63565646
SPE 0 0.108706462  98.37053699  98.78539395 0  0.108706462  98.42621338  98.72971756
PAC 0 0.131198082 92.0423242 92.32294757 0 0.131198082  92.07998561 92.28528616
Hepatitis SEN 0 0.270421552 80.5671699 80.85759447 0  0.270421552  80.60614669 80.81861768
SPE 0 0.141041289  94.26694606 94.66132599 0  0.141041289  94.31987431 94.60839774
PAC 0 0.171022773  97.15734101 97.84211907 0  0.171022773 97.2492425 97.75021758
Thyroid SEN 0 0.189226475  94.54448673  94.93137205 0  0.189226475 94.59640916  94.87944963
SPE 0 0.209391475  98.4352079 98.84065802 0  0.209391475  98.48962183  98.78624408
PAC 0 0.100403912  96.04769583 96.49955298 0  0.100403912  96.10833788 96.43891093
Parkinson SEN 0 0.118064733  97.14392547 97.46967293 0  0.118064733  97.18764281 97.42595559
SPE 0 0.132191436  92.30860837 92.78786405 0  0.132191436  92.37292747 92.72354494
PAC 0 0.092109816 80.171399 80.70052364 0  0.092109816  80.24241083 80.62951182
Pima Indian diabetics SEN 0  0.085031456  76.12631776 76.69348033 0  0.085031456  76.20243452 76.61736358
SPE 0 0.165042763  81.90646042  82.11053899 0 0.165042763  81.93384904  82.08315037
PAC 0 0.155271161  70.23491732 70.49206105 0  0.155271161  70.26942761 70.45755076
BUPA liver disease SEN 0 0.114021708  67.20708253 67.52742545 0 0.114021708  67.25007455  67.48443343
SPE 0 0.145476728  73.12029125 73.35511283 0  0.145476728  73.15180577 73.32359831

7.3.9. Parkinson Dataset. The performance of all the 8
techniques (2 machine learning and six hybrid systems) over
Parkinson dataset with and without resampling is given
in Table 26. The highest accuracy, sensitivity, specificity,
F-measure, recall, and precision without resampling are
achieved by FMLP, FMLP, PSVM (FSVM, GSVM),
FMLP, FMLP, and FMLP, respectively, with the values
93.8%, 96.6%, 96.2%, 93.9%, 93.8%, and 94%. The highest
accuracy, sensitivity, specificity, F-measure, recall, and preci-
sion with resampling are achieved by GMLP, GMLP (FMLP,
PMLP), PSVM (GSVM, FSVM), PMLP (GMLP), PMLP
(GMLP), and PMLP (GMLP), respectively, with the values
96.9%, 97.4%, 100%, 96.9%, 96.9%, and 96.9%. A comparison
of Parkinson result with the state-of-the-art result is given in
Table 27. The highest prediction accuracy for Parkinson is
93.8% (without resampling) and 96.9% (with resampling).

The performance of all the considered techniques over
Pakinson dataset with resampling is better than without
resampling. Table 26 summarizes the performance of pro-
posed hybrid alternatives for this dataset, and Table 27
compares this performance with best results obtained in
recent literature.

7.3.10. Pima Indian Diabetic Dataset. The performance of all
the 8 techniques (2 machine learning and six hybrid systems)
over Pima dataset with and without resampling is given in
Table 28. The highest accuracy, sensitivity, specificity, F-
measure, recall, and precision without resampling are
achieved by FMLP, FMLP, PSVM (FSVM, GSVM), EMLP,
FMLP, and FMLP, respectively; best values found have been
bolded for easy identification in Table 28. The highest accu-
racy, sensitivity, specificity, F-measure, recall and precision
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TaBLE 8: Results of Student’s t-test on resampled data.
Dataset name Obj H P value Ag)}\ljer Ob.(?lind Upper bound H P value Ag)}\ljer (l))fjnd Upper bound
PAC 0 0.107409014  93.63760552 9415613048 0  0.107409014  93.70719481 94.08654119
Cleveland SEN 0 0.119440215 93.37174786 93.52239194 0  0.119440215 93.39196524  93.50217457
SPE 0 0.110406058 94.4269811 94.85972715 0  0.110406058  94.48505832 94.80164993
PAC 0 0.198452296  89.40087856  89.71350963 0  0.198452296  89.4428356 89.67155259
Statlog SEN 0 0.113684201 87.8202939 88.13645358 0 0.113684201 87.8627245 88.09402298
SPE 0 0.085172965 90.21689475  90.78345951 0  0.085172965  90.29293128  90.70742299
PAC 0  0.09899382 88.79823642 89.22375777 0 0.09899382 88.85534404  89.16665015
Spect SEN 0 0.102037465  91.52271275 9198167028 0  0.102037465  91.58430772  91.92007531
SPE 0 0.094031375  75.19513272 75.64666638 0  0.094031375  75.25573136 75.58606775
PAC 0 0.091447714  89.90632221  90.34258368 0  0.091447714  89.96487122  90.28403467
Spectf SEN 0 0.085170746  93.2108793 93.62575965 0  0.085170746  93.26655883  93.57008011
SPE 0 0.086020283  75.50805229 76.1105871 0 0.086020283  75.58891622  76.02972317
PAC 0 0.123534674  89.66246147  90.03031881 0 0.123534674  89.71183022 89.98095006
Eric SEN 0 0.127198304 87.50689214  87.66497294 0  0.127198304  87.52810757 87.64375751
SPE 0 0.166768736  91.88301746 9198548668 0  0.166768736  91.89676947 91.97173467
PAC 0 0.104809721  97.89345297 98.02702302 0  0.104809721  97.91137891 98.00909708
WBC SEN 0 0.103386039  96.30307823  96.68720924 0  0.103386039  96.35463101  96.63565646
SPE 0 0.108706462  98.37053699  98.78539395 0  0.108706462  98.42621338  98.72971756
PAC 0 0.131198082 92.0423242 92.32294757 0 0.131198082  92.07998561 92.28528616
Hepatitis SEN 0 0.270421552 80.5671699 80.85759447 0  0.270421552  80.60614669 80.81861768
SPE 0 0.141041289  94.26694606 94.66132599 0  0.141041289  94.31987431 94.60839774
PAC 0 0.171022773  97.15734101 97.84211907 0  0.171022773 97.2492425 97.75021758
Thyroid SEN 0 0.189226475  94.54448673  94.93137205 0  0.189226475 94.59640916  94.87944963
SPE 0 0.209391475  98.4352079 98.84065802 0  0.209391475  98.48962183  98.78624408
PAC 0 0.100403912  96.04769583 96.49955298 0  0.100403912  96.10833788  96.43891093
Parkinson SEN 0 0.118064733  97.14392547  97.46967293 0 0.118064733  97.18764281 97.42595559
SPE 0 0.132191436  92.30860837 92.78786405 0  0.132191436  92.37292747 92.72354494
PAC 0 0.092109816 80.171399 80.70052364 0  0.092109816  80.24241083 80.62951182
Pima Indian diabetics SEN 0  0.085031456  76.12631776 76.69348033 0  0.085031456  76.20243452 76.61736358
SPE 0 0.165042763  81.90646042  82.11053899 0 0.165042763  81.93384904  82.08315037
PAC 0 0.155271161  70.23491732 70.49206105 0  0.155271161  70.26942761 70.45755076
BUPA liver disease SEN 0 0.114021708  67.20708253 67.52742545 0 0.114021708  67.25007455  67.48443343
SPE 0 0.145476728  73.12029125 73.35511283 0  0.145476728  73.15180577 73.32359831
TaBLE 9: Performance metric values on all datasets with and without resampling.
Withm.lt Resampling With01.1t Resampling
Dataset name resampling Dataset name resampling
GD SP GD SP GD SP GD SP
Cleveland 0.21 0.8 0.19 0.9 WBC 0.39 1.25 0.25 2.21
Statlog 0.39 1.02 0.16 1.91 Hepatitis 0.24 3.21 0.27 1.29
Spect 0.11 1.87 0.14 1.23 Thyroid 0.1 1.34 0.26 1.76
Spectf 0.18 1.98 0.12 12 Parkinson 0.22 1.8 0.18 2.92
Eric 0.29 2.02 0.13 1.92 Pima Indian diabetics 0.2 0.98 0.13 1.05
BUPA 0.18 2.2 0.14 1.9
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TaBLE 10: Performance of hybrid systems on Cleveland dataset.

Cleveland
Resampling Without resampling PSO Reszrglihng FA PSO Wlthou&}r;zamphng FA

Basic SVM Parameter optimized SVM
PAC 85.14 82.83 86.79 86.13 86.13 83.49 82.83 83.49
Sensitivity 83.33 82.18 84.91 84.74 84.35 82.38 82.18 82.38
Specificity 87.80 83.72 89.51 88.09 88.70 85.03 83.72 85.03
F-measure 85.04 82.77 86.71 86.06 86.05 83.41 82.77 83.41
Recall 85.14 82.83 86.79 86.13 86.13 83.49 82.83 83.49
Precision 85.36 82.8 87.01 86.27 86.33 83.60 82.88 83.60

Basic MLP Parameter optimized MLP
PAC 93.72 79.20 94.05 94.05 94.05 85.14 84.15 85.80
Sensitivity 93.45 80.23 93.49 93.49 93.49 84.79 84.11 84.57
Specificity 94.07 77.94 94.77 94.77 94.77 85.60 84.21 87.5
F-measure 93.72 79.18 94.05 94.05 94.05 85.11 84.12 85.74
Recall 93.72 79.20 94.05 94.05 94.05 85.14 84.15 85.80
Precision 93.73 79.18 94.07 94.07 94.07 85.16 84.16 85.91

TaBLE 11: Comparison of hybrid systems with HMV [14] for Cleveland dataset.

Method Accuracy Sensitivity Specificity F-measure
Base paper Ensemble 85 83.82 88.41 82.15
Without resampling FMLP 85.8 87.5 84.6 87.5
Resampling FMLP (PMLP) 94.1 94.8 93.5 94.1

TaBLE 12: Performance of hybrid systems on Statlog dataset.

Statlog
Resampling Without resampling PSO Resgr;lj;\)hng FA PSO Wlthou'[c;rsls\ampllng FA

Basic SVM Parameter optimized SVM
PAC 85.19 84.44 85.56 85.56 85.56 84.44 84.81 84.44
Sensitivity 83.81 83.62 82.73 83.96 83.96 83.62 84.35 84.21
Specificity 86.06 85.06 87.50 86.59 86.59 85.06 85.16 84.62
F-measure 85.12 84.41 85.55 85.50 85.50 84.41 84.78 84.40
Recall 85.19 84.44 85.56 85.56 85.56 84.44 84.81 84.44
Precision 85.14 84.42 85.54 85.51 85.51 84.42 84.80 84.44

Basic MLP Parameter optimized MLP
PAC 86.67 77.41 90.37 90.74 89.63 84.07 81.85 85.93
Sensitivity 82.61 73.60 91.26 92.16 88.07 85.32 79.34 83.61
Specificity 89.68 80.69 89.82 89.88 90.68 83.23 83.89 87.84
F-measure 86.70 77.45 90.31 90.67 89.61 83.97 81.86 85.94
Recall 86.67 77.41 90.37 90.74 89.63 84.07 81.85 85.93
Precision 86.77 77.54 90.41 90.82 89.61 84.16 81.87 85.96

TaBLE 13: Comparison of hybrid systems with BagMOOV [15] for Statlog dataset.

Method Accuracy Sensitivity Specificity F-measure
Base paper Ensemble 844 86 86 86
Without resampling FMLP 85.9 83.6 87.8 85.9

Resampling GMLP 90.74 92.2 89.9 90.7
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TaBLE 14: Performance of hybrid systems on Spect dataset.
Spect
Resampling Without resampling PSO Resa(l}rrslghng FA PSO Wlthouérsezamphng FA
Basic SVM Parameter optimized SVM
PAC 88.39 81.65 88.39 88.39 88.39 82.77 82.40 82.77
Sensitivity 91.07 88.26 91.07 91.44 91.07 87.05 88.02 88.43
Specificity 74.42 55.56 74.42 73.33 74.42 60.47 58.00 58.82
F-measure 87.96 81.59 87.96 88.06 87.96 81.95 82.08 82.53
Recall 88.39 81.65 88.39 88.39 88.39 82.77 82.40 82.77
Precision 87.83 81.53 87.83 87.91 87.83 81.58 81.83 82.33
Basic MLP Parameter optimized MLP
PAC 88.39 79.40 89.51 89.51 89.14 82.40 83.52 85.02
Sensitivity 91.44 87.56 91.93 91.93 91.89 87.33 87.17 86.44
Specificity 73.33 50.00 77.27 77.27 75.56 58.70 63.41 74.19
F-measure 88.06 79.60 89.17 89.17 88.83 81.80 82.58 83.33
Recall 88.39 79.40 89.51 89.51 89.14 82.40 83.52 85.02
Precision 87.91 79.82 89.07 89.07 88.71 81.43 82.28 83.92
TaBLE 15: Comparison of hybrid systems with BagMOOV [15] for Spect dataset.
Method Accuracy Sensitivity Specificity F-measure
Base paper Ensemble 82.02 27.27 96.23 42.50
Without resampling FMLP 85 86.4 74.2 83.3
Resampling FMLP 89.5 91.9 77.3 89.2
TaBLE 16: Performance of hybrid systems on Spectf dataset.
Spectf
Resampling Without resampling PSO Resegrslghng FA PSO Wlthou'[c;rsls\ampllng FA
Basic SVM Parameter optimized SVM
PAC 87.64 79.40 89.14 89.14 88.01 80.90 79.40 80.15
Sensitivity 92.92 87.56 94.71 94.71 92.96 87.10 87.56 88.04
Specificity 67.27 50.00 69.49 69.49 68.52 54.00 50.00 51.72
F-measure 87.77 79.60 89.39 89.39 88.10 80.56 79.60 80.34
Recall 87.64 79.40 89.14 89.14 88.01 80.90 79.40 80.15
Precision 87.93 79.82 89.80 89.80 88.20 80.28 79.82 80.56
Basic MLP Parameter optimized MLP
PAC 90.26 76.03 90.64 89.89 90.26 80.52 80.90 82.40
Sensitivity 93.15 85.24 93.58 93.12 93.55 87.74 84.85 82.35
Specificity 77.08 42.11 77.55 75.51 76.00 52.73 55.56 83.33
F-measure 90.11 76.19 90.53 89.77 90.19 80.52 79.31 77.56
Recall 90.26 76.03 90.64 89.89 90.26 80.52 80.90 82.40
Precision 90.02 76.35 90.46 89.69 90.13 80.52 78.81 82.55
TaBLE 17: Comparison of hybrid systems with BagMOOV [15] for Spectf dataset.
Method Accuracy Sensitivity Specificity F-measure
Base paper Ensemble 78.28 7.27 96.70 13.53
Without resampling FMLP 82.4 82.4 833 77.6
Resampling PMLP 90.6 93.6 77.6 90.5
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TaBLE 18: Performance of hybrid systems on Eric dataset.

Eric
Resampling Without resampling PSO Resgrglihng FA PSO Wlthouérsezamphng FA

Basic SVM Parameter optimized SVM
PAC 84.21 78.95 85.17 85.65 85.17 80.86 78.95 80.86
Sensitivity 80.20 83.33 80.00 81.37 81.19 86.11 83.33 86.11
Specificity 87.96 76.64 90.38 89.72 88.89 78.10 76.64 78.10
F-measure 84.25 78.49 85.20 85.68 85.20 80.45 78.49 80.45
Recall 84.21 78.95 85.17 85.65 85.17 80.86 78.95 80.86
Precision 84.47 79.59 85.71 85.97 85.43 81.63 79.59 81.63

Basic MLP Parameter optimized MLP
PAC 88.52 77.99 89.95 91.39 89.95 80.86 81.34 81.34
Sensitivity 85.00 77.38 86.87 88.78 87.63 85.14 88.41 85.33
Specificity 91.74 78.40 92.73 93.69 91.96 78.52 77.86 79.10
F-measure 88.54 77.85 89.97 91.40 89.96 80.51 80.84 81.02
Recall 88.52 77.99 89.95 91.39 89.95 80.86 81.34 81.34
Precision 88.71 77.95 90.09 91.48 90.01 81.43 82.50 81.85

TaBLE 19: Comparison of hybrid systems with BagMOOV [15] for Eric dataset.
Method Accuracy Sensitivity Specificity F-measure
Base paper Ensemble 80.86 86.32 73.91 79.64
Without resampling FMLP 81.3 88.4 77.9 80.8
Resampling GMLP 91.4 88.8 93.7 91.4
TaBLE 20: Performance of hybrid systems on WBC dataset.
Breast cancer
Resampling Without resampling PSO ResaGngihng FA PSO WlthoutGrSezamphng FA

Basic SVM Parameter optimized SVM
PAC 96.14 96.85 97.00 97.00 97.00 97.00 96.85 96.85
Sensitivity 92.59 94.69 92.43 92.43 92.43 95.08 94.69 94.69
Specificity 98.03 98.02 99.55 99.55 99.55 98.02 98.02 98.02
F-measure 96.15 96.86 97.02 97.02 97.02 97.00 96.86 96.86
Recall 96.14 96.85 97.00 97.00 97.00 97.00 96.85 96.85
Precision 96.21 96.87 97.17 97.17 97.17 97.01 96.87 96.87

Basic MLP Parameter optimized MLP
PAC 97.14 95.28 98.00 97.71 98.00 96.57 97.00 96.42
Sensitivity 95.34 92.62 96.61 96.58 96.61 93.93 94.35 93.55
Specificity 98.06 96.70 98.70 98.28 98.70 98.01 98.45 98.00
F-measure 97.14 95.29 98.00 97.71 98.00 96.58 97.01 96.44
Recall 97.14 95.28 98.00 97.71 98.00 96.57 97.00 96.42
Precision 97.15 95.30 98.00 97.71 98.00 96.60 97.04 96.47

TaBLE 21: Comparison of hybrid systems with HMV [14] for WBC dataset.
Method Accuracy Sensitivity Specificity F-measure

Base paper Ensemble 96.71 98.01 96.94 97.48
Without resampling PSVM 97 95.1 98 97
Resampling PSVM 98 96.6 98.7 98
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TaBLE 22: Performance of hybrid systems on hepatitis dataset.
Hepatitis
Resampling Without resampling PSO Reszrrslghng FA PSO Wlthougrsezampllng FA
Basic SVM Parameter optimized SVM
PAC 89.03 85.16 89.68 89.68 89.68 87.10 87.10 87.10
Sensitivity 7391 65.52 80.00 80.00 80.00 73.08 73.08 73.08
Specificity 91.67 89.68 91.11 91.11 91.11 89.92 89.92 89.92
F-measure 88.60 84.89 88.97 88.97 88.97 86.58 86.58 86.58
Recall 89.03 85.16 89.68 89.68 89.68 87.10 87.10 87.10
Precision 88.46 84.69 89.10 89.10 89.10 86.44 86.44 86.44
Basic MLP Parameter optimized MLP
PAC 90.32 81.94 92.26 92.26 92.26 87.10 85.16 83.23
Sensitivity 72.41 56.67 80.77 80.77 80.77 71.43 71.43 59.38
Specificity 94.44 88.00 94.57 94.57 94.57 90.55 87.31 89.43
F-measure 90.39 81.72 92.14 92.14 92.14 86.77 83.94 83.23
Recall 90.32 81.94 92.26 92.26 92.26 87.10 85.16 83.23
Precision 90.46 81.53 92.08 92.08 92.08 86.60 84.03 83.23
TaBLE 23: Comparison of hybrid systems with HMV [14] for hepatitis dataset.
Method Accuracy Specificity Sensitivity F-measure
Base paper Ensemble 86.45 90.48 92.68 91.57
Without resampling PMLP 87.1 90.6 71.4 86.8
Resampling PMLP 92.3 80.8 94.6 92.1
TaBLE 24: Performance of hybrid systems on thyroid dataset.
Thyroid
Resampling Without resampling PSO Reszrglihng FA PSO Wlthou'[c;rsls\ampllng FA
Basic SVM Parameter optimized SVM
PAC 89.77 89.77 91.16 91.16 91.16 89.77 89.77 89.77
Sensitivity 90.70 93.88 97.50 97.50 97.50 93.88 93.88 93.88
Specificity 89.53 88.55 89.71 89.71 89.71 88.55 88.55 88.55
F-measure 89.27 89.31 90.61 90.61 90.61 89.31 89.31 89.31
Recall 89.77 89.77 91.16 91.16 91.16 89.77 89.77 89.77
Precision 89.84 90.16 91.78 91.78 91.78 90.16 90.16 90.16
Basic MLP Parameter optimized MLP
PAC 98.14 96.28 98.60 97.67 98.6 97.67 96.74 97.67
Sensitivity 98.18 93.85 98.21 94.83 98.21 95.45 93.94 95.45
Specificity 98.13 97.33 98.74 98.73 98.74 98.66 97.99 98.66
F-measure 98.13 96.28 98.60 97.68 98.6 97.68 96.75 97.68
Recall 98.14 96.28 98.60 97.67 98.6 97.67 96.74 97.67
Precision 98.14 96.28 98.60 97.69 98.6 97.69 96.76 97.69
TaBLE 25: Comparison of hybrid systems with neural network [16] for thyroid dataset.
Method Accuracy Sensitivity Specificity F-measure
Base paper Neural networks 94.81 NIL NIL NIL
Without resampling FMLP 97.7 95.5 98.7 97.7
Resampling FMLP 98.6 98.2 98.7 98.6
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TaBLE 26: Performance of hybrid systems on Parkinson dataset.

Parkinson’s disease

Resampling Without resampling PSO Reszrrslghng FA PSO Wlthougrgzampllng FA

Basic SVM Parameter optimized SVM
PAC 91.28 86.15 91.28 91.28 91.28 87.69 87.69 87.69
Sensitivity 90.00 87.04 90.00 90.00 90.00 86.39 86.39 86.39
Specificity 100.00 81.82 100.00 100.00 100.00 96.15 96.15 96.15
F-measure 90.41 85.21 90.41 90.41 90.41 86.29 86.29 86.29
Recall 91.28 86.15 91.28 91.28 91.28 87.69 87.69 87.69
Precision 92.15 85.75 92.15 92.15 92.15 88.79 88.79 88.79

Basic MLP Parameter optimized MLP
PAC 96.41 91.28 96.92 96.92 96.41 92.31 92.31 93.85
Sensitivity 97.40 94.52 97.42 97.42 97.40 95.83 96.48 96.55
Specificity 92.68 81.63 95.00 95.00 92.68 82.35 81.13 86.00
F-measure 96.39 91.31 96.90 96.90 96.39 92.38 92.43 93.89
Recall 96.41 91.28 96.92 96.92 96.41 9231 9231 93.85
Precision 96.39 91.35 96.90 96.90 96.39 92.52 92.70 93.95

TaBLE 27: Comparison of hybrid systems with HMV [14] for Parkinson dataset.

Method Accuracy Sensitivity Specificity F-measure
Base paper Ensemble 89.23 91.45 94.56 92.98
Without resampling FMLP 93.8 96.6 86 93.9
Resampling GMLP 96.9 97.4 95 96.9

TaBLE 28: Performance of hybrid systems on Pima Indian diabetics’ dataset.

Pima Indian diabetics

Resampling Without resampling PSO Resgrgghng FA PSO Wlthoutc}rsezamphng FA

Basic SVM Parameter optimized SVM
PAC 77.08 77.47 77.08 77.21 77.60 78.26 78.26 78.13
Sensitivity 72.78 72.51 72.53 72.93 73.63 74.63 74.63 74.51
Specificity 78.40 79.35 78.50 78.53 78.84 79.57 79.57 79.43
F-measure 75.86 76.74 75.90 76.01 76.45 77.45 77.45 77.30
Recall 77.08 77.47 77.08 77.21 77.60 78.26 78.26 78.13
Precision 76.51 76.97 76.49 76.65 77.09 77.85 77.85 77.71

Basic MLP Parameter optimized MLP
PAC 79.30 75.13 77.47 80.60 80.99 74.48 77.60 76.04
Sensitivity 70.71 65.34 69.41 76.59 73.14 64.06 70.87 65.79
Specificity 83.18 79.88 80.69 82.06 84.60 79.69 80.48 81.47
F-measure 79.09 74.93 76.97 79.97 80.83 74.34 77.16 76.02
Recall 79.30 75.13 77.47 80.60 80.99 74.48 77.60 76.04
Precision 78.99 74.81 76.90 80.22 80.75 74.24 77.13 76.00

TaBLE 29: Comparison of hybrid systems with HMV [14] for Pima Indian diabetics’ dataset.

Method Accuracy Sensitivity Specificity F-measure
Base paper Ensemble 77.08 78.93 884 834
Without resampling PSVM 78.3 74.6 79.6 77.5

Resampling FMLP 81 73.1 84.6 80.8
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TaBLE 30: Performance of hybrid systems on BUPA liver disease dataset.

BUPA liver disease
Resampling Without resampling PSO Resgr;ljp\)hng FA PSO Wlthou‘ggrmphng FA
Basic SVM Parameter optimized SVM
PAC 63.48 70.14 66.09 66.67 63.48 70.72 70.14 70.14
Sensitivity 61.44 68.10 64.86 65.97 61.44 72.00 68.10 68.10
Specificity 65.10 71.18 67.01 67.16 65.10 70.20 71.18 71.18
F-measure 63.40 69.50 65.95 66.47 63.40 69.52 69.50 69.50
Recall 63.48 70.14 66.09 66.67 63.48 70.72 70.14 70.14
Precision 63.39 69.89 66.01 66.61 63.39 70.96 69.89 69.89
Basic MLP Parameter optimized MLP
PAC 68.12 71.59 65.80 73.33 70.43 72.75 73.04 71.59
Sensitivity 63.93 69.75 61.88 68.85 67.46 70.73 70.00 68.50
Specificity 72.84 72.57 70.12 78.40 73.30 73.87 74.88 73.39
F-measure 68.12 71.06 65.81 73.34 70.46 72.35 72.80 71.27
Recall 68.12 71.59 65.80 73.33 70.43 72.75 73.04 71.59
Precision 68.68 71.38 66.27 73.94 70.57 72.55 72.83 71.34
TaBLE 31: Comparison of hybrid systems with HMV [14] for BUPA liver disease dataset.

Method Accuracy Sensitivity Specificity F-measure
Base paper Ensemble 67.54 68.54 42.07 52.14
Without resampling GMLP 73 70 74.9 72.8
Resampling GMLP 733 68.9 78.4 73.3

with resampling are achieved by FMLP, GMLP, FMLP,
FMLP, FMLP, and FMLP, respectively; best values found
have been bolded for easy identification in Table 28. A
comparison of Pima result with the state-of-the-art result
is given in Table 29. The highest prediction accuracy for
Pima is 78.3% (without resampling) and 81% (with resam-
pling). The performance of all the considered techniques
over Pima dataset with resampling is better than without
resampling. Table 28 summarizes the performance of pro-
posed hybrid alternatives for this dataset, and Table 29
compares this performance with best results obtained in
recent literature.

7.3.11. BUPA Liver Disease Dataset. The performance of all
the 8 techniques (2 machine learning and six hybrid systems)
over BUPA dataset with and without resampling is given
in Table 30. The highest accuracy, sensitivity, specificity,
F-measure, recall, and precision without resampling are
achieved by GMLP, PSVM, FMLP, FMLP, FMLP, and FMLP,
respectively, with the values 73%, 72%, 74.9%, 72.8%, 73%,
and 72.8%. The highest accuracy, sensitivity, specificity,
F-measure, recall, and precision with resampling are achieved
by GMLP, FMLP, GMLP, GMLP, GMLP, and GMLP,
respectively, with the values 73.3%, 67.5%, 78.4%, 73.3%,
73.3%, and 73.9%. A comparison of BUPA result with
the state-of-the-art result is given in Table 31. The highest
prediction accuracy for BUPA is 73% (without resampling)
and 73.3% (with resampling). The performance of all the

considered techniques over BUPA dataset with resampling
is better than without resampling except in sensitivity.
Table 30 summarizes the performance of proposed hybrid
alternatives for this dataset, and Table 31 compares this
performance with best results obtained in recent literature.

In GSA updating of an agent, the position is learned from
all other agents, whereas in PSO updating of an agent posi-
tion is based on two parameters called gBEST and pBEST.
In each iteration of these two algorithms at most n, new solu-
tions are brought forth. However, in FA in the worst case,
each agent develops O(n) new solution by moving towards
all other best solutions. Therefore, in the worst case of FA,
space is managed more efficiently than the other two algo-
rithms (GSA and PSO). The same is demonstrated over the
11 medical datasets.

From the previous observations, it is concluded that
MLP without resampling shows improvement in all data-
sets when compared with latest literature results and the
same is depicted in Figure 2. As mentioned earlier, in
Figure 2, the blue bar represents best performance in
literature. Best results obtained by any of the six HISs
proposed in this paper has been depicted in Figure 2
alongside, once without resampling (orange bar) and then
with resampled data (gray bar). Sensitivity and specificity
values for all systems have been presented in Tables 32
and 33, and it can be observed that our proposed hybrid
system performs very well across all the datasets, in particu-
lar, the parameter optimized MLP. Table 34 summarizes
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TABLE 32: Sensitivity improvement with hybrid systems.

Sensitivity
S. number Set Base paper Without resampling . Resampling
Technique Percentage Technique Percentage

1 Cleveland 83.82 FMLP 87.5 FMLP 94.8
2 Statlog 86 PMLP 85.3 GMLP 92.2
3 Spect 27.27 FSVM 88.4 FMLP 91.9
4 Spectf 7.27 FSVM 88 GSVM 94.7
5 Eric 86.32 GMLP 88.4 GMLP 88.8
6 WBC 98.01 PSVM 95.1 FMLP 96.6
7 Hepatitis 90.48 FSVM 73.1 FMLP 80.8
8 Thyroid NIL GMLP 95.5 GMLP 98.2
9 Parkinson 91.45 FMLP 96.6 FMLP 97.4
10 Pima Indian diabetics 78.93 PSVM 74.6 FMLP 76.6
11 BUPA 68.54 PSVM 72 FMLP 67.5

TaBLE 33: Specificity improvement with hybrid systems.

Specificity
S. number Dataset Base paper Without resampling . Resampling
Technique Percentage Technique Percentage

1 Cleveland 88.41 PMLP 84.8 FMLP 93.5
2 Statlog 86 FMLP 87.8 FMLP 90.7
3 Spect 96.23 FMLP 74.2 GMLP 77.3
4 Spectf 96.7 FMLP 83.3 PMLP 77.6
5 Eric 7391 FMLP 79.1 GMLP 93.7
6 WBC 96.94 FMLP 98 FMLP 98.7
7 Hepatitis 92.68 PMLP 90.6 FMLP 94.6
8 Thyroid NIL GMLP 98.7 FMLP 98.7
9 Parkinson 94.56 FSVM 96.2 FSVM 100
10 Pima Indian diabetics 88.4 FMLP 81.5 GMLP 84.6
11 BUPA 42.07 GMLP 74.9 GMLP 78.4

TABLE 34: Parameters to be used in MLP for all datasets.
Dataset Learning rate Momentum Hybrid MLP accuracy Base paper accuracy
Cleveland 0.4410246832765716 0.945131728055943 85.8 85
Statlog 0.24687115044065697 0.7512112614957723 85.9 84.4
Spect 0.001620407197768992 0.5458467309532906 85 82.02
Spectf 0.0037254964036241137 0.6064034495456784 82.4 78.28
Eric 0.6953073769599724 0.9167657941184544 81.3 80.86
Breast cancer 0.5272364248697747 0.9288899224295802 96.99 96.71
Hepatitis 0.6376255545427609 0.9250563419048221 87.1 86.45
Thyroid 0.1516498076389815 0.48805304429332785 97.7 94.81
Parkinson 0.8486064853474067 0.3499016503919223 93.8 89.23
Pima Indian diabetics 0.03218577681226653 0.06466339445401592 77.60 77.08
BUPA 0.8329619224653821 0.014749643317800043 73 67.54

the optimal parameter values of MLP. Hence, in comparison
with the ensemble techniques, parameter optimized MLP

gives a better result.

Table 3 gives the outcomes of the rank test for the results
of with resampling at the level of significance (LOS) 0.01.

If h value is zero, then H, is true otherwise H, is true. In
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Table 3, 161 ones are there out of a total of 165. It means
that 161 times null hypothesis is false and four times null
hypothesis is true.

Table 4 gives the outcomes of the rank test for the results
of with resampling at the level of significance (LOS) 0.05. In
Table 4, 163 ones are there out of 165. It means that 163 times
null-hypothesis is false and four times null hypothesis is true.

Table 5 gives the outcomes of the rank test for the results of
without resampling at the level of significance (LOS) 0.01. In
Table 5, 164 ones are there out of 165. It means that 164 times
null hypothesis is false and one time null hypothesis is true.

Table 6 gives the outcomes of the rank test for the results
of without resampling at the level of significance (LOS) 0.05.
In Table 6, 164 ones are there out of 165. It means that 164
times null hypothesis is false and one-time null hypothesis
is true.

The outcomes of FMLP are taken as “m” value. Tables 7
and 8 give the results of t-test for both resampling and
without resampling techniques with LOS 0.01 and 0.05. In
these tables, h value is zero for all datasets at 0.01 and 0.05
LOS. Hence, null hypothesis is accepted for all datasets.

8. Conclusion

Due to the complex framework of ensemble approach and
the moderate performance of the individual classifier, hybrid
systems have a lot of promise in the diagnosis and prognosis
of diseases. To overcome these, we proposed a disease diag-
nosis system by juxtaposing three evolutionary algorithms
and SVM and MLP classifiers. Three evolutionary algorithms
optimize the parameters of the two classifiers and such
enhanced classifiers have been used to train and diagnose dis-
eases. Accordingly, six hybrid diagnosis alternatives have
been obtained by working out the combinations of classifiers
and evolutionary algorithms. Based on results presented in
this paper, it can be concluded that our hybridization
approach provides high prediction accuracy than other
methods in literature across a wide variety of disease datasets.
Even among the six alternative parameter optimized classifier
systems proposed, FMLP was found to be the relatively best
across the majority of the 11 datasets considered. On average,
MLP shows 2.2% and 6.814% improvement in prediction
accuracy on the 11 datasets with and without resampling.
The ranges of improvements shown by MLP in the objective
sensitivity are —2.9 to 75.13 and —9.68 to 86.33 without and
with resampling, respectively. The ranges of improvement
shown by MLP in the objective specificity are —9.68 to 86.33
and —18.93 to 36.33 without and with resampling, respec-
tively. From the experimental results, it is concluded that
FMLP shows outperformance than recently developed
ensemble classifiers ([14, 15]). As a part of the continuation
of this research, we intend to process a very higher dimen-
sional dataset with the major phases of feature selection and
parameter evolution of the classifier. For feature selection,
similarity metric-based hypergraph will be constructed and
then by using hypergraph special properties, important topo-
logical and geometrical features will be identified. In phase 2,
competitive and co-operative parallel hybrid intelligent sys-
tems will be employed for incorporating direct and indirect
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communication among the different systems at guaranteed
run times that would allow the entire HISs to converge to a sin-
gle value. This work is presently ongoing.
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