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Abstract: The skin, being the barrier organ of the body, is constitutively exposed to various stimuli
impacting its morphology and function. Senescent cells have been found to accumulate with age
and may contribute to age-related skin changes and pathologies. Natural polyphenols exert many
health benefits, including ameliorative effects on skin aging. By affecting molecular pathways of
senescence, polyphenols are able to prevent or delay the senescence formation and, consequently,
avoid or ameliorate aging and age-associated pathologies of the skin. This review aims to provide an
overview of the current state of knowledge in skin aging and cellular senescence, and to summarize
the recent in vitro studies related to the anti-senescent mechanisms of natural polyphenols carried out
on keratinocytes, melanocytes and fibroblasts. Aged skin in the context of the COVID-19 pandemic
will be also discussed.
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1. Introduction

Aging is a process defined as the time-dependent persistent change in functionality
and reproducibility (of all higher organisms) related to an increased probability of morbidity
and mortality [1]. The human skin is constantly exposed to internal and external stimuli
that have an impact on its functionality with the progression of the age, manifesting as
wrinkling, dry skin, a reduced barrier integrity and thinning of the epidermis.

On the cellular level, aging was first described by Hayflick and Moorhead [2], who
demonstrated that human primary fibroblasts have a limited ability to divide. This is
known as the Hayflick limit and originates from the inability of telomeres to maintain
their lengths due to the replication process. Consequently, cells lose their proliferative
capacity and enter a state of irreversible cell cycle arrest, later termed cellular or replicative
senescence [1,3,4].

Senescent cells are characterized by their inability to proliferate, resistance to apoptosis
and secretion of factors that promote inflammation and tissue deterioration [1,5,6]. It has
been shown that senescent cells accumulate with age and may contribute to age-related
skin changes and pathologies. However, whether senescent cells are the main cause of
aging or whether they are the result of aging and only contribute to aging deterioration
and the development of age-related diseases is still under investigation.

Natural compounds have been used in dermatology as oral dietary supplements
or topical formulations for a long time. Polyphenols are the most abundant natural
biochemicals found in fruits, vegetables seeds and spices, as well as red wine, coffee
and cocoa. Many beneficial effects of polyphenols have been shown, including antioxidant
and free radical scavenging activity, anti-tumor and anti-inflammatory properties and
anti-thrombotic and anti-microbial activity [7–9]. Moreover, there is growing evidence that
polyphenols can slow down or prevent the aging-related deterioration of the appearance
and function of the skin [10].

In this review, we aim to provide an overview of the current state of knowledge
in skin aging, and hallmarks of senescent skin cells will be discussed. We also focus
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on the mechanisms regarding how polyphenols operate cellular senescence within the
most studied cell types of the skin—keratinocytes, melanocytes and fibroblasts. Moreover,
since aged skin is more vulnerable to infection by viruses, aged skin in the context of the
COVID-19 pandemic will be also discussed.

2. Cellular Senescence in Skin Aging

The process of aging itself involves different interdependent hallmarks on a molec-
ular, cellular and organ level. On a cellular level, the aging of mitotic cells is defined as
cellular senescence (or cell aging), which is also thought to contribute to organismic aging.
It represents a complex process of permanent cells cycle arrest, while the cells remain
metabolically active. It is also used as a simple experimental model of aging human tissues.
Under in vitro conditions, several types of cellular stressors can trigger senescence [1,5,11];
however, the identification of unique senescence markers, particularly in vivo, is still un-
der investigation. Under physiological conditions, the signal of senescence induction is
telomere shortening and dysfunction (so called replicative senescence) [12–14]. However,
senescence can also be induced prematurely as a consequence of direct and persistent DNA
damage [15], oxidative stress [16], strong mitogenic signal, the inactivation of a tumor
suppressor (such as phosphatase and tensin homolog (PTEN)) and/or oncogenes (such
as Raf or BRAF) (so called oncogene-induced senescence, OIS) [15,17], mitochondrial dys-
function (named as senescence associated with mitochondrial dysfunction, MiDAS) [18],
epigenetically (induced by inhibitors of DNA methylases or histone deacetylases) [19], by
a primary senescent cell producing a senescence-associated secretory phenotype (SASP,
so called paracrine senescence) [20] and by chemotherapy (therapy-induced senescence,
TIS) [19]. Senescence has several beneficial functions for the organism (for instance, it
acts against tumorigenesis due to irreversible proliferation arrest); however, there is in-
creasing evidence suggesting that senescent cells accumulate in aging tissues and organs,
thereby impairing physiological processes, including regeneration, and contributing to
organismal aging [1,21,22].

Skin aging, like aging of the other organs, is characterized by a progressive loss of func-
tionality and regenerative potential. It is a multi-factorial process that affects nearly every
aspect of its biology and function. The skin, our mechanically protective and flexible barrier
organ, is the most visible organ, where all changes, including aging, are very noticeable.
The aging process of skin can be described as intrinsic and extrinsic. Intrinsic or chrono-
logical skin aging is an inevitable process of chronological and physiological alterations.
Intrinsic factors that drive skin aging are time, genetic factors and hormones. It is also an
oxidative process that is related to a progressive, age-related decline in antioxidant capacity
and an increased production of reactive oxygen species (ROS) [23]. The clinical signs corre-
sponding to intrinsic skin aging are fine lines, xerosis (dry skin) and laxity [24]. However,
extrinsic aging is restricted mostly to exposed sites, such as the face, neck and hands, and
is predominantly manifested as coarse wrinkles, irregular pigmentation and lentigines (or
age spots). The exposome contributing to extrinsic skin aging involves sunlight, air pollu-
tion, cigarette smoke, nutritional factors, temperature, stress and lack of sleep [25]. Thus,
extrinsic aging is thought to be laid over the intrinsic one and depends on the intensity
and duration of exposure to environmental factors and on the skin type. Pollution and
cigarette smoke are well-known external factors that accelerate skin aging; however, the
most significant extrinsic aging factor is still UV radiation (known as photoaging), which
causes DNA damage and oxidative damage, inducing cellular senescence [26,27].

The human skin represents a dynamic and complex organ with a unique structure.
It consists of different cell types and compartments with different functions. The outermost
layer, the epidermis, consists of four sublayers—namely, stratum corneum, stratum granu-
losum, stratum spinosum and stratum basalis—and four major cell types—keratinocytes,
melanocytes, Langerhans cells and Merkel cells. The border between the epidermis and
dermis, the epidermal–dermal junction, represents an aggregation of proteins and struc-
tures known as the basement membrane. Below the basement membrane, there is the
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underlying dermis, which provides structural support, as well as nutrition and circulation
in the skin [28]. The dermis comprises, besides dendritic cells, macrophages and mast
cells, primarily from fibroblasts, which produce an interconnected extracellular matrix of
collagenous and elastic fibers. The dermis also contains blood and lymph vessels, nerves,
hair follicles and sweat glands.

Aging appears to affect all skin layers, and is manifested as alterations in terms
of their structure and function [29]. The aged epidermis shows a lessened capacity for
barrier function and restoration following insult [30]. A lipid processing decline, as well
as a decrease in the epidermal levels of CD44 glycoprotein, a regulator of keratinocytes
proliferation, and the maintenance of local hyaluronic acid homeostasis, have been shown
to contribute to this decline [31,32]. In addition, it has been shown that, with age, the
proliferation of cells in the basal layer declines. The epidermis then decreases in thickness,
and the contact surface area between the dermis and epidermis diminishes, resulting in a
smaller exchange surface for nutrition supply to the epidermis and a further weakened
ability of basal cell proliferation [33,34]. Besides the epidermis, both the epidermal–dermal
junction and dermis also become thinner. The flattening of the epidermal–dermal junction
leads to fewer cells, less nutrition and less oxygen, resulting in wrinkle formation. The
dermal extracellular matrix (ECM) also exhibits structural and functional changes in both
intrinsically and extrinsically aged skin. These include an altered accumulation of type I and
type III collagens and changes in the ratio of type I/III [35], an impaired synthesis of these
ECM molecules [36] and changes in the elastic fiber organization [37,38]. The decrease in
the number of fibroblasts also contributes to alterations and the degradation of ECM, which
manifests as progressed dermal thinning, increased wrinkling and a loss of elasticity [26].

Besides being an aesthetic issue with a related psychological and social impact, skin
aging also increases the risk of susceptibility to infections, chronic wounds, such as venous,
pressure or diabetic foot ulcers, and various types of dermatitis and malignancies, including
melanoma [29,39].

Increasing evidence suggests that senescent cells accumulate in chronologically aged
skin, as well as prematurely aged skin, and may contribute to age-related skin changes
and pathologies. The accumulating senescent keratinocytes and fibroblasts in skin produce
cytokines, extracellular matrix-modifying enzymes and other molecules that can act at a
distance, and can thus exert long-ranging effects on the microenvironment of neighboring
cells [13,21,40–43]. Both intrinsic and extrinsic factors can induce permanent senescence
in skin cells, resulting from the shortening of telomeres, mitochondrial impairment and
upregulation of DNA damage response signaling, finally leading to the cell cycle ar-
rest [44,45]. Consequently, the presence of senescent keratinocytes and fibroblasts has been
suggested to contribute to the decline in the integrity and function of the skin [46]. More-
over, melanocytes were also found to both display the markers of senescence, including an
elevated p16INK4A, reduced high-mobility group box 1 (HMGB1) and dysfunctional telom-
eres, and to affect the basal keratinocyte proliferation via the activation of CXC chemokine
receptor 3-dependent mitochondrial ROS, thus contributing to epidermal atrophy [47].

Moreover, the proliferative arrest of cultured skin cells due to replicative or stress-
induced senescence also represents a useful model for the study of aging-related processes
in the skin [48]. Accordingly, it has been shown, using in vitro models, that UVB-exposed
skin cell types (fibroblasts, keratinocytes) exhibit DNA damage and cell cycle arrest and
express senescence biomarkers, such as increased senescence-associated β-galactosidase
(SA-β-Gal) activity, p16INK4A, p21Waf-1, p53 activation and lamin B1 downregulation [49–51].
In vivo, a chronic low dose exposure to UVB resulted in the accumulation of DNA damage
and loss of lamin B1 corresponding to senescent cells within the mouse epidermis, but not
the dermis [51]. Low doses of UVB irradiation also induce stress-induced premature senes-
cence (SIPS) in keratinocytes. This is observed via an increase in SA-β-Gal activity and a
sustained increase in p21Waf-1 and p53 expression, and is insulin-like growth factor-1 recep-
tor (IGF-1R)-dependent [50]. UVB-SIPS has also been described in melanocytes, as shown
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by the overexpression of p53 and p21Waf-1, associated with the hypo-phosphorylation
of pRb [52].

2.1. Biomarkers of Cellular Senescence in the Skin

Senescent cells, besides being characterized by permanent proliferation arrest, confess
functional and morphological changes. Many of these changes are used as markers of
senescence; however, a universal senescence biomarker is still lacking.

2.1.1. Senescence-Associated Ultrastructural Changes

Senescence in the skin cells is accompanied by the following ultrastructural changes:

• Hypertrophy and increased granularity. In senescent cells, both an increase in size
and, if adherent cells, a flattening of the shape can be observed [3]. For these changes,
the activation of the mammalian target of the rapamycin (mTOR) signaling pathway
is responsible [53]. These morphological changes are easily detectable by light mi-
croscopy and quantified by flow cytometry (as an increase in forward scatter, FSC
parameters). However, though in situ and in vivo quantification can be a problem,
changes in plasma membrane protein expression represent a promising new biomarker
of senescence [54]. The size increase by up to nine times was found in senescent fi-
broblasts [3]. The size increasing with other senescence markers was also confirmed
in aged keratinocytes [55] and in a model of UVB-induced senescence in human
melanocytes [56]. The senescent nuclei of skin cells also showed hypertrophy. In
particular, the mean nuclear area of fibroblasts was shown to be 255 µm2 at early pas-
sage, compared to 293 µm2 at later passage [57]. The increase in granular content in
senescent cells can be monitored by transmission electron microscopy as intracellular
electron-dense particles [58]. However, cell granularity levels can also be conveniently
detected by flow cytometry as an increase in the side scatter (SSC) parameter. The
increase in granularity in senescent human fibroblasts is a result of the intracellular
deposit formation, including lipofuscin in lysosomes and glycogen particles [59,60]. In
a model of the UVB-promoted senescence of melanocytes, the cell population showing
a high granularity was mostly growth-arrested at G2/M phase [61];

• Increase in lysosomal mass and SA-β-Gal staining. The increase in the lysosomal
mass in senescent cells is associated with the accumulation of old lysosomes and
increased lysosomal biogenesis. Accumulated lipofuscin may be in line with the im-
paired lysosomal turnover mechanism [62]. Lysosomal biogenesis is largely controlled
by the transcription factor EB (TFEB), an effector protein within the mTOR signaling
pathway that regulates multiple lysosomal proteins. During senescence, it tends to be
up- or down-regulated, making it difficult to use as a marker of senescence [63,64]. Al-
ternatively, the detection of lipofuscin content can be used as a biomarker of lysosome
accumulation, either by its typical autofluorescence properties and fluorescence-based
methods, or by selective staining with Sudan black B, allowing for detection in cells,
tissues and body fluids [65]. The term lipofuscin originates from the Greek words
“lipo” (fat) and “fuscus” (dark) [1]. In addition, it is referred to as “aging fluorophore”
or “aging pigment”. It is an insoluble material that mainly consists of a highly ox-
idized and crosslinked substrate, which are proteins, lipids and sugars. Transition
metals also bind to lipofuscin and increase its intracellular cytotoxicity through the
catalysis of ROS formation by the Fenton reaction. Lipofuscin is also present in small
amounts in the cytosol (about 1% of the total intracellular content), while its cyto-
toxicity is suppressed by the macroautophagy activity of the cell. It preferentially
accumulates in postmitotic tissue cells, such as neurons or muscle cells, which do
not divide and are therefore unable to dilute the products of their damage (in the
sense of the so called “garbage catastrophe theory of aging”) [66]. However, lipofus-
cin has also been shown to accumulate during the replicative senescence of human
fibroblasts [67]. Lipofuscin accumulation has been detected in the basal layers of the
aged epidermis [68]. The phototoxicity of visible light has been linked to accumulated
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lipofuscin in skin cells due to oxidative damage in nucleic acids, lipids and proteins,
generating premutagenic DNA lesions and releasing pro-inflammatory cytokines and
metalloproteinases, consequently exaggerating cell damage and skin aging [69]. The
increase in the size and shape of lysosomes is mostly associated with an increase in the
activity of the lysosomal enzyme, senescence-associated β-galactosidase (SA-β-Gal).
Since SA-β-Gal is upregulated in senescent cells, its residual activity can be monitored
at suboptimal pH 6.0. It is the most widely used marker of senescence in culture
and tissue samples [70]. However, factors such as confluence during cell culture may
contribute to the detection of a false positive signal [71]. Furthermore, this assay
requires active enzymatic SA-β-Gal activity, which is often lost in fixed or cryopre-
served tissues [72,73]. In addition, non-specific SA-β-Gal activity was detected in the
early passage of adult melanocytes proliferating in culture [21]. The available method-
ologies allow, depending on the properties of a specific synthetic β-galactosidase
substrate, for the quantification of senescent cells in in vitro models or tissues of an
aged organism using a combination of flow cytometry or spectrofluorimetry with
high-content image analysis [74]. SA-β-Gal activity has been successfully confirmed
in human fibroblasts and keratinocytes undergoing replicative senescence in vitro,
in skin samples or in the cells isolated from aged individuals [75–79]. Furthermore,
SA-β-Gal has been used to confirm premature senescence in cultured fibroblasts,
keratinocytes and melanocytes cells in response to various stressors, including UV
light [43,50,80–83], cigarette smoke [84,85], ionization radiation [86], oxidants [87–89]
or anticancer drugs [90];

• Accumulation of mitochondria. Senescent cells usually have a higher number of mi-
tochondria and also display organelle enlargement [91]. Highly elongated or enlarged
giant mitochondria were observed in senescent human foreskin diploid fibroblasts,
with their population doubling between 90 and 94 times [91]. However, the mito-
chondrial membrane potential is reduced, which is associated with an increased ROS
production and the release of mitochondrial enzymes, such as endonuclease G [92,93].
This is mainly due to the reduced specific autophagy of mitochondria, mitophagy,
causing old and dysfunctional mitochondria to accumulate [94]. Reduced mitochon-
drial scission and excessive fusion, which likely occur to compensate for the dys-
function of mitochondria in senescent cells and to protect them from apoptosis and
mitophagy [95], contribute to mitochondria enlargement [96]. Dysfunctional mito-
chondria also represent a major source of elevated ROS production in senescent cells,
another important hallmark of senescence [97]. There is also a strong link between
ROS-related mitochondrial damage and photoaging. The repetitive UVA exposure
was found to be accompanied by a rise in mitochondrial DNA mutations. In particu-
lar, the photoaged skin comprises up to 10-fold more frequent mitochondrial DNA
mutations compared to sun-protected skin [98–100]. Moreover, mitochondrial DNA
mutations are positively associated with matrix metalloproteinase-1 (MMP-1) levels
without the related increase in MMP-1 specific tissue inhibitors [101];

• Nuclear changes. Senescent nuclei may contain so termed senescence-associated
heterochromatin foci (SAHFs), the silent domains that co-localize with H3K9me3
and heterochromatin protein 1 (HP1) and may lock cells in a senescent state by
transcriptionally repressing genes involved in cell proliferation [102]. The SAHFs can
be visualized by staining with 4′, 6-diamidino-2-phenylindole (DAPI) and appear as
fluorescent spots representing condensed chromatin domains that block certain genes
required for proliferation [12]. The long-term monitoring of senescent cells in vitro
revealed the progressive proteolysis of histones 3 and 4 without DNA loss. A reduced
histone content was also observed in nevus melanocytes, as compared to neighboring
non-senescent melanocytes and keratinocytes in vivo [103]. These studies confirm the
dramatic structural changes in chromatin in senescent cells.
SAHFs are also implicated in the downregulation of lamin B1, a structural protein of
the nuclear lamina/membrane [22,104]. Lamin B1 has been shown to be downreg-
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ulated in cells undergoing mainly replicative senescence and OIS and UV-induced
senescence in vitro [26,103,105,106], and also decline during the chronological aging
of human skin in vivo [105], in senescent melanocytes within human nevi [103] and
in the UV-exposed mouse skin epidermis [51]. The destabilization of nuclear integrity
leads to other changes, such as a loss of constitutive heterochromatin condensation
and the formation of cytoplasmic chromatin fragments that contain epigenetic tags as-
sociated with DNA damage [103]. SAHFs production is thought to be a compensatory
mechanism that maintains constitutive heterochromatin [107]. SAHFs, however, are
not a universal marker of senescence, but are observed especially in the case of OIS [17].
Lamin B1 downregulation preferentially depends on p53 and p16, but is independent
of other signaling pathways associated with senescence, such as p38 mitogen-activated
protein kinases (MAPK), NF-κB and DNA damage response (DDR) [108].

2.1.2. Changes in Cyclin-Dependent Kinase Inhibitors (CDKIs) Expression

CDKs phosphorylate and regulate several proteins involved in cell cycle progression.
The major CDKIs responsible for cell cycle arrest during senescence are encoded in the loci
CDKN2A (p16INK4A), CDKN2B (p15INK4b) and CDKN1A (p21CIP/Waf-1) [22].

p16INK4A directly interacts with and inhibits CDK4/6. It is considered to be the
unique and specific marker of senescence and is also widely used to detect senescence
in vivo [109–111]. Experimental evidence suggests that epigenetic changes are the major
triggers of p16INK4A upregulation, but other regulatory factors, ranging from promoter
accessibility to protein stability, have been also reported [22,112–114].

p21CIP/Waf-1 is an inhibitor of several cyclin-dependent kinases, but, unexpectedly,
is also required for cell cycle progression [115]. Although it is upregulated by a vari-
ety of senescence-inducing signals, it is part of the more general DDR and is regulated
by the direct transactivation of p53, making it less useful as a specific marker of senes-
cence. p21CIP/Waf-1 can also be activated by a mechanism independent of p53, via TNF-β
and Sp1 [115–117].

CDKIs play a critical role in two main tumor suppressor pathways that regulate the
proliferative arrest during senescence: p53/p21CIP/Waf-1 and p16INK4A/pRb [104,118,119]
(Figure 1). Both pathways can be activated in parallel and can also induce cell cycle ar-
rest independently of each other. They represent complex pathways with regulators and
effector molecules that intersect with each other and control the development of senes-
cence by causing changes in gene expression. p53 and retinoblastoma protein, pRb, are
the major transcriptional regulators. p21CIP/Waf-1 is called a downstream effector p53,
whereas p16INK4A primarily functions in cell cycle control as a negative regulator of the
prominent pRb/E2F pathway. The signaling process of these paths is as follows: In the
p53/p21CIP/Waf-1 signaling pathway, p53 is regulated by DDR signaling pathways, as well
as the ARF (alternative reading frame) pathway [20]. The DDR pathway is mediated
by ataxia-telangiectasia mutated and Rad3-related (ATM/ATR) kinase and checkpoint
protein 1/checkpoint protein 2 (CHK1/CHK2) kinase, which stabilize p53 by phospho-
rylation. The ARF pathway activates p53 by inhibiting Mdm-2, a ubiquitin ligase that
facilitates p53 degradation. When p53 is stabilized, the cell cycle inhibitor p21CIP/Waf-1

is activated. In particular, p21CIP/Waf-1 inactivates pRb through the inactivation of the
cyclin/CDK complex, which is responsible for the phosphorylation and activation of pRb,
thereby disabling pRb via p53 and preventing DNA synthesis by the pRb-activated E2F
factors [22,104]. However, pRb can be inactivated by p21CIP/Waf-1 or p16INK4A. In both,
their cell cycle inhibitory effect is mediated by the inhibition of the CDK/pRB/E2F path-
way [12]. PTEN/p27Kip1 is another regulatory pathway; however, its exact function is not
completely understood [120].
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Figure 1 Figure 1. Schematic representation of aging- and senescence-related changes associated with CDKIs
expression. AhR-ROS, aryl hydrocarbon receptor and ROS-mediated pathway; Akt, protein ki-
nase B; ATM, protein kinase ataxia-telangiectasia mutated; ATR, ATM and Rad3-related protein
kinase; ARF, alternative reading frame protein; CDK, cyclin-dependent kinase; c-Fos, proto-oncogene;
CDKI, cyclin-dependent kinase inhibitor; DSB, DNA double-strand break; DNMT, DNA methyltrans-
ferase; ECM, extracellular matrix; ETBR, endothelin–endothelin receptor B; GM-CSF, granulocyte–
macrophage colony-stimulating factor; HGF, hepatocyte growth factor; IGF-1R, insulin-like growth
factor-1 receptor; mt, mitochondria; KIT, transmembrane protein with tyrosine kinase activity; MAPK,
mitogen-activated protein kinase; MDM-2; mouse double minute 2 homolog; MITF, microphthalmia-
associated transcription factor; MNPs, mononuclear phagocytes; NRAS and BRAF, proto-oncogenes;
PARP-1, poly-(ADP-ribose) polymerase 1; PTEN, phosphatase and tensin homolog; p-pRb, phospho-
rylated retinoblastoma protein; PTP1B, protein tyrosine phosphatase 1B; ROS, reactive oxygen species;
PM2.5, particular matter 2.5; SSB, DNA single-strand break; TET, ten–eleven translocation enzyme.

It has been found that, though keratinocytes and fibroblasts express the same senes-
cent markers, they do not share the same pathway of DNA damage [121]. The senescence
in fibroblasts is established following the telomeric-deprotection-induced generation of
double-strand breaks. However, senescent keratinocytes accumulate single-strand breaks
following failure in repair action initiated by poly(ADP)ribose polymerase (PARP), pre-
dominantly PARP1, leading to the p38 mitogen-activated protein kinases (MAPK) ac-
tivation and upregulation of p16INK4A. In addition, exposure to PM2.5 was shown to
upregulate p16INK4A in keratinocytes epigenetically through the aryl hydrocarbon receptor
(AhR)/ROS-mediated downregulation of DNA methyltransferase (DNMT) expression and
an increase in DNA demethylase (ten–eleven translocation; TET) expression, leading to a
hypomethylation of the p16INK4A promoter region [122].

The expression levels of p16INK4A have shown efficiency as a robust marker of both
in vitro and in vivo skin cellular aging, as well as in skin equivalent models [40,123–125].
p16INK4A-positive cells also accumulate in precancerous lesions, including melanocyte-
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rich benign human nevi, caused by activating mutations in NRAS or BRAF [103,126].
Considering the role of p16INK4A, being deeply involved in the senescence mechanism,
it is not surprising that this locus is frequently mutated in a variety of human cancers,
including skin epithelial tumors [127,128].

Extrinsic stressors, such as UV and ionization radiation, also simultaneously upregu-
lated p16INK4A, p21CIP/Waf-1 and p53 in human fibroblasts, keratinocytes and prematurely
aged skin [26,83,129–131]. Nevertheless, the dependence on the p16INK4A family of tumor
suppressor proteins activated upstream to pRb has been suggested to distinguish stress-
induced premature senescence (SIPS) from replicative senescence [132]. A significant up-
regulation of p16INK4A was also observed in H2O2-treated melanocytes, as well as in equally
treated human keratinocytes and fibroblasts [133]. The knockdown of p16INK4A caused an
elevation of intracellular ROS and oxidative DNA damage (measured as 8-oxoguanine) in
diverse skin cells and whole skin, which was further boosted by H2O2 treatment. Interest-
ingly, melanocytes showed an increased susceptibility to p16INK4A-depletion-dependent
oxidative damage, which might explain why the impaired expression of p16INK4A predis-
poses to melanoma over other cancers. Consistently, p16INK4A-positive epidermal cells,
identified as mostly melanocytes, were also significantly correlated with enhanced facial
wrinkling and a higher perceived age in the analysis of sun-protected upper-inner arm
skin biopsies from 178 participants (aged 45–81 years) [134]. In addition, p16INK4A-positive
epidermal and dermal cells were significantly associated with age-related elastic fiber
morphologic features; in particular, longer and a greater number of elastic fibers. More-
over, Victorelli and colleagues [47] showed that melanocytes are the only epidermal cell
type to express the senescence marker p16INK4A during human skin aging and can thus
drive the skin aging process. Nevertheless, in contrast to other senescent cell types, and
due to the effect of UVB irradiation, the senescent melanocytes have reduced or absent
levels of the CDKIs p27Kip1 and p21CIP/Waf-1 [135]. In addition, in melanocytes, a link
between p53 and increased melanogenesis in senescent cells has been provided [61]. In
particular, the UVB irradiation of melanocytes was shown to upregulate p53, p21Waf-1 and
c-Fos, and to inhibit retinoblastoma phosphorylation. Accordingly, a repeated exposure
of human melanocytes to UVB leads to melanocytes senescence and an increased p53
expression-mediated pigmentation. In addition, a decrease in epidermal proliferation
and differentiation accompanied by an enhanced accumulation of senescence markers,
including p16INK4A, during aging might be essentially influenced by a decrease in the
production of IGF-1 by dermal fibroblasts suppressing collagen synthesis [136] (Figure 1).
This was explained by enhanced mitochondrial superoxide production activating phos-
phatases protein tyrosine phosphatase 1B (PTP1B) and PTEN leading to a lessening of
IGF-1R/Akt signaling. In addition, a link between the reduced production of IGF-1 by
senescent fibroblasts in the dermis of geriatric skin and an increased risk of skin tumori-
genesis has been proposed [137]. This can be explained by evidence that keratinocytes
with inactive IGF-1 receptors show partial defects in nucleotide excision repair and DNA
damage checkpoint signaling.

Furthermore, the production of other mitogens, such as hepatocyte growth factor
(HGF) and granulocyte–macrophage colony-stimulating factor (GM-CSF), was lowered
in reconstructed human skin containing fibroblasts from an aged donor. With regard to
the suggested decrease in GM-CSF and HGF levels in the aged skin, the wound healing
process [138,139] as well as melanocytes proliferation, might also be affected [140]. This
is contradictory to the established increase in both mitogens within the SASP program
of senescent fibroblasts [141,142]. Nevertheless, a decrease in mitogens was correlated
with a reduced dermal cell number, decrease in collagen I fibrils and decreased epidermal
thickness [143]. In addition, changes in mitogen levels might result from senescence-
related changes in other cells secreting them, such as T lymphocytes, endothelial cells and
mononuclear phagocytes.
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2.1.3. Changes in Apoptosis Resistance

A resistance to apoptosis is a typical characteristic of senescent cells associated with an
upregulation of factors responsible for survival [4]. Such factors include Bcl-2 family pro-
teins, ephrins, phosphoinositide 3-kinases (PI3K), p21CIP/Waf-1 and plasminogen-activated
inhibitor-2 [144]. p21CIP/Waf1 protects against apoptosis by suppressing the activation of
c-Jun N-terminal kinase (JNK) and caspases [145] and heat shock protein 90 (HSP90) via
phosphorylated Akt (P-Akt) stabilization [146]. In addition, senescent normal human
fibroblasts might fail to upregulate p53, or are preferentially recruited to the promoter of
genes for cell cycle arrest (p21CIP/Waf1 and GADD45), but not those for apoptosis regulators
(TNFRSF10b, TNFRSF6 and PUMA) [147].

Apoptosis in skin is a process that is essential for normal epidermal function through
providing a foundation for keratinocyte terminal differentiation, maintaining skin home-
ostasis by regulating the total cell number and removing the cells damaged by environmen-
tal stresses, thus preventing further damage (Figure 2). The aging-related thinning of the
epidermis appears to correlate, besides the decrease in proliferation, with both an increase
in apoptosis below the granular layer and epidermal Fas expression [148]. In addition,
increased apoptosis due to a decline in Bcl-2 levels contributes to decreasing numbers of
melanocytes and nevi with aging [149]. The age-related increase in oxidative stress can also
be associated with hair graying, which is caused by the selective apoptosis of hair follicle
melanocytes [150]. These findings are in contrast to the typical senescence-associated
resistance to apoptotic stimuli. Nevertheless, the rate of apoptotic-like DNA fragmentation,
as part of terminal differentiation, was shown to decrease in the epidermal keratinocytes
with aging [151]. Furthermore, decreased epidermal and stratum corneum cell turnover
with intrinsic aging has been shown [152]. In addition, the dysregulation of apoptosis
through intrinsic aging processes or through random mutations has been suggested to
increase the risk of the onset of cancer [153]. In this regard, some specific factors, e.g., the
epidermal milieu rich in the stem cell factor receptor c-kit, can promote the resistance of
the melanoma cell to apoptosis [154,155].

 

2 

 

Figure 2 Figure 2. Schematic representation of aging- and senescence-related changes in skin associated
with apoptosis. Bcl-2, B cell lymphoma 2; Fas, cell surface death receptor; NF-κB, nuclear factor
kappa-light-chain-enhancer of activated B cells; PDL-1, programmed death-ligand 1; ROS, reactive
oxygen species; SASP, senescence-associated secretory phenotype.
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Moreover, a decreased proneness to apoptosis might indicate a risk of neoplasia
development following extrinsic genotoxic stresses, which, typically, is UV irradiation.
The epidermis of photodamaged skin is thicker than that of intrinsically aged skin, and
increased numbers of atypical melanocytes and keratinocytes may be seen [156,157].

Consistently, in contrast to young keratinocytes, where UV irradiation (100–2000 J/m2)
induced apoptotic cell death in the G1 phase, senescent cells arrested in G1 phase showed
a resistance to apoptosis. Nevertheless, the activation pattern of p53 showed subtle dif-
ferences that were comparable to other cell types [158], which might indicate its differ-
ential DNA binding in senescent cells [147]. The authors suggested that the develop-
ment of resistance to apoptosis in senescent keratinocytes might be an important mech-
anism explaining an increased vulnerability of aged skin to carcinogenesis. By contrast,
the exposure of keratinocytes and epidermal equivalents to IFN-γ plus phorbol ester,
12-O-tetradecanoylyphorbol-13-acetate (TPA), inducers of a non-proliferative state resem-
bling senescence, reduced both the transcriptional activity of p53 and its total cellular
levels, resulting in the suppression of UV-induced apoptosis [159]. The irreversibly growth-
arrested keratinocytes also failed to activate p53 through its acetylation of lysine-382 and
phosphorylation on serine-15. Hence, the pro-apoptotic function of p53 appears to be
compromised in growth-arrested keratinocytes. The analogous mechanisms of apopto-
sis resistance development can also be observed in cultured human fibroblasts, showing
relatively lower constitutive levels of p53 compared to keratinocytes [160]. In particular,
Seluanov and colleagues [161] showed that, when senescent WI-38 fibroblasts were chal-
lenged with p53-dependent apoptotic stimuli, they, in contrast to young cells undergoing
apoptosis, underwent necrosis instead. However, p53-independent apoptosis was only
slightly reduced [161,162]. Senescence in fibroblasts induced by H2O2 also supported
survival in response to pro-apoptotic stimuli, including UVB [163] and high doses of
H2O2 [164]. Thus, senescent fibroblasts are apparently unable to stabilize p53 in response
to DNA damage.

The upregulation of pro-survival protein Bcl-2 can also mediate the antiapoptotic
effect in senescent cells. Replicatively senescent human fibroblasts displayed a resistance to
apoptosis under serum withdrawal for 2 weeks that was dependent on the maintenance of
unchanged levels of the Bcl-2 protein, in contrast to young and intermediate-aged cells [165].
The increased expression of anti-apoptotic proteins can also explain the resistance of
senescent fibroblasts to p53-independent apoptosis induced by staurosporin [162,166].
Earlier studies suggested that environmental gerontogenic factors can affect the proteins
regulating the stress response genes, including NF-κB, AP-1, β-ZIP or C/EBP and HSF,
resulting in an alteration of their structure and function [167]. Consistently, Chaturvedi
and colleagues [168] showed that resistance to apoptosis in keratinocytes undergoing an
induction of cell cycle arrest or senescence requires the properly regulated activation of
NF-κB. Furthermore, aging can significantly affect the cell survival and death signaling
of the skin-resident immune cells, which belong to characteristics of immunosenescence.
It has been suggested that age-related immune dysfunction may correlate with defects
(either increases or decreases) in apoptosis among different T cell subpopulations [151].
A recent study using TCRδCreERR26ZsGreen double transgenic mice showed that, whereas
aged CD4+ memory T cells were shown to exhibit pro-apoptotic gene signatures, aged
CD8+ memory T cells expressed anti-apoptotic genes [169]. Consistently, an increased
expression of programmed death protein 1 (PD-1) on CD4+ T cells has been shown in the
skin and peripheral blood populations of these cells in older adults, which renders them
more susceptible to inhibition [170]. Furthermore, no decline in the density of T cells in
human skin was found with advancing age, and the frequency of epidermal CD49a+ CD8+
resident memory T cells was increased in elderly individuals regardless of the ethnicity and
decline in T cell diversity and function in blood [171]. Moreover, in contrast to the dermis,
the epidermis showed a significant decrease in the CD4+/CD8+ ratio by aging (p = 0.0349,
r = −0.4736), suggesting CD8+ T cell accumulation in this layer. Thus, in view of advanced
age, the T cell immunity in the skin appears to be sustained more efficiently than the
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circulating T cell memory. Nevertheless, the increased age-related vulnerability to some
pathologies, with respect to changes in the T cell subpopulation, e.g., 20% of metastatic
melanomas showing a content of CD4+ lymphocytes with specific tumor recognition [172],
remains to be clarified.

2.1.4. Senescence-Associated Secretory Phenotype

Chronic low-grade inflammation, termed inflammaging, manifested by elevated
serum levels of inflammatory cytokines, such as IL-6, IL-8 and TNF-α, is not only limited
to systemic age-related alterations but may also concern skin aging. Notably, senescent
cells accumulating in the skin during aging have a primary role in driving skin inflam-
maging [173]. They exhibit an altered secretome, referred to as a senescence-associated
secretory phenotype (SASP), which comprises proinflammatory cytokines, chemokines,
proteinases and growth factors that considerably alter the skin’s microenvironment. Due to
the secretion of these factors, senescence gains pleiotropic effects. Cytokine release during
DDR can have both beneficial and detrimental consequences. For instance, SASP secretion
results in an increased immune clearance of potentially tumorigenic skin fibroblasts [174].
In melanocytes, IGFBP7 (insulin-like growth factor-binding protein 7) secretion factor
is essential for BRAF-induced senescence [175]. Furthermore, SASP is also essential for
wound healing [111]. However, the deleterious effect of SASP lies in its participation in the
formation of tumors, including carcinomas of human skin [176].

SASP is mediated primarily by the pro-inflammatory transcription factor NF-κB,
which is activated in response to the DDR. Additional known regulators are the transcrip-
tion factors GATA binding protein 4 (GATA4) and CCAAT/enhancer-binding protein beta
(C/EBPβ) [177,178] (Figure 3). The transcription of SASP genes is regulated epigenetically.
The histone deacetylase SirT1 is downregulated during senescence, leading to an increased
expression of the cytokines interleukin-6 (IL-6) and IL-8 through histone acetylation in
the promoter regions [179]. By contrast, the specific downregulation of histone deacety-
lase 2 (HDAC2) or HDAC7 induced the appearance of senescence biomarkers in dermal
fibroblasts [180]. mTOR kinase regulates SASP post-transcriptionally by two mechanisms:
by inducing IL-1α translation, leading to the activation of NF-κB and C/EBPβ [177,181],
or indirectly by inhibiting the RNA binding protein ZFP36 ring finger protein like 1
(ZFP36L1), which prevents SASP encoding mRNA degradation [181,182]. The studies with
p38 MAPK inhibitors indicated that p38 signaling is required for the SASP in cultured
fibroblasts [183]. ROS production induces the p38 MAPK pathway, which, in turn, leads to
the phosphorylation and activation of other RNA binding proteins, providing stabilization
of SASP-encoding mRNA [184]. Recent findings showed that Rho-associated protein kinase
(ROCK) might play a role in the SASP of oral keratinocytes [185]. The pre-treatment of
the cells with the ROCK inhibitor before entry into the non-proliferative state reduced the
amount of IL-1α, IL-1β, IL-6 and IL-8 released by senescent cells, even in the absence of the
inhibitor, without interfering with growth inhibition.

Nevertheless, the development of the SASP in skin is a result of intensive crosstalk
among cellular components, including the immune cells (Figure 3). In this regard, as shown
by Choi and colleagues [186], pro-inflammatory cytokine release IL-6 by keratinocytes
might be supported by extracellular vesicles derived from senescent dermal fibroblasts.
The exosomes are also released by melanocytes after exposure to UV radiation [187]. They
contain specific miRNAs encoding SASP and possess activities in inducing these cells into
premature senescence. Recently, lysophosphatidylcholines have been found as universally
elevated in senescent fibroblasts [188]. Furthermore, their capability to elicit a chemokine
release in non-senescent fibroblasts was also confirmed. The melanocytes-derived SASP
(displayed as elevated RANTES and interferon-gamma inducible-protein-10 (IP-10) and
decreased growth-regulated oncogene-α (Gro-α) and vascular endothelial growth factor
(VEGF)) promotes telomere dysfunction in a paracrine manner and restricts the prolifera-
tion of surrounding cells via the triggering of CXCR3-dependent mitochondrial ROS [47].
In addition, CXCR3 was found to be involved in autocrine signaling, which is important
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for the establishment of melanocyte senescence. The senescent dermal fibroblasts secrete
C-C motif chemokine ligand 2 (CCL2), promoting the recruitment of CCR2+CD14+ mono-
cytes into the skin of older donors after saline, air or varicella zoster virus (VZV) antigen
injection [189]. The infiltrating monocytes have an increased expression of cyclooxyge-
nase 2 and can inhibit skin-resident memory T cell proliferation via the production of
prostaglandin E2. In addition, the aged fibroblast-derived extracellular matrices had an
inhibiting effect on the migration of T cell motility, promoting melanoma metastasis [190]. 

3 

 

Figure 3 
Figure 3. Scheme of the cellular and signaling crosstalk related to age- and senescence-related changes in SASP promotion
in the skin. AP-1, activator protein-1; CXCR2 and 3, C-X-C motif chemokine receptor 2 and 3; CCL2, C-C motif chemokine
ligand 2; C/EBPb, CCAAT/enhancer-binding protein beta; COX-2, cyclooxygenase 2; DDR, DNA damage response; ECM,
extracellular matrix; GATA4, transcription factors GATA binding protein 4; GM-CSF, granulocyte–macrophage colony-
stimulating factor; H3, histone 3; H4-Ac, acetylated histone 4; HDAC2 and 7, histone deacetylase 2 and 7; mTOR, mammalian
target of rapamycin NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; IL-6 and -8, interleukin 6 and 8;
IP-10, interferon-gamma-induced protein 10; ZFP36L1, ZFP36 ring finger protein like 1; MAPK, mitogen-activated protein
kinase; MMPs, matrix metalloproteinases; mtROS, mitochondrial ROS; ROCK, Rho-associated protein kinase; IGFBP7,
insulin-like growth factor binding protein 7; MMPs, matrix metalloproteinases; NLRP3, NLR family pyrin domain containing
3 PGE2, prostaglandin E; PMs, particular matters; SASP, senescence-associated secretory phenotype; SirT1, silent mating
type information regulation 2 homolog; SIPS, stress-induced premature senescence; TNF-α, tumor-necrosis factor alpha;
TRM, tissue-resident memory T cells.

SASP is not a very unambiguous marker of cellular senescence due to its non-
specificity and heterogeneity [22]. However, the presence of matrix metalloproteinases
(MMPs), chemokines receptors (such as CXCR2), cytokines (such as IL-6 and IL-8) [6,20]
and insulin-like growth factor binding protein 7 (IGFBP7) [175] has been used as a marker
for senescent dermal fibroblasts and melanocytes in vitro. In vivo, elevated IL-6 has been
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detected in nevi melanocytes [42], whereas MMPs are detected in chronologically aged and
photoaged skin, and are responsible for the breakdown of the extracellular matrix [191].
In addition, MMP-1 expression was reported to be elevated in fibroblasts in aged human
skin in vivo, along with its key regulators, transcription factor AP-1 and α2β1 integrin [192].
Moreover, MMP-1-catalyzed collagen breakdown was also suggested to promote MMP-1
expression through a ROS-dependent manner. Senescent fibroblasts also produce com-
plement factor D, which can negatively influence matrix production and promote the
degradation of nearby non-senescent fibroblasts in the dermal layer [193]. IL-1α secretion
is increased in keratinocytes derived from the skin of an older chronological age, and might
be responsible for increased melanogenesis in melanocytes in aged skin [194]. Furthermore,
extrinsic factors, such as cigarette smoking, have been suggested to accelerate skin aging
through the elevation of MMPs promoting the degradation of collagen, elastic fibers and
proteoglycans [195]. IL-1α and IL-1β play a central role in the induction of the synthesis
of both fibroblast-derived IL-6 and collagenase/MMP-1 responsible for the breakdown of
dermal interstitial collagen in photoaging caused by UVA irradiation [196]. However, the
epidermal keratinocytes are the major cellular source of MMPs, including MMP-1, MMP-3
and MMP-9, which are produced in response to the exposure of human skin to solar UV
radiation [160]. Moreover, UVB-induced DNA damage in the keratinocytes was reported
to initiate MMP-1 release by fibroblasts [197]. On the other hand, UVB radiation induced
the synthesis of SASP-related inflammatory mediators prostaglandin E2 (PGE2), IL-8 and
IL-6, and reduced lamin B1 levels in human epidermal keratinocytes [198]. UV irradiation
also causes gene mutations in key elements of the TGFβ signaling pathway, including
TGFβRI, TGFβRII, SMAD2 and SMAD4, resulting in the promotion of cancer develop-
ment [199], as well as photoaging and chronological aging through a reduction in type I
procollagen synthesis [200]. Urban dust and diesel exhaust only stimulated the synthesis of
IL-8, whereas cigarette smoke extract only stimulated levels of PGE2 in keratinocytes [198].
A combination of topical particulate matter 2.5 (PM2.5) and UV exposure induced IL-8 in
the 3D skin equivalent model.

The senescent cells can importantly also affect skin-resident immune cells through
the promotion of abnormal inflammation interfering with proper adaptive immunity and
effective immunosurveillance mechanisms (Figure 3). In particular, raised skin aging-
related inflammation can inhibit the response to the challenge with cutaneous antigens,
such as VZV antigen [201]. This defect was suggested to be caused, in part, through
inhibition by CD4+Foxp3+ regulatory T cells, which can increasingly accumulate in the
normal skin of older humans and directly inhibit TNF-α secretion by macrophages [202,203].
Consistently, it can be reversed by the inhibition of inflammatory cytokine production
with an oral small-molecule p38 MAPK inhibitor [204]. In addition, as discussed above, an
increased expression of PD-1 on CD4+ T cells was also observed in cutaneous aging [170].
Nevertheless, recent data show that the frequency of epidermal CD49a+ CD8+ resident
memory T cells was increased in elderly individuals, regardless of ethnicity, and the
overall cutaneous T cell density, diversity and protective cytokine production appear to be
maintained in aged skin [171].

In the aged epidermis, antigen-presenting cells, namely Langerhans cells (LCs), are less
abundant in number (correlating with the age-related decline in granulocyte–macrophage
colony-stimulating factor expression [205]). They are also less able to migrate from the
epidermis in response to trauma or TNF-α, a key LC mobilization signal, which is attributed
to the reduced disposal of local IL-1β [206,207]. The lessened number of LCs in the aged
epidermis not only impairs the skin’s ability to regulate immune responses (with likely
implications for reduced vaccination efficacy [208]), but can also contribute to the reduced
barrier integrity of elderly skin [209], as well as to diminished antimicrobial and tumor
cell defense [210].

However, importantly, the persistent cutaneous chronic inflammation levels have been
associated with the aging of macrophages [211]. In this regard, skin-resident macrophages
display a shift towards pro-inflammatory phenotypes, which promote further tissue inflam-
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mation in the skin microenvironment through the secretion of pro-inflammatory cytokines,
activation of important inflammatory pathways and increased oxidative stress.

2.1.5. Metabolism Changes

Metabolic changes in senescent cells are generally documented by an increase in
AMP/ATP and ADP/ATP ratios, which is associated with an increase in 5′-adenosine
monophosphate-activated protein kinase (AMPK) signaling, leading to the suppression of
biosynthetic pathways and activation of catabolic pathways. In support of this, 18 out of
20 genes encoding for mitochondrial complexes I-V were found to be significantly downreg-
ulated when comparing between 20- and 70-year-old subjects in the dermal section of the fa-
cial cheek photoaged biopsies [212] (Figure 4). The activation of mTOR reduces autophagy,
which has an impact on protein homeostasis. Correspondingly, the cells from the dermal
tissue of young donors showed a 23% higher level of mitophagy than aged cells from
(>75 years old) donors [212]. The p53 has emerged as an essential regulator of metabolic
homeostasis, generally, through a suppression glycolysis and an increase in the Krebs cycle,
oxidative phosphorylation and fatty acid oxidation [213]. However, senescent fibroblasts in
culture are typically more glycolytic than non-senescent cells [214,215], and the oxidative
phosphorylation activity seems important in preventing senescence [18]. By contrast, any
consistent changes in the expression in mitochondrial-related genes were observed in the
epidermal sections from any of the skin biopsy sites [212]. This is in agreement with the
dynamic nature of the continually renewing epidermis. Nevertheless, senescence was
shown to differentially influence choline metabolism in fibroblasts and melanocytes [216].
Senescent human skin fibroblasts showed elevated levels of glycerol-phosphocholine (GPC).
In contrast, melanocytes showed no change in GPC, but a decrease in phosphocholine
(PC) levels was detected. In addition, unlike fibroblasts, in senescent melanocytes, the
amount of serine, normally needed for their proliferation, decreased. However, in con-
trast to melanocytes, in fibroblasts, ATP showed lower levels and (−)-inosine showed
higher levels in cell senescence. The prevention of the conversion of NAM to NAD+ led
to premature human primary keratinocyte differentiation and senescence, together with
a dramatic drop in glycolysis and cellular ATP levels, while oxidative phosphorylation
was modestly affected [217]. However, an increased glycolytic flux and lactate production,
as compensation for mitochondrial dysfunction, were reported for keratinocytes from
old donors [218] (Figure 4). By contrast, as supported by integrated transcriptome and
metabolomic data, the epidermis from the aged donors showed a decreased expression of
hexokinase 2 (HK2) (essential for energy generation to support proliferation) correlating
with an increased glucose metabolite pool and decreased levels of pentose phosphate
pathway metabolites, including sedoheptulose-7-phosphate and pentose-phosphates [219].
In addition, the expression of glycerol-3-phosphate acyltransferase 3 (AGPAT9) and glyc-
erol kinase (GK), linked to glycerolipid biosynthesis was reduced in old skin, suggesting
that the epidermal barrier is hampered. The aged epidermis also displayed lower lev-
els of Q10 (essential for optimal mitochondrial function), retinoic acid (necessary for
keratinocytes differentiation and proliferation), vitamin E metabolite, 2,5,7,8-tetramethyl-
2-(2′-carboxyethyl)-6-hydroxychroman (α-CEHC, providing antioxidant effects in skin),
dehydroepiandrosterone (essential for skin homeostasis and mediating collagen synthesis
and the regulation of MMP production in the dermis) and organic osmolytes, such as pro-
line betaine (providing moisturizing effect and protection against environmental stresses).
Protein synthesis was also shown to be lowered (with a concomitant increase in free amino
acids providing an adaptive moisturizing effect), which might be a cause or consequence of
the reduced proliferation of keratinocytes. Furthermore, the aged epidermal skin showed
decreased transcript levels of ornithine decarboxylase 1 (ODC1), catalyzing the essential
step in polyamine synthesis, contributing to a decline in the epidermal cell proliferation.
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Figure 4. Scheme of aging- and senescence-related changes in metabolic pathways in epidermal and dermal cells. AA, amino
acid; ACC1, acetyl-CoA carboxylase; ACLY, ATP citrate lyase; AGPAT9, glycerol-3-phosphate acyltransferase 3; ALDOA,
aldolase A; AMPK, 5′ AMP-activated protein kinase; BCKDHA, branched chain keto acid dehydrogenase; α-CEHC,
α-carboxyethyl hydroxychroman; CS, citrate synthase; DDR, DNA damage response; DHE, dehydroepiandrosterone; DIC,
dicarboxylate carrier; EPA, eicosapentaenoate; ETC, electron transport chain; FA, fatty acid; FBP1, fructose bisphosphatase 1;
GLS, glutaminase; GK, glucokinase; HK2, hexokinase 2; 7-Hoca, 7-alpha-hydroxy-3-oxo-4-cholestenoate; LPA, lysophospha-
tidic acid; ME, malic enzyme; MMP, matrix metalloproteinases; ODC, ornithine decarboxylase 1; OIS, oncogene-induced
senescence; PA, phosphatidic acid; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; PDP2, pyruvate
dehyrogenase phosphatase 2; PFK, phosphofructokinase; PPP, pentose phosphate pathway; pRb, retinoblastoma protein;
PTGS2, prostaglandin-endoperoxide synthase 2; stGPI, 1-stearoylglycerophosphoinositol; TCA, tricarboxylic acid cycle.
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Further metabolic changes can be indicated by findings from the cellular senescence
models established by using diverse human fibroblast cell lines. Extracellular senescence
metabolomes (ESMs) from the replicatively senescent human oral fibroblasts and the
cells displaying the γ rays-accelerated type of senescence showed an overlap concerning
the changes in levels of certain metabolites. In particular, they showed increased lev-
els of citrate, several amino acids including C-glycosyl tryptophan, molecules involved
in oxidative stress, a sterol, monohydroxylipids (essential constituents of sphingolipids
stabilizing membrane), phospholipids and nucleotide catabolism, as well as diminished
levels of dipeptides comprising branched chain amino acids [220]. Moreover, intracellular
metabolites of senescent cells indicated an increase in glycolysis, gluconeogenesis, the
pentose-phosphate pathway (PPP) and, consistently, a rise in pyruvate dehydrogenase
kinase transcripts (Figure 4). In contrast, tricarboxylic acid cycle enzyme transcript levels
were unchanged, and their metabolites were depleted. Decreased intracellular citrate levels
indicated a decline in mitochondrial metabolism and a reduction in oxidative metabolism.
The increased PPP flux was suggested to help to restore redox homeostasis while display-
ing increased glycolysis in an attempt to avoid further cell damage. Multiple dipeptides
were diminished in the senescent cell ESM, probably due to increased catabolism in order
to supply carbon skeletons for the tricarboxylic acid (TCA) cycle. Some lipids and their
intermediates increased, including 1-stearoylglycerophosphoinositol (stGPI), the sterol
7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) and eicosapentaenoate (EPA; 20:5 n-3),
which is consistent with the increased fatty acid synthesis required for their increase in
senescent cell membranes. There were also increased levels of phospholipid catabolites,
such as glycerophosphorylcholine (GPC), appearing to correlate with the upregulation of
cyclooxygenase 2 gene PTGS2. This is consistent with its association with aging in vivo,
since GPC is reduced in the plasma of the long-lived insulin receptor substrate 1 null
mouse strain and long-lived dietary-restricted mice [221]. The depletion of thymidine in
the medium of senescent cells suggests an increased nucleic acid turnover or altered redox
homeostasis in the senescent cells.

The expression of cytosolic malic enzyme 1 (ME1) and mitochondrial malic enzyme 2
(ME2), the key enzymes involved in malate metabolism, exerted a decline in senescent
fibroblasts, whereas the overexpression of either enzyme prolonged their replicative lifes-
pan [222]. pRb, being an important regulator of cell cycle arrest during senescence, is also
responsible for metabolic changes, as it upregulated a series of glycolytic genes, resulting
in increased glycolysis in OIS-induced human lung diploid fibroblasts IMR90 [223]. Conse-
quently, glycolytic stimulation promoted a metabolite flux into the TCA cycle, leading to
the OIS-driven activation of mitochondrial oxidative phosphorylation. A decrease in the
protein and mRNA levels of acetyl-CoA carboxylase 1 (ACC1) and in lipid synthesis were
both found in replicatively senescent human primary fibroblasts IMR90 and in the prema-
turely senescent cells induced by doxorubicin or hydrogen peroxide [224]. ACC1 decay
was also accompanied by the activation of the DNA damage response. By contrast, a num-
ber of lipid metabolites appear to be uniquely increased in Ras-induced senescent IMR90
fibroblasts, including a markedly increased number of certain long chain fatty acids [225].
Furthermore, the senescent cells displayed significant changes in lipid metabolism; in par-
ticular, a decline in lipid synthesis and a significant increase in fatty acid oxidation. Human
fibroblasts cell line TIG3 transformed with BRAFV600E, an oncogene-inducing senescence,
exert a number of metabolic alterations, comprising augmented oxygen consumption,
diminished pyruvate production and an increased production of glutamate [226]. These
changes originate from a concurrent restraint of the PDH-inhibitory enzyme pyruvate
dehydrogenase kinase 1 (PDK1) and induction of the PDH-activating enzyme pyruvate
dehydrogenase phosphatase 2 (PDP2). This results in the enhanced use of pyruvate in the
tricarboxylic acid cycle, triggering an increased respiration and redox stress.
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2.1.6. Proteostasis Changes

The term proteostasis refers to a balanced and functional cellular proteome, meaning
that the response to the protein demands of a cell is optimized for each situation, either
by the relocalization of proteins or by tightly regulated cycles of protein synthesis and
degradation. During both senescence and aging, there is an increased risk of protein
damage, either through oxidation or misfolding, which, in turn, requires either new fold-
ing or the degradation of the protein [1]. Proteostasis is maintained by several cellular
mechanisms; the main ones are considered to be the ubiquitin–proteasomal system and the
autophagy–lysosomal pathway. However, both aging and senescence are associated with
significant proteostasis failure, attributed to both autophagy and proteasome dysregulation
(Figure 5) [227]. The accumulation of non-functional proteins to form insoluble aggregates
has been detected and confirmed in several aging-associated diseases. This indicates a de-
creased effectiveness of the mechanisms responsible for maintaining proteostasis [228–230].
During intrinsic aging and photoaging, markers of protein oxidation were shown to be
mainly localized in the dermis (with regard to its low antioxidant levels), while their
content in the stratum corneum and in the epidermis remains nearly the same [231]. Ac-
cordingly, early- and mid-passage human skin fibroblasts responded to repeated mild heat
shock twice a week by an increase in proteasomal activities by 40% to 95% [232]. However,
the proteasomal system in late-passage senescent cells appears to be less responsive to
the heat shock stimulatory effects. The study of Sabath and colleagues [233] showed that
senescent fibroblasts exert an impairment of 160 heat-shock-induced genes, including a
number of chaperones, as well as the compromised nuclear translocation and distribution
of activated heat shock factor-1 (HSF-1), alternative splicing and coordination of UPR
signaling and proteasomal function. Furthermore, ATF6 and XBP1-s target genes, signifi-
cantly induced in young cells both transcriptionally and translationally, were not induced
at all in senescent cells. UV radiation is one of the most relevant factors promoting an
increased protein oxidation and proteasome inhibition, which lead to skin aging [234].
In addition, other studies [235–237] confirmed that decreased proteasomal activity and
proteasomal subunits expression were accompanied by the accumulation of oxidized and
ubiquitinated proteins, and with a decreased expression of the proteasomal subunit in
chronologically aged fibroblasts and keratinocytes. A proliferation-dependent change
in proteasomal transcription and translation, as well as posttranslational changes, such
as direct/indirect ROS effects on the proteasome, might explain its age-related activity
decline [234]. In addition, fibroblasts treated with proteasome inhibitors exhibit a shortened
replicative lifespan and a senescent-like phenotype [238]. Oxidative stress is considered
to be one of the main mechanisms activating cellular senescence and intervening skin ag-
ing [239–243]. Accordingly, Zglinicki and colleagues [67] showed that artificial lipofuscin,
a material naturally made up through oxidation and the crosslinking reaction of proteins
in postmitotic cells, can block proliferation in human fibroblasts (Figure 5). The direct
inhibitory effect of lipofuscin on proteasome can also contribute to increases in damage
accumulation during aging and senescence phenotype development [244]. Comparably, an
inverse relationship was found between the SA-β-Gal marker and the proteasome content
in serially passaged keratinocytes cultures, as well as in cultures of epidermal cells from
aged donors [237]. Moreover, the cells isolated from aged donors displayed increased
levels of oxidized and glycated proteins and proteins modified by the lipid peroxidation
product 4-hydroxy-2-nonenal. However, the proteasome activity in senescent keratinocytes,
measured in permeabilized cell monolayers in situ, decreased relative to the total proteins,
but not relative to cell numbers [55]. Moreover, it has been shown that the level of HSP27 is
strongly associated with cell senescence. In particular, by using a rat model of photoaged
skin, the crucial role of HSP27 in protection from oxidative stress and skin aging after
UV irradiation has been suggested [245]. In addition, lipofuscin and melanin deposits
generated in UVA-exposed keratinocytes were found to bear properties of an endogenous
visible light-sensitive photosensitizer, producing higher levels of singlet oxygen, DNA
damage and a wide-range of cellular insults [69].
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  Figure 5. Scheme of the cellular and signaling crosstalk related to age- and senescence-related changes
in protein homeostasis in the skin. ATF6, activating transcription factor 6; ATG7, autophagy related 7;
GRP78, the 78-kDa glucose-regulated protein; MITF, microphthalmia-associated transcription factor;
MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; α-MSH, alpha
melanocyte stimulating factor; POMC, pro-opiomelanocortin; SDF-1, stromal cell-derived factor-1;
XBP1, X-box binding protein 1.

Three categories of skin cells differentially contributing to the skin aging process with
regard to their autophagy inhibition have been suggested by Eckhart and colleagues [246].
In long-lived and mostly quiescent stem cells, the inhibition of autophagy results in their
loss and an impaired supply of progeny cells, including keratinocytes. In short-lived
differentiating cells, including keratinocytes, sebocytes and sweat gland duct cells, a de-
cline of autophagy is more likely to be inherited from stem cells, and compromise the
protective processes against environmental stressors. In long-lived differentiated cells,
including melanocytes, fibroblasts, neurons and Merkel cells, autophagy inhibition results
in the accumulation of damaged and toxic components and eventual cell death. In this
regard, in senescent fibroblasts, high levels of mTOR activity, along with low levels of
autophagy-related proteins, ATG5-ATG12, LC3-II/LC3-I ratio, Beclin-1 and p62, may miti-
gate the effect of autophagy on clearing excessive and damaged proteins and organelles,
therefore accelerating the progression of senescence [247,248]. Conversely, rapamycin
significantly reduced senescence in UV-treated human dermal fibroblasts, along with the
induction of an increase in cell autophagy levels, decrease in the expression of p53, phos-
phorylation of HSP27, and reduction in genotoxic and oxidative cellular stress [249,250].
The inhibition of autophagy via the depletion of ATG7, ATG12 or lysosomal-associated
membrane protein 2 (Lamp2) was also shown to lead to a senescence-like state in two
strains of primary human fibroblasts through a ROS- and p53-dependent mechanism [251].
The activation of mTOR reduces autophagy, which has an impact on protein homeosta-
sis [95]. The mTOR signaling has been found to play a role in the regulation of SASP
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involving MAPK-activated protein kinase 2 and the eukaryotic translation initiation factor
4E-binding protein 1 (4EBP1) in human foreskin fibroblasts BJ and HFFF2 [182]. Moreover,
rapamycin, a well-known mTOR inhibitor, induced the downregulation of IL-6 and other
cytokine mRNA levels in human foreskin fibroblasts HCA2, but selectively suppressed the
translation of the membrane-bound cytokine, IL-1α [181]. The impairment of autophagy
in senescent human fibroblasts [252] may also be related to the aberrant deposition of
lipofuscin. Deteriorating autophagy in aging dermal fibroblasts was also implicated in
another hallmark of skin aging, i.e., modifications of the ECM [253].

ATG7-deleted skin melanocytes developed premature senescence and showed an
increased ROS damage and accumulation of ubiquitinated proteins [254]. In addition, the
ATG7-deficient melanocytes displayed a senescence-associated secretory phenotype and
secreted higher levels of C-X-C motif chemokine ligand -1,-2,-10 and -12 (Cxcl1, Cxcl2,
Cxcl10, Cxcl12), which are implicated in the pathogenesis of pigmentary disorders [255].
Furthermore, a deficiency of ATG7-dependent autophagy was shown to downregulate the
genes vital for melanogenesis, including MITF (microphthalmia-associated transcription
factor) [256]. Nevertheless, increased mTOR signaling during in senescence might be
responsible for increased melanogenesis. In this regard, UVB-triggered mTOR signaling,
subsequently suppressing autophagy, participates in the upregulation of MITF activity, re-
sulting in melanin production [257]. On the other hand, a senescent phenotype of age-spots-
derived keratinocytes could be attributed to intracellular melanin accumulation, since ker-
atinocytes display reduced melanosome degradation via autophagy impairment [258,259].

2.1.7. Endoplasmic Reticulum (ER) Stress

The occurrence of endoplasmic reticulum (ER) stress is particularly relevant in replica-
tively senescent fibroblasts [260,261], and is compensated for by a cellular response that is
called UPR (unfolded protein response), leading to reduced proteosynthesis, an enlarged
ER and an export of misfolded proteins [262] (Figure 5). Conceivably, the ER stress can be
linked to excessive protein synthesis involved within the SASP program [261,263]. The
UPR activation and enlarged ER were also observed in melanocytes undergoing OIS [264].
The central protein in UPR signaling during senescence is probably played by the ER
protein of the HSP70 family of chaperones, BiP (binding immunoglobulin protein) [265].
BiP, also known as glucose-regulated protein 78 (GRP78), was found to be downregulated
in replicatively senescent human dermal fibroblasts [266]; however, it was increased in the
H-Ras V12-induced senescence of melanocytes [264].

2.1.8. Persistent DNA Damage

A senescent phenotype is characterized by a chronic DNA damage response (DDR),
and can be identified by the presence of γ-H2AX (phosphorylated form of H2XA visual-
ized as discrete foci using specific fluorescent antibodies), 53BP1 foci [267] and activated
ataxia-telangiectasia mutated (ATM) kinase [268]. Double-strand breaks (DSBs) are im-
portant activators of DDR, while senescence occurs in the absence of DNA repair. DSBs
induce the recruitment of ATM to the site of DNA damage, which, in turn, leads to the
phosphorylation of histone H2AX, which facilitates the association of specific DNA re-
pair complexes [268,269]. Histone methylation also contributes to the regulation of this
process. For example, histone H3K9 methylation mediates early ATM-mediated DDR
signaling; however, it is later removed as part of repair mechanisms. ATM phospho-
rylates many substrates, including the two essential kinases CHK1 and CHK2, which
propagate the phosphorylation cascade and thus DDR signaling [270,271]. The persistent
DDR signal induces the phosphorylation of p53, which, in turn, leads to the transcription
of many genes [272]. The phosphorylation of p53, as well as the induction of γ-H2AX
nuclear foci, are commonly used senescence markers. However, though DDR can induce
several DNA-damaging stimuli, it may not result in senescence, and the induction of
senescence may not be the result of DDR. Thus, DNA damage itself is not a marker for
cellular senescence; however, the occurrence of telomere-associated DNA damage foci



Int. J. Mol. Sci. 2021, 22, 12641 20 of 51

could be used as a senescence marker [273–275]. By using MRC5 fibroblasts exposed to
X-ray irradiation, persistent DNA damage foci were found in X-ray-induced senescent
cells, whereas most of the DNA damage foci were detected at telomeres irrespective of
telomerase activity [273]. Replicative senescent monkey skin fibroblasts and skin biopsies
from aged monkeys showed increased levels of telomere-associated foci, as indicated by
the co-localization of γ-H2AX on telomeric DNA [274]. Shortened telomeres have also
been detected in skin from aged individuals, in sun-exposed skin and in premalignant skin
lesions [276,277]. Other age-related genomic changes have been found in mitochondrial
DNA [18], as well as in photoaged human skin [278].

2.1.9. Pigmentation Changes and Skin Cellular Aging

Skin aging is another important process that modifies the pigmentary system of
skin, besides UV radiation. The number of melanocytes decreases and the skin color in
sun-protected areas lightens with age [258,279]. However, photoaged skin has irregular
pigmentation and, frequently, is hyperpigmented. Senile lentigo, also known as age
spots, is one of the major signs accompanying wrinkling during the aging of skin. Irregular
pigmentation might be attributed to the hyperactivation of melanocytes, altered distribution
of pigment and turnover [259]. The accumulation of lipofuscin in senescent cells also
contributes to the occurrence of age spots [280].

Melanin is a group of dark pigments synthetized in melanocytes that are able to
absorb UV light and, thus, protect the skin from UV radiation. The synthesis of melanin
occurs via a biochemical pathway that is named melanogenesis. It takes place in separated
lysosome-related organelles (~500 nm in diameter)—melanosomes—in melanocytes, and is
transported to keratinocytes; however, the process itself is behind the scope of this review,
and it is well described by [281–285]. Mammalian melanin is classified as eumelanin
(brown to black color) and pheomelanin (yellow to red color), while human skin contains a
mixture of all melanin types. However, eumelanin is the main factor that gives the skin
its color [282].

A marked increase in the eumelanin and total pigment content was found in cultured
iridial melanocytes after reaching senescence [286]. However, the levels of pheomelanin
remained unaffected. The stimulation of melanin accumulation accelerates melanocyte
senescence by a mechanism involving tumor suppressor p16INK4A [287]. Pigmentation
is considered an outcome of the interplay between melanocytes and neighboring cells,
such as keratinocytes and fibroblasts [288], and both aging and photoaging appear to
significantly alter this system (Figure 6). In particular, the development of senescence in
keratinocytes and the impaired functioning of autophagy results in a prolonged epidermal
retention of melanosomes [259,289]. Interestingly, in a 3D organotypic skin model, the
incidence of photo-aged fibroblasts resulted in increased melanogenic gene transcription,
increased epidermal melanin and hyperpigmentation [290]. UV irradiation was shown to
activate fibroblasts to release melanogenic growth factors, including hepatocyte growth
factor (HGF), keratinocyte growth factor (KGF) and stem cell factor (SCF), which act on
melanocytes both directly and indirectly through keratinocytes and may contribute to the
hyperpigmentation in solar lentigo [291]. In this regard, the essential role of p53 in hyper-
pigmentation of the skin via the regulation of paracrine signaling mediated by melanogenic
factors, including stem cell factor (SCF) and endothelin-1 (ET-1), as well as melanogenic
cytokine receptors, was revealed both in keratinocytes and in melanocytes [292]. The
role of p53 in the induction of cutaneous pigmentation after UVB irradiation due to the
upregulation of pro-opiomelanocortin (POMC) transcript expression in keratinocytes was
also demonstrated [293]. Stromal-derived factor 1 (SDF1) deficiency, due to changes in
DNA promoter methylation, in senescent fibroblasts, appears to be a potent stimulus for
the melanogenic processes that contribute to uneven pigmentation [294]. Furthermore,
many premature senescence markers were also found in vitiligo skin, thus confirming that
melanocyte functions might be significantly impacted by pathological cross-talk with other
cellular components of the skin [295,296].
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  Figure 6. Scheme of the cellular and signaling crosstalk related to age- and senescence-related
pigmentation changes in the skin. ET-1, endothelin; ETBR, endothelin–endothelin receptor B; HGF,
hepatocyte growth factor; KGF, keratinocyte growth factor; KIT, transmembrane protein with tyrosine
kinase activity; MC1R, melanocortin 1 receptor; MITF, microphthalmia-associated transcription factor;
a-MSH, alpha melanocyte stimulating factor; POMC, pro-opiomelanocortin; SCF, stem cell factor;
SDF-1, stromal cell-derived factor-1.

3. Natural Polyphenols against Skin Cellular Aging

The application/administration of natural products, especially botanicals, to improve
or eliminate the undesirable signs of aged skin has been used for a very long time [297].
Polyphenols are the largest and most studied group of plant secondary metabolites with
known antioxidative properties. They can be categorized as phenolic acids, flavonoids,
stilbenes, lignans and other polyphenols with hydroxyl group(s) attached to the carbon
atom on the aromatic ring [298]. Today, there is an evidence-based knowledge that the
topical or oral intake of some polyphenol-rich plants can prevent or reduce, besides others,
undesirable conditions of skin aging.

On the cellular level, several polyphenolic extracts or single compounds have been
tested to evaluate their impact on senescence development in cells. In the following, we
aimed to summarize the recent in vitro studies related to the anti-senescent mechanisms of
natural polyphenols carried out on skin cells.

Several in vitro studies have shown the beneficial effects of polyphenols in both
proliferatively senescent skin cells and SIPS models. Treatment with polyphenols can
prevent or delay cellular senescence and, thus, can exert beneficial effects on skin aging
and age-associated skin diseases. The chronic treatment of pre-senescent neonatal human
dermal fibroblasts (NHDF) with 1 µM hydroxytyrosol or 10 µM oleuropein aglycone from
extra-virgin olive oil has effectively reduced senescent cell numbers, as demonstrated by
evaluating SA-β-Gal-positive cells and p16INK4A protein expression [299].

The increased production of SASP components is one of the most relevant hallmarks
of senescence. Essentially, the harmfulness of senescent cells consists in the increased
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production of SASP factors, such as IL-1, IL-6, IL-8, MMP-1 and MMP-3, which can degrade
the ECM. If they are not under control, they can cause chronic inflammation of the tissues,
leading to age-related changes and diseases. The anti-inflammatory effect of flavonoids
apigenin, quercetin, kaempferol, naringenin and wogonin has been tested on bleomycin-
induced senescence in human foreskin fibroblasts [300]. In this study, all flavonoids,
except naringenin, significantly inhibited the secretion of SASP markers IL-6, IL-8 and
IL-1β. Hydroxytyrosol also showed protective potential against UVA-induced cellular
aging in human dermal fibroblasts, as it reduced the expression of inflammatory cytokines
IL-1β, IL-6 and IL-8, MMP-1 and -3 gene and SA-β-Gal marker in a dose-dependent
manner [301]. HaCaT keratinocyte cultivated in the presence of a bergamot polyphenol
fraction (BPF) after UVB treatment resulted in the recovery of cell viability through the
modulation of the pro-inflammatory cytokine IL-1β. In addition, treatment with BPF
was able to restore the telomere length and telomerase activity in cells that were exposed
to UVB radiation [302]. Soybean extract has been investigated for its anti-inflammatory
properties in UVB-exposed co-cultures of NHDF and keratinocytes [303]. The treatment
of co-cultures with 10 mM genistein, the main compound found in soybeans, slightly
decreased the levels of the pro-inflammatory cytokine IL-6 and MAPK signaling through
the inhibition of the phosphorylation of p38, extracellular-signal-regulated kinase (ERK)
and JNK [303]. Furthermore, the inhibition of the UVB-induced accumulation of the pro-
inflammatory intracellular IL-1α (icIL-1α) (by facilitating the removal of damaged cells
with pro-inflammatory activity via stimulation of UVB-induced apoptosis) has been shown
for rooibos methanolic and aqueous extracts and honeybush aqueous extracts in HaCaT
keratinocytes [304]. By contrast, in the same study, the treatment of HaCaT keratinocytes
with honeybush methanol extracts after UVB exposure reduced caspase-3 activity, thus
preventing apoptotic cell death [304]. These findings confirm that polyphenols can protect
the skin from the adverse effects of UVA and UVB radiation, such as hyperpigmentation or
the risk of skin cancer, by reducing the pro-inflammatory factors of the SASP.

UVB exposure is a frequently used tool to develop stress-induced premature senes-
cence models in vitro [305]. It has been shown that UVB results in DNA damage or DNA
photoproducts in the skin that trigger the signaling pathways associated with the initiation
of senescence. The study of Britto and colleagues [306] demonstrated that UVB exposure
induces dose-dependent cyclobutane pyrimidine dimers in human dermal fibroblasts,
the formation of which, however, has been significantly prevented by apigenin pre- and
post-treatment. Likewise, several basic studies have demonstrated the photoprotective
effects of polyphenols on the skin. Pomegranate fruit extract (10–40 mg/mL) has been
used to treat normal human epidermal keratinocytes for 24 h before UVB exposure, and
the dose-dependent inhibition of the UVB-mediated phosphorylation of ERKl/2, JNK1/2
and p38 proteins has been detected [307]. A new derivative of phloretin (50–200 mg/mL)
has been used to treat UVB-exposed HaCaT keratinocytes, which resulted in decreased
DNA damage and a reduced level of phosphorylated p53 and γ-H2AX. An inhibition of
the IL-6 and PGE2 release has also been observed [308]. Furthermore, a decreased number
of SA-β-Gal-positive cells associated with an elevated cell viability and relieved G1/G0
cell cycle arrest has been observed in UVB-exposed NHDFs pre-treated with salidroside
(1–10 mM) [305]. In the same study, salidroside suppressed the UVB-induced expression
of CDK inhibitors p21CIP/Waf1 and p16INK4A; and it reduced the activity of MMP-1, as well
as the production of IL-6 and TNF-α [305].

The increased binding of NF-κB to DNA in the nucleus is one of the most important
hallmarks of aging. Indeed, NF-κB is a critical transcription factor involved in the pro-
duction of SASP and the pathogenesis of many age-related disorders. It has been shown
that polyphenols can disrupt the activation of NF-κB and related pathways. Grape seed
proanthocyanidins have been reported to inhibit UV-exposure-induced oxidative stress
and the activation of MAPK and NF-κB activity in human epidermal keratinocytes [309].
In line with these findings, the interaction of NF-κB and apigenin has been shown to
be the crucial mechanism for reducing the secretion of SASP factors [300]. Furthermore,
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in SKU-1064 skin fibroblasts exposed to UVB and treated with pomegranate extract (5 to
60 mg/L), a protective effect related to a reduced activation of NF-κB, a downregulation of
proapoptotic caspase-3 and an increased G0/G1 phase arrest associated with DNA repair
has been observed [310].

The free radical theory is one of the most convincing theories in the context of cellu-
lar senescence and organismal aging [311,312]. The ROS production, caused by several
pathologies, such as mitochondrial damage or endoplasmatic reticulum stress, during the
senescence, results in DNA damage and an increased expression of CDK inhibitors, in-
cluding p21CIP/Waf1 or p16INK4A. The increased levels of ROS production can be mitigated
by certain polyphenols. Glycyrrhizic acid has restored the ROS levels and intracellular
Ca2+ levels enhanced by UVB exposure in Hs68 foreskin fibroblasts [313]. Moreover, in the
same study, glycyrrhizic acid (10 or 25 mM) reduced the phosphorylation of p38, JNK and
MAP/ERK kinase (MEK), thus blocking the MAPK signaling pathway. Similarly, decreased
IL-6 levels, together with decreased MMP-1 and ROS production, as a consequence of the
decreased phosphorylation of AP-1 transcription factor proteins c-Jun and c-Fos, have been
observed in UVB-exposed NDHD and HaCaT keratinocytes treated with gallic acid [314].
Furthermore, a suppressed cytoplasmic ROS production accompanied with decreased
MMP-1 activity has been detected in piceatannol-treated and UVB-exposed normal human
keratinocytes [315]. Furthermore, fisetin has decreased UVB-induced damage by inhibiting
ROS production [316]. In this study, the decreased ROS generation was accompanied with
the inhibition of the pro-inflammatory TNF-α and hydrogen peroxide-induced senescence
in human keratinocytes through the PI3K/AKT/Nrf-2-mediated pathway. The protective
effect of brown pine leaf extract (BPLE) and trans-communic acid (TCA) against the effects
of UVB irradiation in HaCaT keratinocytes, and also in human reconstructed skin models,
has been investigated [317]. HaCaT keratinocytes treated with BPLE and TCA prior to
UVB exposure promoted the inhibition of UVB-induced MMP-1 expression and AP-1
transactivation in a dose-dependent manner [317]. These findings suggest that polyphenols
are able to modulate the increased ROS levels in senescent cells.

The modulation of pro-inflammatory gene expression, such as the inhibition of
cyclooxygenase-2 (COX-2) or inducible nitric oxide synthase (iNOS), has been shown
to be one of the major anti-inflammatory mechanisms of polyphenols [318]. In the study
of Yoshizaki and colleagues [319], HaCaT keratinocytes were treated with orange peel
extract prior to UVB exposure, where orange peel was able to modulate the UVB-induced
inflammatory response and suppression of COX-2 expression, and PGE2 production were
observed via PPAR-γ activation [319]. Wogonin downregulated COX-2 and iNOS expres-
sion in mouse skin fibroblasts treated with TPA, IL-1β and TNF-α [189]. Furthermore,
wogonin affected MMP-1 and IL-6 levels in UVB-induced keratinocytes by the inacti-
vation of the MAPK/AP-1 and NF-κB signaling pathways [190]. Comparably to these
findings, baicalin showed anti-inflammatory effects and antioxidant properties by modu-
lating MMP-1 and MMP-3 activity in the fibroblasts exposed to UVB [320]. In addition, a
decreased SA-β-Gal-positivity, reduced G0/G1 arrest and decreased expression of CDK
inhibitors p16INK4A and p21 CIP/Waf1 were shown in baicalin-treated cells.

Furthermore, the elastic properties of UVB-exposed normal human keratinocytes has
been restored after pre- and post-treatment with non-toxic concentrations (5 or 10 mM) of
delphinidin, as evaluated by atomic force microscopy [321].

The extracts from yerba mate, a tea prepared from the leaves and stems of Ilex paraguariensis,
obtained after different fermentation times, showed a significant enhancement effect on
the cell viability of HaCaT keratinocytes and BJ fibroblasts [322]. The extracts also showed
strong inhibitory effects on the activity of lipoxygenase, collagenase and elastase enzymes,
as well as the hydration effects on the forearm skin in human volunteers. In addition,
the ferments can, through their probiotic activity, support the beneficial microorganisms
inhabiting the human skin. Furthermore, mangiferin, a natural polyphenolic compound
mainly found in Mangifera indica, showed an anti-senescence effect against H2O2-induced
premature senescence in human dermal fibroblast cells (Figure 7). Skin fibroblasts exposed
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to 10 µM H2O2 in the presence of 10 µM or 50 µM mangiferin showed a decreased ROS
production and stabilized mitochondrial membrane potential, and decreased the number
of cell-cycle-arrested cells compared to untreated cells [323].
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  Figure 7. The structures of the selected unique polyphenols exerting protective potential against skin
senescence and aging.

The extracts from the leaves of Cleistocalyx nervosum var. paniala, or Ma Kiang, a peren-
nial tree found growing in scattered locations in the northern provinces of Thailand, showed
a promising skin anti-aging potential [324]. In particular, cold methanol extract showed
a prominent inhibitory effect on MMP-2, ROS scavenging and lipid peroxidation inhibi-
tion, as well as a tyrosinase inhibition effect, along with a low cytotoxicity in human skin
fibroblasts. A good photoprotective and antioxidant activity of dried aqueous-methanolic
(H2O/MeOH) crude extract and ethyl acetate (EtOAc), n-butanol (n-BuOH), as well as
aqueous (H2O) fractions of the roots of western Himalayan plant Potentilla atrosanguinea
(Himalayan cinquefoil), has been proven [325]. In this study, the order of protective effi-
ciencies of the individual extracts was as follows: EtOAc > n-BuOH > H2O/MeOH > H2O.
The highest total phenol content was detected in the H2O/MeOH extract, showing the
highest DPPH radical scavenging, superoxide anion radical scavenging and cupric ion-
reducing activity. These findings have suggested the high photoprotective effect applicable
in sunscreen preparation.

An extract from tomato (Lycopersicon esculentum) stem cells containing both phy-
tochelatin compounds, able to protect the skin from heavy metal toxicity, and polyphenolic
antioxidants, has been tested on murine fibroblasts (NIH-3T3) and HaCaT keratinocytes by
Tito and colleagues [326]. In their work, it has been demonstrated that a cosmetic product
containing this extract can reduce heavy metal-induced toxicity, preserve DNA integrity
and decrease collagen degradation by downregulating MMPs. Moreover, it is capable of
inducing a new collagen synthesis.

A natural polyphenolic compound, phenylpropanoid glycoside verbascoside (from
Syringa vulgaris or common lilac), has shown protective effects against UVC-induced
damage and pro-inflammatory activation in HaCaT keratinocytes [327] (Figure 7). Verbas-
coside (100 or 200 µmol/L) added 2 min before irradiation (20 min, 1.8 J/cm2) effectively
inhibited cytokine-induced proinflammatory molecules and decreased NF-κB and AP-1
DNA binding.

Marine natural products provide a rich source of chemical diversity that can be used
to develop novel promising anti-aging skin-care agents. The extracts from three seaweed
species of Alariaceae, Eisenia bicyclis, Ecklonia cava and Ecklonia stolonifera, have shown a
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strong inhibition of both NF-κB and AP-1 reporter activity, which were well correlated with
their capabilities to inhibit MMP-1 expression in human dermal fibroblasts [328]. In addi-
tion, MMP-1 expression was intensely diminished by treatment with phlorotannins, eckol
or dieckol isolated from E. stolonifera (Figure 7). In addition, dieckol from E. cava showed
a tyrosinase inhibition that was relatively higher than that of a commercial tyrosinase
inhibitor (kojic acid), and prominent protection of fibroblasts against UV-B radiation-
induced DNA damage [329]. In addition, algal phorotannins, including eckstolonol and
triphlorethol-A, reduced UV-B-induced reactive oxygen species and nitric oxide levels in ze-
brafish embryos, protected them against UV-B-induced cell death and significantly reduced
hyperpigmentation [330] (Figure 7). The treatment of human diploid fibroblasts WI-38 with
phloroglucinol, a basic structural element of phlorotannins, protected cell viability and
reduced production of malondialdehyde (MDA), as a marker of lipid oxidation, against
premature senescence induced by hydrogen peroxide [331]. Phloroglucinol also alleviated
biomarkers of oxidative damage to lipids, proteins and DNA damage in Balb/c mice after
UVB radiation [332]. In addition, it decreased the number of mast cells, which are involved
in UVB-induced oxidative stress and inflammation, and improved the epidermal and
dermal thickness in the dorsal skin of the irradiated mice. These findings indicated that
these compounds might represent a promising agent for the prevention and treatment of
skin aging and photoaging. A good free radical scavenging ability, antimicrobial activity
against E.coli and S. aureus and effective absorption of the UVB and UVA rays was shown
for a polyphenol-rich extract from the seaweed Sargassum vachellianum, suggesting its use
as a cosmetic ingredient for protecting from photodamage [333].

Furthermore, numerous mushrooms have been used for their beneficial effects of the
skin. For instance, the extract from the parasitic mushroom growing on trees, Inonotus
obliquus, commonly called chaga, has been tested in UV-irradiated skin fibroblasts, ker-
atinocytes or a reconstructed epidermis [334]. In this study, 2% aqueous extract of Inonotus
obliquus reduced ROS formation in UV-irradiated (UV-A (5 J/cm2) + UV-B (100 mJ/cm2))
skin cells, which was accompanied with a reduced quantity of pro-inflammatory cy-
tokines and increased DNA repair activity. Compounds responsible for its increased
antioxidant activity that were isolated from the Inonotus obliquus methanolic extract were
inonoblins A, B and C, as well as phelligridin D [335] (Figure 7). Extract of the mycelium
of Tricholoma matsutake, or pine mushroom, is widely spread in Asian countries. The ex-
tract (0.1–100 µg/mL for 72 h) decreased elastase activity and reduced the MMPs levels in
human skin fibroblasts, which may suggest its good anti-wrinkle properties [336].

However, it is important to mention that the beneficial effect of polyphenols does
not only mean preventing or delaying the outcome of the senescent phenotype, but it
also consists of the removal of already senescent cells. The elimination of senescent
cells is called senolysis, and many polyphenols, as potential senolytic drugs, also in the
context of age-associated deterioration of the skin, are under investigation [337–339]. Two
established senolytics, a combination of dasatinib plus quercetin (D/Q), significantly
reduced the senescent and total cell counts of primary mouse embryonic fibroblasts (MEFs)
from Ercc1−/− mice undergoing premature senescence at passage 5 relative to untreated
cultures [144,146]. Quercetin surface-functionalized Fe3O4 nanoparticles induced a non-
apoptotic cell death in oxidative-stress-induced senescent cells through the activation of
AMPK [340]. In addition, it also exerted a senostatic effect through decreasing the secreted
levels of the IL-8 and IFN-β of the 10 flavonoids tested. Fisetin was the most effective
in reducing the fraction of SA-ß-Gal-positive Ercc1−/−MEFs [341]. In addition, fisetin
reduced the senescence in MEFs and IMR90 cells in a dose-dependent manner. Luteolin
and curcumin also showed weak senolytic activity in Ercc1−/−MEFs at a dose where
quercetin was ineffective. Nevertheless, the curcumin analog EF24 showed the most potent
senolytic activities compared to the other three commonly used curcumin derivatives,
HO-3867, 2-HBA and dimethoxycurcumin, in ionizing-radiation-induced senescent WI-38
fibroblasts [342]. EF24 was capable of selective senolysis in various types of senescence
through a mechanism that was independent of ROS but dependent on an increase in the
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proteasome degradation of the Bcl-2 anti-apoptotic protein family proteins, Bcl-xl and
Mcl-1. The treatment of senescent and healthy fibroblasts for 48 h with 1% Rhododendron
ferrugineum leaves extract, which was rich in flavonoids [343], significantly reduced the
number of senescent cells while not affecting the number of healthy fibroblasts [344]. This
effect was comparable to the effect of the established senolytic drug Navitoclax.

Altogether, polyphenols seem to be effective anti-senescence compounds by targeting
critical components of the process of senescence (Figure 8); however, additional studies are
required, especially on in vivo models of aged organisms.
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Figure 8 Figure 8. Schematic representation of polyphenols targeting different components/processes of cellular senescence in
the skin. AP-1, activator protein 1; BPLE, brown pine leaf extract; COX-2, cyclooxygenase 2; ERK, extracellular-signal-
regulated kinase; γ-H2AX, H2AX variant histone; IL-6 and 8, interleukin 6 and 8; JNK, c-Jun N-terminal kinase; MAPK,
mitogen-activated protein kinase; MMPs, matrix metalloproteases; NF-κB, nuclear factor kappa B; iNOS, inducible nitric
oxide synthase; Nrf2, nuclear factor erythroid 2-related factor 2; SA-β-Gal, senescence associated-beta-galactosidase; PGE2,
prostaglandin 2; TNF-α, tumor necrosis factor alpha; TCA, trans-communic acid.

Table 1 lists the summary of anti-senescence effects of the above-mentioned polyphe-
nols in in vitro cellular and skin models.
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Table 1. Polyphenols with anti-senescence potential investigated in skin cells in vitro.

Polyphenol Type of Skin Cells Assay Conditions Effect Reference

Hydroxytyrosol and
Oleuropein

neonatal human
dermal fibroblasts

1 µM hydroxytyrosol or
10 µM oleuropein

reduced SA-β-Gal-positive
cell number

and p16INK4A protein expression
[299]

Apigenin

human foreskin
fibroblasts

10 or 20 µM for 24 h
co-treated with

bleomycin

decreased expression of IL-6,
IL-8 and IL-1β mRNA;

inhibited NF-κB activity
[300]

NHDF 15 mM 1 h before and
after UVB-exposure

downregulated NER expression;
inhibited nuclear fragmentation

and Bax and
caspase-3 expression

[175]

Kaempferol human foreskin
fibroblasts

10 or 20 µM for 24 h
co-treated with

bleomycin

decreased expression of IL-6,
IL-8 and IL-1β mRNA [300]

Quercetin human foreskin
fibroblasts

10 or 20 µM for 24 h
co-treated

with bleomycin

decreased expression of IL-6,
IL-8 and IL-1β mRNA;

reduced SA-β-Gal
[300]

Naringenin human foreskin
fibroblasts

10 or 20 µM for 24 h
co-treated with

bleomycin
reduced SA-β-Gal [300]

Bergamot polyphenol
fraction HaCaT UVB-exposed

modulation of IL-1β;
restored telomere length and

telomerase activity
[302]

Genistein
NHDF and

keratinocytes
co-culture

10 mM for 72 h after
UVB exposure

inhibited IL-6 production;
inhibited phosphorylation of

p38, ERK and JNK
[303]

Rooibos methanolic
and aqueous extracts HaCaT

sub-lethal
concentrations

(0.05–0.55 mg/mL) for
24 h after UVB

exposure

inhibited viability and
proliferation facilitating the

removal of accumulating
icIL-1α

[304]

Honeybush aqueous
extracts HaCaT

0.10–0.79 mg/mL for
24 h after

UVB exposure

inhibited icIL-1α accumulation;
increased caspase-3 activity in
damaged cells (with opposing

effect found for
methanolic extract)

[304]

Pomegranate
fruit extract

NHEK 10–40 mg/mL for 24 h
before UVB exposure

inhibited phosphorylation of
ERK1 and 2, JNK1 and 2 and p38;

inhibited phosphorylation of
IκBα and IKKα;

inhibited translocation of
NF-κB/p65

[307]

SKU-1064 skin
fibroblasts

5–60 mg/L for 2 h after
UVB exposure

reduced activation of NF-κB;
downregulation of caspase-3;
increased G0/G1 phase arrest
associated with DNA repair

[310]

Phloretin HaCaT 50–200 mg/mL 12 h
after UVB exposure

decreased DNA damage;
reduced phosphorylation of p53

and γ-H2AX;
inhibited IL-6 and
prostaglandin E2

[308]
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Table 1. Cont.

Polyphenol Type of Skin Cells Assay Conditions Effect Reference

Salidroside NHDF 1–10 mM for 24 h
before UVB exposure

recovered viability; decreased
SA-β-Gal-positive cells;

relieved G1/G0 cell cycle arrest;
suppressed p21CIP/Waf1 and

p16INK4A expression; reduced
MMP-1 activity;

reduced IL-6 and
TNF-α production

[305]

Grape seed
proanthocyanidins NHEK 10–50 mM for 3–6 h

before UVB exposure

inhibited intracellular release
of H2O2;

inhibited photo-oxidative
damage of lipids and proteins;

inhibited oxidative
DNA damage;

inhibited phosphorylation of
ERK1 and 2, JNK and p38

[309]

Glycyrrhizic acid Hs68 foreskin
fibroblasts

10–25 mM for 16 h
before UVB exposure

reduced ROS levels;
restored Ca2+ levels;
inhibited ER stress;

reduced phosphorylation of p38
and JNK

[313]

Gallic acid NDHF, HaCaT 0.1–10 mM for 24 h
after UVB exposure

decreased IL-6;
decreased MMP-1 levels;

decreased ROS production;
suppressed phosphorylation

of AP-1

[314]

Piceatannol NHEK 0–2 mg/mL for 24 h
before UVB exposure

suppressed ROS generation;
reduced MMP-1 induction [315]

Fisetin HaCaT

1–20 mM for 12 h
cotreated with H2O2

(500 mM) or
pre-treatment for 6 h

before TNF-α
stimulation

reduced ROS production;
inhibited IL-1β and

IL-6 production;
decreased iNOS and
COX-2 expression;

increased Nrf2-mediated
HO-1 expression

[316]

Brown pine leaf
extract (BPLE)

andtrans-communic
acid (TCA)

HaCaT,
reconstructed human

skin models

BPLE (5, 10 µg/mL)
and TCA (5, 10 µM) for

1 h before
UVB exposure

inhibited MMP-1 expression;
suppressed AP-1 expression;

inhibited Akt and
PI3K phosphorylation

[317]

Orange peel extract HaCaT 0.1–10 mg/mL prior to
UVB exposure

suppressed COX-2 and PGE2
expression;

activation of PPAR-γ
[319]

Wogonin

NIH/3T3 mouse
skin fibroblasts

TPA, IL-1β and TNF-α
and 10–100 mM

wogonin for up to 2 h

decreased COX-2
and iNOS expression [345]

HaCaT 0.1–10 mM for 72 h
after UVB exposure

inhibited MMP-1 and IL-6;
blocked MAPK/AP-1 and

NF-κB pathways
[346]
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Table 1. Cont.

Polyphenol Type of Skin Cells Assay Conditions Effect Reference

Baicalin human skin samples 6.25–25 mg/mL after
UVB exposure

decreased number of
SA-β-Gal-positive cells;

reduced G0/G1-phase cells;
decreased expression of

p16INK4A, p21CIP/Waf1 and p53;
decrease in γ-H2AX levels;

decreased expression of MMP-1
and MMP-3

[320]

Delphinidin HaCaT 5 or 10 µM before or
after UVB exposure restored elastic properties [321]

Extracts from
yerba mate HaCaT, BJ fibroblasts 100–1000 µg/mL

extracts

enhanced viability; inhibited
activity of lipoxygenase,

collagenase and
elastase enzymes

[322]

Extracts from leaves of
Cleistocalyx nervosum

var. paniala

human skin fibroblasts
mushroom tyrosinase 0.1 mg/mL

inhibition of MMP-2, ROS
scavenging, lipid peroxidation

inhibition, tyrosinase
inhibition effect

[324]

Mangiferin human dermal
fibroblasts

10 µM/50 µM; 2 h
followed by addition of

H2O2 (10 µM)

decreased ROS production,
stabilized mitochondrial
membrane potential and

decreased the number of cell
cycle arrested cells

[323]

Extracts from three
species of seaweeds
Alariaceae, Eisenia

bicyclis, Ecklonia cava
and Ecklonia stolonifera;

eckol, dieckol,
eckstolonol,

triphlorethol-A and
phloroglucinol

human dermal
fibroblasts;

HeLa cells transfected
with the NF-κB or AP-1

luciferase reporter
plasmid DNA;

mushroom tyrosinase;
B16F10 mouse

melanoma cells;
Zebrafish embryos;

male 7-week-old
Balb/c mice

10 µg/mL extracts
before treatment with

TNF-α (10 ng/mL);
exposure to UVB

(50 mJ/cm2) +
phlorotannins

(0.5–250 µM); zebrafish
embryos preincubated

with 50 µM
phlorotannins for 1 h;

phloroglucinol
(10 or 50 mg/mL)

applied to dorsal skin
plus UVB (30 or

60 mJ/cm2)

inhibited MMP-1;
blocked AP-1 and NF-κB

reporter activities; inhibition of
tyrosinase, melanogenesis and

DNA damage; reduction in ROS,
NO, biomarkers of oxidative

damage, cell death and
hyperpigmentation in vivo;

reduction in number of mast
cells and increase in the

epidermal and dermal thickness

[328–330]

Phloroglucinnol human WI-38
fibroblasts

10, 25, 50, or
100 µg/mL

phloroglucinol for 24 h
after tratment with

50 µM H2O2 for 60 min

decrease in MDA in prematurely
senescent cells and
viability increase

[331]

Polyphenol-rich extract
from the seaweed

Sargassum vachellianum

free radical scavenging,
anti-tyrosinase activity

and moisture
absorption and
retention assay

200–1000 µg/mL
potential in scavenging OH

radical, and effective absorption
of the UVB and UVA rays

[333]
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Table 1. Cont.

Polyphenol Type of Skin Cells Assay Conditions Effect Reference

Polyphenol-rich root
extracts from Potentilla

atrosanguinea

determination of total
phenol content; free
radical scavenging

activity

dried
aqueous-methanolic
(H2O/MeOH) crude

extract and ethyl
acetate (EtOAc),

n-butanol (n-BuOH), as
well as aqueous (H2O)
fractions of roots were
evaluated (200 µg/mL)

H2O/MeOH crude extract showed
highest antioxidant of DPPH

radical scavenging,
O2

.− scavenging
and Cu2+ reducing activity;
photoprotective agents in

sunscreen preparation; effective
natural antioxidant

[325]

Extract from tomato
stem cell

(Lycopersicon esculentum)

murin fibroblasts
NIH-3T3; HaCaT

different concentration
of the extract for 12 h or

2 h and/or CuSO4
for 30 min

reduced heavy metal-induced
toxicity, restored DNA integrity

under heavy metal stress;
decreased collagen degradation
and renewed collagen synthesis

[326]

Verbascoside HaCaT

100 or 200 µmol/L
added 2 min before

UVC irradiation
(20 min, 1.8 J/cm2)

decreased AP-1 and NF-κB and
decreased level of

proinflammatory mediators
[327]

Extract from the
parasitic mushroom

Inonotus obliquus

skin fibroblasts,
keratinocytes or

reconstructed
epidermis

2% aqueous extract
added 2 h before UV

irradiation (UV-A
(5 J/cm2) + UV-B

(100 mJ/cm2)

reduced ROS formation, reduced
quantity of pro-inflammatory
cytokines and increased DNA

repair activity

[334]

Extract of the mycelium
of Tricholoma matsuke human skin fibroblasts

0.1–100 µg/mL for 72 h
and 24 h treatment in

µcombination
with TPA

decreased elastase activity,
reduced the MMPs level [336]

Quercetin surface
functionalized Fe3O4

nanoparticles

senescent human
foreskin fibroblasts BJ;
senescence induced by
100 µM H2O2 for 2 h

treatment with
5 µg/mL for 24 h

decreased number of
stress-induced senescent cells;

promoted AMPK activity; reduced
IL-8 and IFN-β

[340]

Quercetin/dasatinib senescent MEFs from
Ercc1−/−mice

48 h treatment
dasatinib (250 nM),
quercetin (50 µM)

Reduction in senescent and total
cell counts [144,146]

Fisetin
senescent MEFs from

Ercc1−/−mice,
IMR-90 fibroblasts

48 h treatment,
1–15 µM

Reduction in the fraction of
SA-ß-Gal-positive cells [341]

Curcumin
luteolin

senescent MEFs from
Ercc1−/−mice

48 h treatment,
5 µM

Reduction in the fraction of
SA-ß-Gal-positive cells [341]

Curcumin analog EF24

senescent WI-38 and
IMR-90 fibroblasts;

senescence induced by
replication, oncogene

and IR

72 h treatment

Selective killing of senescent cells;
EC50 = 0.33–1.74 µM; proteasomal

degradation of the Bcl-2
anti-apoptotic protein family
proteins; independent of ROS

[342]

Rhododendron
ferrugineum leaves

extract

senescent NHDF;
senescence induced by
500 µM H2O2 for 2 h

48 h treatment,
1% extract

Reduction in
SA-ß-Gal-positive cells [344]

AP-1, activator protein 1; COX-2, cyclooxygenase 2; DPPH, 2,2-diphenyl-1-picryl-hydrazyl-hydrate; ER, endoplasmic reticulum; ERK,
extracellular-signal-regulated kinase; HaCaT, human immortalized keratinocytes; HO-1, heme-oxygenase 1; IFN-β, interferon beta;
IL-1, -6, -8, interleukin 1, 6, 8; iNOS, inducible nitric oxide synthetase; IR, ionization radiation; JNK, c-Jun N-terminal kinase; MAPK,
mitogen-activated protein kinase; MDA, malondialdehyde; MEFs, mouse embryonic fibroblasts; MMP-1, matrix metalloproteinase 1; NHDF,
normal human dermal fibroblasts; NHEK, normal human epidermal keratinocytes; NF-κB, nuclear factor kappa-light-chain-enhancer of
activated B cells; NO, nitric oxide; Nrf2, nuclear factor erythroid 2–related factor 2; PGE2, prostaglandin 2 PI3K, phosphatidylinositol
3-kinase; PPAR-γ, peroxisome proliferator-activated receptor gamma; ROS, reactive oxygen species; SA-β-Gal, senescence associated
β-galactosidase.
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4. Polyphenols as Anti-Aging Cosmeceuticals

The aging of the global population puts an increasing demand for not only preventa-
tive and therapeutic strategies to combat age-related diseases, but also for cosmetic products
containing natural ingredients with active properties that defeat skin aging. In 2011, 63.8%
of anti-aging cosmetic products marketed in Europe contained plant-derived preparations,
whereas, in 2018, 73.8% of products contained these components [347]. A number of skin
care products based on polyphenols or polyphenol-enriched plant extracts, so-termed
cosmeceuticals, have been developed with the aim to prevent or delay skin aging [348].
Polyphenols also represent the biologically active constituents of most of the top 10 botani-
cal species, including: Vitis vinifera (vine), Butyrospermum parkii (shea, or Vitellaria paradoxa),
Glycine soja (soy), Simmondsia chinensis (jojoba, or Buxus chinensis), Helianthus annuus (sun-
flower), Theobroma cacao (cocoa), Calendula officinalis (marigold), Limnanthes alba (meadow-
foam), Glycyrrhiza glabra (licorice) and Acacia decurrens (black wattle), which are used in
anti-aging skin care products [347].

To exert their designated biological activities, topically applied substances aimed to
act as anti-aging agents have to be able to be released from the formulation, to reach the
skin and, finally, to overcome the stratum corneum barrier and penetrate into the target
skin layers, epidermis and dermis.

The release of active substances and further skin permeation depends on the molecule
parameters, such as molecular weight and lipophilicity, as well as the vehicle formula-
tion [348]. In the animal skin models, the hydrophobic and a smaller-molecular-weight
resveratrol were mostly distributed within the dermis, whereas hydrophilic chlorogenic
acid was slightly more distributed in the epidermis [349]. Polyphenols, which are more
polar (catechin, resveratrol and curcumin), were mostly concentrated (90%) in the stratum
corneum, whereas fewer polar retinols accumulated in the underlying layers of the porcine
skin model, and only 10% was retained in the stratum corneum [350].

The suitable vehicle formulation should defeat the polyphenols’ propensity to precipi-
tate in aqueous media due to their poor solubility in water. Emulsions are the most conve-
nient type of formulations designated for topical applications because of their solubilizing
capacity for both lipophilic and hydrophilic ingredients [348]. In addition, the incorporation
of polyphenols into emulsions can decisively impact their properties, including rheological
features, stability and, particularly, the observed decrease in viscosity [351]. Moreover, the
stability and activity of polyphenols might also be beneficially modulated by emulsions.
For example, the formulation of quercetin to solid dispersions with polyvinylpyrrolidone
Kollidon® 25 considerably improved the solubility of quercetin, as well as its antioxidant
activity [352]. Furthermore, the components of the emulsions can also influence the release
of the polyphenol compounds. For instance, urea and isopropanol hinder the release of
rutin from the formulations [353]. However, the presence of propylene glycol 5.0% (w/w)
facilitated the rutin liberation from semisolid systems. The lower oil contents in the emul-
sions, along with the skin hyperhydration, often promote the release of phenolic substances,
as well as higher skin permeation rates [348,354]. Thermodynamically stable microemul-
sions can also be used as vehicles to boost the skin permeation rates of polyphenols, such
as quercetin or chlorogenic acid [355,356]. Other promising skin delivery systems represent
nano-emulsions or nanocarriers (involving formulations such as liposomes, niosomes, cu-
bosomes, phytosomes, nanocrystals, polymeric nanoparticles, nanostructured lipid carriers,
carbon nanotubes, fullerenes and dendrimers) [357,358] and cosmeto-textiles, as reservoir
systems capable of gradual delivery to the skin layers [359,360].

The clinical evidence of the anti-aging effects of plant-based cosmeceuticals is still quite
limited. However, some small controlled clinical studies demonstrated the photoprotective
or anti-aging effects of topically applied or orally supplemented polyphenols.

The formulations with a content of 2% and 3% green tea extracts (GTEs) showed a
prominent protection against skin photo-aging and photoimmunology-related effects in
a study involving twenty volunteers exposed to repetitive solar-simulated UV radiation
on the upper back at a dosage of 1.5 minimal erythema [361]. The study of Hong and
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colleagues [362] in forty-two healthy Korean female volunteers, aged 30–59 years, sug-
gested that a treatment of green tea extract with tannase, resulting in an elevation of its
constituents gallic acid, epigallocatechin and epicatechin, can increase the rejuvenating
effect of GTE on skin. This was demonstrated as a marked or moderate improvement in
wrinkles reported by 63.60% of subjects applied with tannase-treated GTE for 8 weeks
compared with only 36.30% of reporting women treated with normal GTE. The commer-
cial ginkgo preparation (Flavonoids complex SC®) applied for 28 days to the forearm in
20 healthy women aged between 36-and 52-years increased skin moisturization (27.88%)
and smoothness (4.32%) and reduced roughness (0.4%) and wrinkles (4.63%). However, a
comparable treatment with a formulation containing tea and rooibos (Tealine®) showed
the best efficacy on wrinkle reduction (9.9%) [363]. In comparison to the tea and rooibos
formulation, gingko significantly improved skin moisturization.

Resveratrol, a compound known for its broad range of beneficial biological activities,
including its potent antioxidant, anti-inflammatory and modulatory effects on Nrf2 and
SirT1, also exerts inhibitory effects on tyrosinase, a key enzyme in the melanin biosynthetic
pathway [364]. In a human trial employing 15 healthy volunteers, a stable derivative of
resveratrol (resveratrate) exerted protective effects against repetitive solar-simulated UV
radiation induced sunburn and suntan [365]. The study involving 20 women showed
that the application of a cream containing 0.8% resveratryl triacetate on their face twice
daily (morning and evening) for 4 and 8 weeks, in comparison with baseline values before
treatment, reduced the total wrinkled area (5.12%, 4.86%), total wrinkle volume (10.53%,
8.41%) and sagging (4.69%, 5.91%), and increased elasticity (2.84%, 3.98%), denseness
(15.65%, 20.80%), moisture content (5.83%, 7.37%), lightness (0.79%, 1.07%) and ITA◦

(a skin color index) (5.43%, 4.95%) [366]. Furthermore, an 8-week application of a new and
highly concentrated resveratrol-containing emulsion (Medskin Solutions Dr. Suwelack AG,
2% trans-resveratrol) to 20 subjects resulted in an increase in skin elasticity (+5.3%), and
skin density (+10.7%) and a reduction in skin roughness (−6.4%) and skin dispensability
(−45.9%) [367]. The facial skin of eight women of ages between 45 and 70 showing clear
clinical signs of photoaging presented a remarkable decrease in aging signs, manifested as
an increase in luminosity, hydration and elasticity, after the chronic application of trans-
resveratrol in combination with beta-cyclodextrin as a carrier twice a day for 1 month [368].
A comparative, randomized and single-blind trial in which 60 female subjects applied
twice-daily 1% Vitis vinifera shoot extract serum or serum plus cream for four weeks showed
a significant improvement in clinical signs of photoaged skin, including skin firmness,
radiance, texture, fine lines and wrinkles [369]. The stable water-in-oil emulsion containing
2% Muscat Hamburg grape seed extract topically applied for 8 weeks on the cheek skin of
male Pakistani volunteers resulted in a beneficial modulation of facial skin elasticity and
content of sebum and melanin [370].

Calendula officinalis is a plant that is rich not only in flavonoids but also in terpenoids,
carotenoids and volatile oils [371]. A cream containing C. officinalis applied to the cheek
skin of 21 male volunteers for 8 weeks was found to induce facial skin tightness and
hydration, which prevents the damage of skin and also delays the aging process [372].
The clinical study including 12 women aged 30–50 years receiving three concentrations of
licorice cream (10%, 20% and 40%) applied on the upper and lower arms twice a day for
four weeks showed a decreasing effect of the formulation on the spot pigmentation [373].

Orally supplemented polyphenols or polyphenols-containing dietary supplements
can also improve the skin conditions and decelerate the skin aging process. The clinical trial
enrolling healthy women of 35–60 years of age showed that a 12-week daily supplemen-
tation with two tablets of Imedeen® Time Perfection®, a dietary supplement comprising
vitamin C, zinc, plant extracts and the proprietary Imedeen marine complex, improved
the parameters of photoaged skin, moisturization and skin density [374]. A double-blind
placebo-controlled study involving 60 female volunteers aged 40–65 years, documented
that a 12-week daily consumption of a beverage with green tea polyphenols comprising
1402 mg total catechins (=1 L of the green tea) can provide protection of skin against
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harmful UV radiation and can help to improve the overall skin quality of women [375].
The study enrolling 50 healthy males and females aged 35–65 years showed that a 60-day
oral supplementation with a nutraceutical supplement containing resveratrol, procyani-
din and ellagic acid (present in one daily capsule of Revidox®) significantly improved
the parameters of skin moisturization and elasticity and diminished the skin roughness,
intensity of age spots and wrinkle depth [376]. Interestingly, chronic oral supplementa-
tion with Revidox® also improved the antioxidant capacity in stratum corneum. The oral
supplementation of 30 post-menopausal women with 100 mg/day of an isoflavones-rich,
concentrated soy extract for six months increased the epidermal and dermal skin thickness,
papillary index, quantity of collagen and elastic fibers and number of dermal vessels in
most of the subjects [377].

Aloe barbadensis (also known as aloe vera) is a polyphenol-rich plant with proven
anti-inflammatory, healing, moisturizing, antibacterial, antifungal, antiviral and anti-aging
properties [378,379]. The clinical trial enrolling 30 healthy women over the age of 45
showed that a 90 day intake of a low (120 mL of 1% aloe vera liquid, which is equivalent to
1200 mg of aloe vera gel/day) or high (120 mL of 3% aloe vera liquid, equivalent to 3600 mg
of aloe vera gel/day) dose of aloe vera liquid gel (manufacturer: Univera Company, Seoul,
Korea) significantly improved facial wrinkles and elasticity, increased type I procollagen
and decreased the MMP-1 gene expressions in the photo-protected skin [380].

Hydrangea serrata, a plant originating in the East Asia and Korea, but also popular in
Europe, has been shown to have positive effects on skin wrinkles, skin hydration, transepi-
dermal water loss and collagen formation in hairless (HR)-1 mice [381]. Furthermore,
a randomized, double-blind and placebo-controlled clinical study enrolling 151 healthy
male and female volunteers aged 35–60 years receiving a water extract of Hydrangea serrata
(300 mg, 600 mg or placebo) for 12 weeks confirmed the ability of this polyphenol-rich
plant to significantly improve wrinkles, hydration, elasticity, texture and roughness of
the skin [382].

The alleviated effects of an apple polyphenol supplement (Applephenon®, Asahi
Breweries Co. Ltd., Tokyo, Japan) on UV-induced pigmentation has been shown by a
randomized, double-blind and placebo-controlled clinical trial enrolling 65 healthy women
(age 20–39 years) [383]. In this study, the Applephenon®, containing 63.8% procyanidins,
12.4% flavan-3-ols, 10.8% hydroxycinnamic acids and 6.5% phloretin glucosides, was
administered as 300 or 600 mg/day once daily for 12 weeks.

Theobroma cacao, better known as cocoa, and its products, contain more polyphenolic
antioxidants than most food; in particular, flavanols [384]. A randomized, double-blind
and placebo-controlled clinical study enrolling 64 Korean women between the ages of 43
and 86 years documented that the daily consumption of the cocoa beverage (samples Barry
Callebaut Belgium N.V.) containing 320 mg of cocoa flavanols for 25 weeks remarkably
improved skin wrinkles and elasticity in human skin [385]. In this study, the elasticity of
the photo-aged skin began to improve after the 12th week and the effects were maintained
for the 24th week of the study.

Mangos, particularly Ataulfo mangos, contain a high number of phenolic compounds,
especially gallic acid, chlorogenic acid, protocatechuic acid and vanillic acid. A randomized
clinical pilot study enrolling healthy postmenopausal women aged 50 to 70 was conducted
to assess 16 weeks of either 85 g or 250 g of mango intake. The intake of 85 g of mangos
significantly reduced wrinkles in fair-skinned postmenopausal women; however, an intake
of 250 g showed the opposite effect. Therefore, further studies are required [386].

The senolytic effect of the organic Alpen rose (Rhododendron ferrugineum) extract,
confirmed in senescent fibroblasts in vitro (Table 1), has been tested in a double-blind,
placebo-controlled clinical study enrolling 44 Caucasian women between 40 and 65 years
with redness on their cheeks [344]. Applying a cream with 2% alpine rose extract on the
entire face and neck twice daily for 28 days significantly reduced the skin redness and
increased its elasticity. Nevertheless, as cellular senescence biomarkers have not been
monitored in this study or in any of those reported in this section, the contribution of the
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anti-senescent efficacy of these preparations to the anti-aging effect on skin remains to
be clarified.

5. Cellular Aging of Skin and COVID-19 Pandemic

A recent hot topic in the field of research is the investigation of the severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus disease-19
(COVID-19) pandemic, infected millions of people and is responsible for millions of deaths
all over the world [387].

Up to date, it is known that the entry of the coronavirus into target cells primarily
depends on the bond of the virus’ spike proteins to the receptors of the host cells. An-
giotensin converting enzyme 2 (ACE2) has been identified as an essential receptor of the
SARS-CoV-2 [388–390]. ACE2-expressing cells are more susceptible to SARS-CoV-2 infec-
tion, since the receptor binding domain of the SARS-CoV-2 spike protein has a high affinity
to human ACE2 molecules [391]. The expression of the ACE2 protein and RNA have been
widely investigated and detected, particularly in the cells of the lung, heart and kidney, as
well as those of the skin [390,392,393].

The importance of the renin–angiotensin system, which is responsible, among others,
for cell proliferation and differentiation, is detectable also in the skin, where the epidermal
stem cells express key mediators of this system, including ACE2 [394]. Recently, the cu-
taneous involvement in COVID-19 patients has been analyzed and reported in 20.4% as
skin rash, widespread urticaria and chickenpox-like vesicles [395]. More recently, through
analyzing ACE2 mRNA expression and the ACE2-positive cell composition in skin tis-
sues, a significantly higher expression of ACE2 in keratinocytes and basal cells than in
other cell types, such as fibroblasts and melanocytes, has been shown [396]. This may
suggest the skin, and in particular, keratinocytes, are a potential target of SARS-CoV-2
infection [397]. In addition, transdermal transmission might signify a potential risk route
for SARS-CoV-2 infection.

The cellular aging of the skin can have a significant contribution to this process
through the modulation of ACE2 expression, as well as the impairment of skin barrier
functions [398]. Recent data show an increase in ACE2 mRNA levels in the late passage of
both human fibroblast (BJ) and human bronchial epithelial cells (HBECs) compared to cells
at early passages [399]. More importantly, the ACE2 promoter responds to the activation
of the DDR pathways, and telomere dysfunction is a physiological event that is able to
engage the DDR pathways modulating the ACE2 levels. Regardless, cellular senescence
has been suggested as a potential mediator of COVID-19 severity in elderly patients [400].

Consistently, the study of Bickler and colleagues [401], using a large dataset of genome-
wide RNA-seq profiles derived from human dermal fibroblasts, showed that advanced
age is associated with an increased expression of genes that encode proteins interacting
with SAR2-CoV-2 proteins, including the ACE2 receptor. However, additional studies
are needed.

Moreover, the risk factors for the development of severe respiratory illness include
pre-existing chronic age-related illnesses, such as diabetes mellitus, chronic lung disease
and cardiovascular disease [402]. However, psoriasis, a skin disease with a prevalence
that increases with advancing age [403], also showed a significant promoting effect on
the expression of ACE2 in skin, which rendered the patients more prone to SARS-CoV-2
infection [404]. However, biological therapy using secukinumab lowered the expression of
ACE2 in the skin of psoriasic patients [405]. Furthermore, a higher expression of ACE2- and
related genes has been observed in the skin samples of patients with atopic dermatitis [406].

The cutaneous infection of SAR-CoV-2 can also be linked to other virus infections in the
elderly. For instance, seroepidemiologic surveys demonstrated that 90–97% of adults that
are more than 60 years old were seropositive for EBV [407]. EBV was shown to cause robust
increases in ACE2 expression in epithelial cells infected with EBV [408]. Furthermore, such
an induction of ACE2 expression by EBV enhanced the specific ACE2-dependent entry of
SARS-CoV-2 pseudo-typed virions in EBV-infected cells.
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Recently, the association between ACE2 expression and different types of cancers has
been investigated by many studies, and ACE2 participation in the pathogenesis of the
disease has been suggested [409–411]. However, the immunohistochemical evaluation of
ACE2 presence in healthy and oncologic patients showed ACE2 in the basal cell layer of
the normal epidermis and reduced ACE2 reactivity in patients affected by pre-malignant
lesions and non-melanoma malignant skin cancers [412]. Furthermore, a positive correla-
tion has been found between ACE2 and the immunotherapy response, considering ACE2
as a potential protective factor with regard to cancer progression [413].

Finally, yet importantly, so-termed virus-induced cellular senescence, which is indis-
tinguishable from other forms of cellular senescence, can also be a consequence of infection
by SARS-CoV-2, much like by other viruses [414].

6. Summary and Conclusions

Besides triggering prominent visible manifestations, such as wrinkling, sagging, dry-
ness or age spots, skin aging is associated with an onset of age-related skin disorders and
diseases, including dermatoses, infections and malignancies [39]. This may be a conse-
quence of the accumulation of senescent cells in the skin tissue. There is growing evidence
that cellular senescence may be an essential mechanism that drives organismal aging. In
this review, we summarized the actual knowledge about molecular mechanisms of skin
cellular senescence and their contribution to the aging of skin. Furthermore, we provided
an overview of the polyphenolic substances that are capable of interfering with senescence
development in skin cells, as well as the polyphenols-containing preparations that have
shown clinical evidence of anti-aging effects. However, data for many of biochemicals
mentioned in this paper were derived from in vitro models; thus, in vivo experiments
should be carried out to confirm their anti-senescent effect on skin and/or elucidate their
contribution to the anti-aging effects observed in vivo. In addition, the molecular mech-
anisms through which various polyphenols impact the process of senescence should be
investigated in more detail in order to identify their specific molecular targets.

Altogether, natural anti-senescence polyphenols have a great potential to be used in
the prevention and treatment of the visible signs of premature and chronological aging and
age-related disorders of the skin.
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