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Abstract: Total knee arthroplasty (TKA) is one of the most common treatments for people with severe
knee osteoarthritis (OA). The accuracy of outcome measurements and quantitative assessments
for perioperative TKA is an important issue in clinical practice. Timed up and go (TUG) tests
have been validated to measure basic mobility and balance capabilities. A TUG test contains a
series of subtasks, including sit-to-stand, walking-out, turning, walking-in, turning around, and
stand-to-sit tasks. Detailed information about subtasks is essential to aid clinical professionals and
physiotherapists in making assessment decisions. The main objective of this study is to design and
develop a subtask segmentation approach using machine-learning models and knowledge-based
postprocessing during the TUG test for perioperative TKA. The experiment recruited 26 patients with
severe knee OA (11 patients with bilateral TKA planned and 15 patients with unilateral TKA planned).
A series of signal-processing mechanisms and pattern recognition approaches involving machine
learning-based multi-classifiers, fragmentation modification and subtask inference are designed
and developed to tackle technical challenges in typical classification algorithms, including motion
variability, fragmentation and ambiguity. The experimental results reveal that the accuracy of the
proposed subtask segmentation approach using the AdaBoost technique with a window size of 128
samples is 92%, which is an improvement of at least 15% compared to that of the typical subtask
segmentation approach using machine-learning models only.

Keywords: subtask segmentation; timed up and go (TUG) test; wearable sensor; perioperative total
knee arthroplasty

1. Introduction

Osteoarthritis (OA) is a major source of disability that can affect the activities of daily living
(ADLs) and the quality of life of elderly individuals. The incidence of knee OA is increasing because
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of increased age and life expectancy, increased obesity and lack of physical activity. A previous
study showed that more than 250 million people worldwide suffer from knee OA [1]. Total knee
arthroplasty (TKA) is one of the most common treatments for people with severe knee OA, which is in
the terminal stage of knee OA [2,3]. TKA can reliably relieve pain and improve mobility function and
health-related quality of life [4]. To assist clinical evaluation and assessment, the measurement of the
progress is important for perioperative TKA. Measurements and assessments can be used to inform
clinical professionals, patients, and caregivers about therapeutic efforts. Furthermore, outcomes from
measurements and assessments may improve healthcare resources and service management.

Currently, patient-based and performance-based measures are common methodologies to measure
the mobility status of perioperative TKA recovery progress. Patient-based measures are generally
executed by clinical professionals, who use mail-in questionnaires, telephone interviews, and screening
tools to investigate the health-related status of patients for perioperative TKA. However, patient-based
measures present some issues. The first is that most of these measures rely on forced choice queries
or subjective statements presented by the patients or primary caregivers. Such information may be
inaccurate or have bias because it relies on the recall of events or a snapshot observation of function.
The second is individual variance between the different raters. The raters provide subjective comments
for patient performance on patient-based measures.

Performance-based measures focus on the measurement and assessment of physical functions by
capturing the ability of patients to perform a unitary task or multiple tasks. Various measures of unitary
tasks have been proposed for mobility assessment, such as the chair stand test (CST), six-minute walk
test (6MWT) and stair climb test (SCT) [5]. These measures are often assessed by counting repetition,
timing, range of motion (ROM), and total elapsed time. However, some important clinical fine-grained
information might be neglected while limiting the measurement of specific information from a unitary
task. A test with multiple tasks can measure the fine-grained and general information of physical
functions. The timed up and go (TUG) test consisting of multiple tasks is widely utilized to measure
basic mobility and balance capabilities in patients who are elderly and frail elderly, and patients
suffering from Parkinson’s disease (PD), multiple sclerosis (MS), stroke, lumbar degenerative disc
disease, lower limb amputations and chronic obstructive pulmonary disease (COPD) [6–14]. Some
studies measured the total time execution of the TUG test. However, the TUG test as shown in Figure 1
contains various subtasks, such as sit-to-stand, stand-to-sit, walking, and turning tasks. By extracting
the information from each subtask of the TUG test, the fine-grained outcomes can reveal important
clinical information related to subjects. The information, such as elapsed time, balance and ROM of
each subtask, can be used to assist professionals in clinical interventions and distinguish the functional
recovery of patients.
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The conventional measurement of a TUG test is manual execution by a rater who uses a stopwatch
to record the total elapsed time of the TUG test. Manual execution may suffer from the issues of
subjectiveness and rater biases. To tackle these issues, subtask segmentation and identification of
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TUG tests using inertial measurement units (IMUs) have been proposed to obtain fine-grained TUG
information and gait characteristics objectively and reliably in clinical environments [15–19]. However,
there are still several technical challenges in the current approaches for perioperative TKA. One of the
most important challenges is the motion variability in different recovery progresses and individuals.
Due to personal perception and recovery status, motion characteristics are diverse among different
stages of perioperative TKA [20].

Fragmentation is another challenge in the subtask segmentation because of the unavoidable
misclassification during the identification processes. This misclassification often leads a complete
segment to be divided into fragments, especially during the motion transitions. The last challenge is
ambiguity, which often occurs while there are highly overlapping motion characteristics between the
defined activities, such as walking-out and walking-in, and turning and turning around in the TUG test.
The issue of ambiguity may decrease the recognition ability of the subtask identification approaches.
Figure 2 shows the fragmentation and ambiguity errors in subtask segmentation and identification.
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In this work, a novel subtask segmentation approach using machine-learning and knowledge-based
postprocessing approaches is proposed to tackle the technical challenges of classifying the subtasks
of the TUG test—i.e., motion variability, fragmentation and ambiguity. A series of signal-processing
mechanisms and pattern recognition approaches involving machine learning-based multi-classifiers,
fragmentation modification and subtask inference are designed and developed to recognize the
subtasks of the TUG test on TKA patients. The main contributions are as follows:

• The proposed subtask segmentation approach, including machine learning-based multi-classifiers,
fragmentation modification and subtask inference, can effectively improve the segmentation
performance of the TUG test.

• The reliability and effectiveness of the proposed approach is validated on 26 TKA patients and four
phases of the perioperative TKA, including preoperative, postoperative, postoperative 2-week
and postoperative 6-week.

• The experimental results reveal that the accuracy of the proposed subtask segmentation approach
for the TUG test is 92%, which is an improvement of at least 15% compared to that of the typical
subtask segmentation approach using machine-learning models only.

2. Related Work

2.1. Windowing Segmentation Technique

Windowing segmentation techniques process the sensing signal stream into smaller data
segments. Various techniques have been proposed for signal segmentation, including sliding window,
event-defined and activity-defined techniques [21,22]. First, the sliding window technique, the most
widely employed technique in activity recognition, can divide the signal stream into a sequence of
discrete segments. The advantages of the sliding window technique are the ease of implementation
and the reduction in computation complexity. In the feature extraction process of machine learning
and deep learning, the sliding window technique has been widely utilized to segment data streams.

Second, an event-defined technique can divide the continuous signal stream into segments by
event detection. The detected events are mainly used for recognizing the occurrence time of the
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interesting activity. For example, detections of the heel-strike and heel-off motions are generally utilized
for the identification of the complete gait cycle. Sant’Anna and Wickström proposed a symbol-based
approach to detect the phases of gait and convey information from accelerometer signals [23].

The last technique, the activity-defined technique, locates the initial and ending time of an activity
based on detecting the changes in activity. Yoshizawa et al. proposed an automatic segmentation
technique that is based on a spectral transition measure to detect the changing point of activity from
sensor data [24]. The changing point of activity is defined by the change in activity from static to
dynamic activity and vice versa. Masaki et al. utilized the discrete wavelet transform to detect changing
frequencies in walking patterns [25]. Ngo et al. proposed an approach to segment the similar gait
action, such as walking on flat ground, up/downstairs, and up/down a slope. The scale-space technique,
orientation-compensative matching algorithm, and incorporation of the interclass relationship in the
feature vector are utilized and carried out to accurately classify similar actions [26]. Apart from these
segmentation approaches, the motions can also be identified through external identification techniques,
such as rule-based algorithms and machine learning-based classifiers.

2.2. Identification Technique

The sensing signal stream can be divided into many data segments through the segmentation
technique; then, the data segments should be identified as motions by the identification technique.
Identification techniques are primarily classified into two types: rule-based and machine learning-based
(ML-based) identification techniques. First, the rule-based identification technique uses rules to detect
the starting or transition point of motion following physical attributes. As an example, the motion
of sit-to-stand was divided into four phases, namely the flexion momentum, momentum transfer,
extension and stabilization phases [27]. By detecting the flexion momentum and stabilization phase,
the sit-to-stand motion can be identified. During the first flexion momentum phase, the trunk and
pelvis rotate anteriorly, and the thighs, shanks and feet remain stationary. The stabilization phase
begins after the hip extension velocity reaches approximately zero until motion stabilization. Therefore,
the actions of the trunk bending forward and the hip extension stopping are regarded as the first
and last physical attributes of the sit-to-stand motion, respectively. Nguyen et al. [16] developed an
automated recognition and segmentation algorithm to identify motor activity patterns in daily living
tasks. The proposed algorithm defined the transition point as the beginning and ending of each activity
following the biomechanics of movement.

The ML-based identification technique constructs a model using features from training data
to predict or solve the given problem. Commonly used machine-learning techniques include naïve
Bayesian (NB), support vector machine (SVM), k-nearest neighbor (kNN), random forest (RF), and
decision tree (DT) methods [22,28,29]. Nam and Park [30] proposed a machine learning-based
approach to recognize 11 daily physical activities of children using a diaper-worn device consisting of
an accelerometer and a barometric air pressure sensor. The machine learning-based techniques utilized
in the approach included the NB, Bayes net (BN), SVM, kNN, decision table, DT, multi-layer perceptron
(MLP), and logistic regression techniques. Chelli and Pätzold [31] developed a machine-learning
framework using acceleration and angular velocity data from two public databases for fall detection
and daily living activity recognition. The machine-learning framework included an artificial neural
network (ANN), kNN, SVM with a quadratic kernel function, and ensemble bagged tree (EBT).
Reinfelder et al. [17] proposed an automated TUG phase classification algorithm using four machine
learning-based techniques and validated it with 16 Parkinson’s disease patients. Two IMUs were
attached on the lateral side of both shoes to record the acceleration and angular velocity during
performing the TUG test. The results showed that the best average sensitivity was 81.8% using the
SVM technique. Hellmers et al. [32] proposed an IMU-based hierarchical classification model to classify
activities during the TUG test. The first layer distinguished the activity states (static, dynamic, and
transition) and the second layer classified the possible activities of each state. The overall F1-score



Sensors 2020, 20, 6302 5 of 17

results achieved were over 70%. In addition, the best F1-score results achieved 97% for dynamic
activity walking.

3. Methods

3.1. Subjects and the TUG Test Protocol

The experiment recruited 26 patients with severe knee OA (5 males and 21 females; 69.15 ± 6.71
years old; height: 154.65 ± 8.26 cm; weight: 65.50 ± 9.83 kg), consisting of 11 patients with bilateral
TKA planned, and 15 patients with unilateral TKA planned. The TUG test protocol was performed
in four phases for perioperative TKA, namely, preoperative, postoperative, postoperative 2-week
and postoperative 6-week. In each phase, the patient performed the 5- and 10-m TUG tests three
times. Each TUG test was defined as one TUG trial. To perform a complete TUG test, the patient was
instructed to sit for 5 s on a chair, stand up from the chair, walk 5/10 m, turn around a cone on the
ground, walk back to the chair, sit down on the chair and remain sitting for 5 s. The TUG test was
divided into six lower limb subtasks: sit-to-stand, walking-out, turning, walking-in, turning around
and stand-to-sit. An illustration of the complete TUG test is shown in Figure 1. Patients can perform
the TUG test with a walker for safety in the experiment.

To provide the ground truth for the proposed subtask segmentation approach, a camera-based
system utilized two cameras, which were synchronized with inertial sensor nodes, to provide reference
data for manual labeling. The sampling rate of the cameras is 30 Hz. One camera was placed behind the
participant to capture the back view, and the other camera was placed on the left side of the participant
to capture the side view. The researcher labeled the timestamp of ground truth manually based on the
recorded video. The information of subtasks during the TUG test was determined by manual labeling,
which includes the initial and ending points of each subtask.

3.2. The Proposed System

The functional diagram of the proposed subtask segmentation approach is shown in Figure 3. There
are three stages in the proposed system, including data acquisition, ML-based subtask identification
algorithm, and knowledge-based postprocessing. To start with the data acquisition, including the
sensing data sequence and preprocessing steps, six research-grade inertial sensor nodes (OPAL,
APDM, Inc., Portland, OR, USA), each of which contained a triaxial accelerometer, gyroscope, and
magnetometer, were utilized. In this study, only acceleration collected by the triaxial accelerometer
and angular velocity collected by the triaxial gyroscope were acquired. Six sensor nodes were placed
on the chest, lower back, right thigh, left thigh, right shank, and left shank of each subject. The sensor
placement for chest and lower back was around the fourth rib and fifth lumbar vertebra, respectively.
The sensor placement for the thigh and shank was about 15 cm above and 13 cm below the center of the
knee joint, respectively. The sensing data were recorded at a 128-Hz fixed sampling rate and transferred
wirelessly to a laptop for storage. A schematic view of the sensor attachment on the participants and
the wireless transfer of the laptop are shown in Figure 4.

In the preprocessing step, the moving average filter was first adopted to remove random noise,
which arises from various sources, such as unexpected individual movement and muscle vibration
during the TUG test. Then, the resultant acceleration (AT) and resultant angular velocity (GT) were
calculated by Equations (1) and (2), where ax, ay, and az are the accelerations in the x-, y-, and z-axes,
respectively, and ωx, ωy, and ωz are the angular velocities in the x-, y-, and z-axes, respectively.

AT =
√

ax2 + ay2 + az2 (1)

GT =
√
ωx2 +ωy2 +ωz2 (2)



Sensors 2020, 20, 6302 6 of 17Sensors 2020, 20, x FOR PEER REVIEW 6 of 17 

 

 

Figure 3. The functional diagram of the subtask identification system. 

 
Figure 4. Schematic view of the sensor attachment on the participants and the wireless transfer of the 
laptop. 

In the preprocessing step, the moving average filter was first adopted to remove random noise, 
which arises from various sources, such as unexpected individual movement and muscle vibration 
during the TUG test. Then, the resultant acceleration (𝐴 ) and resultant angular velocity (𝐺 ) were 
calculated by Equation (1) and Equation (2), where 𝑎 , 𝑎 , and 𝑎  are the accelerations in the x-, y-, 
and z-axes, respectively, and 𝜔 , 𝜔 , and 𝜔  are the angular velocities in the x-, y-, and z-axes, 
respectively. 𝐴 = 𝑎 + 𝑎 + 𝑎  (1) 

𝐺 = 𝜔 + 𝜔 + 𝜔  (2) 

3.3. ML-Based LLM Identification Algorithm 

The ML-based subtask identification algorithm has three steps, including sliding window, 
feature extraction and identification classifier. First, the sensing data were partitioned into segments 

Figure 3. The functional diagram of the subtask identification system.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 17 

 

 

Figure 3. The functional diagram of the subtask identification system. 

 
Figure 4. Schematic view of the sensor attachment on the participants and the wireless transfer of the 
laptop. 

In the preprocessing step, the moving average filter was first adopted to remove random noise, 
which arises from various sources, such as unexpected individual movement and muscle vibration 
during the TUG test. Then, the resultant acceleration (𝐴 ) and resultant angular velocity (𝐺 ) were 
calculated by Equation (1) and Equation (2), where 𝑎 , 𝑎 , and 𝑎  are the accelerations in the x-, y-, 
and z-axes, respectively, and 𝜔 , 𝜔 , and 𝜔  are the angular velocities in the x-, y-, and z-axes, 
respectively. 𝐴 = 𝑎 + 𝑎 + 𝑎  (1) 

𝐺 = 𝜔 + 𝜔 + 𝜔  (2) 

3.3. ML-Based LLM Identification Algorithm 

The ML-based subtask identification algorithm has three steps, including sliding window, 
feature extraction and identification classifier. First, the sensing data were partitioned into segments 

Figure 4. Schematic view of the sensor attachment on the participants and the wireless transfer of
the laptop.

3.3. ML-Based LLM Identification Algorithm

The ML-based subtask identification algorithm has three steps, including sliding window, feature
extraction and identification classifier. First, the sensing data were partitioned into segments by
different window sizes with a 50% overlap in the sliding window step. Since the elapsed time of each
motion is unbalanced in the TUG test, there may be a tradeoff between the performance and window
size selection. In this study, the elapsed time of sit-to-stand/stand-to-sit and one step in the walking
condition was about one second. Therefore, 96, 128 and 160 samples (0.75, 1, 1.25 s) were adopted
as window sizes. Then, 8 types of time domain statistical features were extracted from the segments,
including the mean, standard deviation, variance, maximum, minimum, range, kurtosis, and skewness.
The extracted features are listed in Table 1. There were a total of 384 features (8 types × 8 axes × 6
sensor nodes) extracted for the machine-learning training classifier.
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Table 1. List of the extracted features.

No. Description

f1– f8 Mean of ax, ay, az, ωx, ωy, ωz, AT, GT
f9– f16 Standard Deviation of ax, ay, az, ωx, ωy, ωz, AT, GT
f17– f24 Variance of ax, ay, az, ωx, ωy, ωz, AT, GT
f25– f32 Maximum of ax, ay, az, ωx, ωy, ωz, AT, GT
f33– f40 Minimum of ax, ay, az, ωx, ωy, ωz, AT, GT
f41– f48 Range of ax, ay, az, ωx, ωy, ωz, AT, GT
f49– f56 Kurtosis of ax, ay, az, ωx, ωy, ωz, AT, GT
f57– f64 Skewness of ax, ay, az, ωx, ωy, ωz, AT, GT

Five machine-learning techniques were adopted as the identification classifier, and their
performances in subtask identification are compared.

1. Support Vector Machine (SVM)

An SVM is a supervised machine-learning technique originally used for binary classification by
constructing the optimal separating hyperplane and margins between two datasets. There are different
types of kernel functions for an SVM classifier, such as linear, polynomial, Gaussian, sigmoid, and
radial basis functions (RBFs). Considering computational complexity, the multi-class SVM classifier
with the linear kernel function is applied for subtask identification.

2. K-Nearest Neighbor (kNN)

KNN is a simple algorithm that stores all training data and classifies testing data based on distance
functions. The parameter k, which is a positive integer, is defined as the number of the nearest
neighbors of the testing data. The class of the testing data is decided by a vote of these k neighbors.
Because k is sensitive to data distribution, it commonly uses a conventional constant limited among 1,
3, 5, 7, and

√
n, where n is the number of training data [33]. In this study, the parameter k was tested in

the range between 1 and 21, and the best results were obtained by a value of 9.

3. Naïve Bayesian (NB)

The NB classifier is a probabilistic model based on the Bayes theorem of probability. This model
considers each feature to contribute independently to the probability of each class, and then the
posterior probability for each class is calculated. The testing data are classified into particular classes
by the maximum posteriori probability.

4. Decision Tree (DT)

A DT classifier is built from the set of rules based on features of the training data. The testing data
follow the rules to fall under one class. Classification and regression trees (CARTs) are implemented to
train subtask identification in this study.

5. Adaptive Boosting (AdaBoost)

Boosting is an ensemble machine-learning algorithm that aims to create a strong classifier by
repeatedly building weak classifiers. AdaBoost combines multiple weak classifiers with a weighted
sum to construct a stronger classifier. The weak classifiers adapted in AdaBoost are DTs. Each training
datum is allotted a weighting to train a weak classifier. The training data misclassified by the previous
weak classifier obtain a higher weighting in the next weak classifier. In contrast, the training data
correctly classified by the previous weak classifier obtain a lower weighting in the next weak classifier.
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3.4. Knowledge-Based Postprocessing

The knowledge-based postprocessing stage includes fragmentation modification and subtask
inference steps, which aim to modify the misclassification results from the ML-based subtask
identification algorithm. An example of a knowledge-based postprocessing result is illustrated
in Figure 5. The fragmentation modification step is utilized to modify the misidentified segments firstly.
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The pseudocode of the fragmentation modification algorithm is delineated in Algorithm 1.
An identified segment sequence is defined as TUG =

{
(subti

∣∣∣i = 1, 2, 3, . . . , N
}
, where subti is

the ith subtask segment, 1 ≤ i ≤ N, and N is the total number of identified segments. The
modified segment sequence is defined as MTUG =

{
(msubti

∣∣∣i = 1, 2, 3, . . . , N
}
, where msubti

is the ith modified subtask segment, 1 ≤ i ≤ N, and N is the total number of identified
segments. Each subtask (subti) and modified subtask (msubti) belong to SSUBT, and SSUBT
is the set of distinct semantic subtasks SSUBT =

((
ssubt j

)∣∣∣∣1 ≤ j ≤ k
)
, where k is the number

of defined semantic subtasks. In this study, seven semantic subtasks are defined—(k = 7)
{“Sititng”, “Sit− to− stand”, “Walking− out”, “Turning”, “Walking− in”, “Turning around”, “Stand
−to− sit”}.

At the beginning of the fragmentation modification process, the first segment and the last two
segments are indicated to sitting, referring to line 1 to line 3 and line 12 to line 14 in the pseudocode
of the fragmentation modification algorithm. This is because the starting and ending subtask in the
TUG test is sitting. Next, the subtasks of one or two continuous segments differing from those of
forward and backward segments are regarded as misidentified segments. The subtask of misclassified
segment(s) would be modified as the subtask of the forward and backward segments with reference
to line 4 to line 9 of the fragmentation modification algorithm. An illustration of the fragmentation
modification is shown in Figure 6a.

Second, the subtask inference step considers the certain temporal order of the subtasks during the
TUG test. The defined temporal order of occurring subtasks is initial sitting, sit-to-stand, walking-out,
turning, walking-in. turning around, stand-to-sit, and ending sitting. This scenario is illustrated by the
state transition diagram in Figure 7. The subtask state transition diagram includes six states: sitting,
sit-to-stand, walking, turning, turning around, and stand-to-sit. The initial posture and ending posture
during the TUG test are defined as subtasks of initial sitting and ending sitting. The temporal order of
walking-in and walking-out subtasks is inferred by the turning subtask. While the temporal order is
confirmed, the subtask segments can be gathered. Finally, the subtasks are identified by the proposed
algorithm. The subtask identification approach classifies subtasks into 8 classes, namely, initial sitting,
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sit-to-stand, walking-out, turning, walking-in, turning around, stand-to-sit, and ending sitting. The
subtask information can be obtained, including the initial boundary, ending boundary, and duration of
subtask. An illustration of the subtask inference is shown in Figure 6b.

Algorithm 1: Fragmentation modification algorithm in the knowledge-based postprocessing stage

Input: An identified segments sequence TUG =
{
(subti

∣∣∣i = 1, 2, 3, . . . , N
}
, The ith subtask segment subti

Output:
A modified and identified segments sequence MTUG =

{
(msubti

∣∣∣i = 1, 2, 3, . . . , N
}
, The ith

modified subtask segment msubti
1: subt1 = ssubt1//ssbt1 is the semantic subtask of sitting.
2: subtN−1 = ssubt1

3: subtN = ssubt1

4: for i from 2 to N − 2 do
5: if subti != subti−1 && subti−1 == subti+1 then
6: subti = subti−1
7: else if subti != subti−1 && subti+1 != subti−1 && subti+2 == subti−1 then
8: subti = subti−1
9: end if
10: msubti = subti
11: end for
12: msubt1 = ssubt1

13: msubtN−1 = ssubt1

14: msubtN = ssubt1

15: return MTUG
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Second, the subtask inference step considers the certain temporal order of the subtasks during 
the TUG test. The defined temporal order of occurring subtasks is initial sitting, sit-to-stand, walking-
out, turning, walking-in. turning around, stand-to-sit, and ending sitting. This scenario is illustrated 
by the state transition diagram in Figure 7. The subtask state transition diagram includes six states: 
sitting, sit-to-stand, walking, turning, turning around, and stand-to-sit. The initial posture and ending 
posture during the TUG test are defined as subtasks of initial sitting and ending sitting. The temporal 
order of walking-in and walking-out subtasks is inferred by the turning subtask. While the temporal 
order is confirmed, the subtask segments can be gathered. Finally, the subtasks are identified by the 
proposed algorithm. The subtask identification approach classifies subtasks into 8 classes, namely, 
initial sitting, sit-to-stand, walking-out, turning, walking-in, turning around, stand-to-sit, and ending 
sitting. The subtask information can be obtained, including the initial boundary, ending boundary, 
and duration of subtask. An illustration of the subtask inference is shown in Figure 6b. 
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Figure 6. The knowledge-based postprocessing: (a) the fragmentation modification and (b) the
motion inference.

3.5. Evaluation Methodology

The p-fold cross validation approach was employed to evaluate the segmentation and identification
performance, where p = 5. The approach randomly divides all collected trials into 5 partitions, 4
partitions as the training set and 1 partition as the testing set, and iterates 5 times until each partition
is used as the testing set. The proposed system performance is analyzed with three evaluation
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metrics, namely, sensitivity, precision, and accuracy. These metrics are computed by Equations (3)–(5),
where true positive, false positive, true negative, and false negative are indicated by TP, FP, TN, and
FN, respectively.

Sensitivity =
TP

TP + FN
(3)

Sensitivity =
TP

TP + FN
(4)

Accuracy =
TP + TN

TP + FP + TN + FN
(5)
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The sensitivity and precision are represented for the evaluation of each subtask segmentation.
However, accuracy in the multi-class classifier is calculated as the average accuracy for evaluation of
the subtask segmentation approach. The definition of the true positive, false positive, true negative and
false negative performance metrics in the continuous data stream is shown in Figure 8, using a 10-m
TUG test as an example. Only the triaxial acceleration and angular velocity of the waist are plotted in
the example. The system output is compared against the ground truth in terms of TN, TP, FP, and FN.Sensors 2020, 20, x FOR PEER REVIEW 11 of 17 
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4. Results

There were 624 trials (26 patients × 6 TUG trials × 4 phases) of collected TUG tests, including 312
TUG trials of 5 m and 312 TUG trials of 10 m. Since the experimental protocol includes four phases
in the perioperative TKA, two methodologies (multi-classifier and single classifier) were utilized to
preliminarily train the subtask identification classifier. In the multi-classifier, each phase trained one
identification classifier independently. In other words, a total of four classifiers were trained for subtask
identification. In the single classifier, one classifier was trained from data of all four phases. The
performances of the multi-classifier and the single classifier are presented in Table 2.

Table 2. The preliminarily investigated results of the performances of multi-classifiers and
single classifiers.

SVM classifier with a 96-sample window size

Multi-classifier (average of four classifiers) Single classifier

Sensitivity (%) 88.17 81.30
Precision (%) 88.79 82.72
Accuracy (%) 89.93 81.27

SVM classifier with a 128-sample window size

Multi-classifier (average of four classifiers) Single classifier

Sensitivity (%) 87.81 82.33
Precision (%) 88.88 83.05
Accuracy (%) 90.53 83.71

SVM classifier with a 160-sample window size

Multi-classifier (average of four classifiers) Single classifier

Sensitivity (%) 87.36 82.56
Precision (%) 88.89 82.88
Accuracy (%) 90.74 84.34

The best overall accuracy of each machine-learning algorithm in the proposed and typical
machine-learning algorithm (without knowledge-based postprocessing) are shown in Figure 9. The
proposed algorithm using the AdaBoost technique with a window size of 128 samples achieved the
best overall accuracy of 92.14%. Compared to the proposed algorithm, the best overall accuracy of the
SVM, kNN, NB, DT and AdaBoost techniques in the typical machine-learning algorithm achieves only
74.33% with a window size of 128 samples, 73.73% with a window size of 128 samples, 61.45% with a
window size of 160 samples, 68.45% with a window size of 160 samples and 67.38% with a window size
of 160 samples, respectively. Generally, the overall performance of the proposed algorithm outperforms
the typical algorithm regardless of the machine-learning technique. The performance results of each
phase in the proposed algorithm with different window sizes are shown in Table 3 in detail.

Table 3. The performance results of each phase in subtask identification system with window sizes of
96, 128, and 160 samples.

Phase

Preoperative Postoperative Postoperative 2-Week Postoperative 6-Week Overall

Window
Size Technique Acc.

(%)
Sen.
(%)

Pre.
(%)

Acc.
(%)

Sen.
(%)

Pre.
(%)

Acc.
(%)

Sen.
(%)

Pre.
(%)

Acc.
(%)

Sen.
(%)

Pre.
(%)

Acc.
(%)

96

SVM 94.04 91.79 92.41 85.33 85.93 85.99 89.70 87.25 87.60 90.66 87.72 89.17 89.93
kNN 91.47 87.25 90.89 80.12 79.46 82.26 87.93 83.74 87.46 89.26 86.62 88.09 87.20
NB 92.48 90.26 90.45 77.62 79.73 77.96 86.86 84.10 84.45 88.23 86.17 85.39 86.30
DT 92.78 90.37 90.91 72.00 78.33 79.45 92.01 88.19 89.73 89.30 87.07 87.07 86.52

AdaBoost 94.29 90.62 93.03 91.78 86.28 88.57 87.43 84.20 84.74 89.82 87.12 87.56 90.83
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Table 3. Cont.

Phase

Preoperative Postoperative Postoperative 2-Week Postoperative 6-Week Overall

Window
Size Technique Acc.

(%)
Sen.
(%)

Pre.
(%)

Acc.
(%)

Sen.
(%)

Pre.
(%)

Acc.
(%)

Sen.
(%)

Pre.
(%)

Acc.
(%)

Sen.
(%)

Pre.
(%)

Acc.
(%)

128

SVM 91.47 86.98 90.98 89.98 88.24 88.19 88.46 83.52 87.80 88.57 85.69 87.05 89.62
kNN 91.47 86.98 90.98 73.42 76.16 78.14 88.46 83.52 87.80 87.85 83.72 86.25 85.30
NB 91.59 89.43 89.48 88.28 83.89 82.78 89.80 85.87 87.44 88.67 86.23 86.02 89.59
DT 92.10 89.24 90.07 74.69 80.09 80.38 91.00 87.12 88.19 89.55 86.33 87.29 86.84

AdaBoost 93.75 91.00 92.29 93.32 87.82 91.34 91.04 86.15 88.67 90.44 87.50 88.67 92.14

160

SVM 92.71 89.29 91.10 89.93 87.83 87.36 90.61 86.45 88.76 89.70 85.88 88.32 90.74
kNN 88.73 82.29 89.54 66.98 69.91 74.88 82.28 75.91 83.01 87.47 84.41 86.62 81.37
NB 90.89 88.23 88.73 89.33 83.91 83.23 90.37 85.82 88.4 89.08 86.27 87.03 89.92
DT 92.21 88.82 90.41 73.56 78.92 78.76 90.13 85.80 87.68 89.16 85.57 86.94 86.27

AdaBoost 92.56 89.18 90.90 92.89 87.26 90.07 91.15 86.20 88.95 89.73 86.20 88.22 91.58
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machine-learning algorithms.

The performances in the preoperative phase are higher than the performances in other phases over
each window size. The highest accuracy in the preoperative, postoperative, postoperative 2-week, and
postoperative 6-week phases occurred using AdaBoost with a window size of 96 samples, AdaBoost
with 128 samples, DT with 96 samples, and SVM with 96 samples, respectively. The highest accuracy in
the window sizes of 96, 128, and 160 samples occurred when using AdaBoost in the preoperative phase
and the postoperative phase. At first glance, the subtask identification approach using the AdaBoost
and SVM techniques outperforms those using kNN, NB and DT techniques. The highest accuracy in
all adopted techniques occurs in the preoperative phase with a window size of 96 samples. Meanwhile,
the performances of each subtask using AdaBoost with a window size of 96 samples (preoperative),
AdaBoost with 128 samples (postoperative), DT with 96 samples (postoperative 2-week), and SVM
with 96 samples (postoperative 6-week) are shown in Table 4. Generally, the sensitivity of walking-out
and walking-in outperforms the sensitivity of other subtasks over the phases. The sensitivity of
sit-to-stand and stand-to-sit subtasks is worse than that of others. Furthermore, the turning around
subtask underperforms in terms of precision compared to others.
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Table 4. The performances of each subtask (highest performances of each phase).

Using an AdaBoost Technique with a Window Size of 96 Samples in the Preoperative Phase

Initial
Sitting

Sit-to-
Stand

Walking-
Out Turning Walking-In Turning

Around
Stand-
to-Sit

Ending
Sitting Overall

Sensitivity (%) 96.20 84.84 97.81 81.89 98.43 89.07 80.84 95.89 90.62
Precision (%) 99.03 90.25 96.20 94.33 94.41 85.67 92.35 92.01 93.03
Accuracy (%) – – – – – – – – 94.29

Using an AdaBoost Technique with a Window Size of 128 Samples in the Postoperative Phase

Sensitivity (%) 95.35 69.38 98.58 83.61 97.59 88.50 73.59 95.92 87.82
Precision (%) 90.30 94.26 95.21 95.19 94.57 84.07 91.51 85.62 91.34
Accuracy (%) – – – – – – – – 93.32

Using a DT Technique with a Window Size of 96 Samples in the Postoperative 2-Week Phase

Sensitivity (%) 93.97 76.07 97.74 87.42 95.63 87.88 80.36 86.41 88.19
Precision (%) 95.13 84.42 94.88 93.37 94.44 73.14 88.33 94.15 89.73
Accuracy (%) – – – – – – – – 92.01

Using an SVM Technique with a Window Size of 96 Samples in the Postoperative 6-Week Phase

Sensitivity (%) 95.65 82.51 95.08 82.52 92.03 82.32 74.73 96.90 87.72
Precision (%) 98.22 89.23 94.80 92.80 90.56 73.44 89.44 84.88 89.17
Accuracy (%) – – – – – – – – 90.66

5. Discussion

In a clinic environment, the information of the TUG test is traditionally obtained through manual
execution by a rater using a stopwatch to measure the total elapsed time or the elapsed time of each
subtask. Manual execution may involve issues of intrarater and inter-rater bias because of the repeating
measurement by identical or different raters. The biases have a great negative effect on measuring
several short-term activities—e.g., sit-to-stand and stand-to-sit. To measure objectively and reduce
manual biases, the main objective of this study is to design a TUG subtask segmentation approach
using machine-learning models and knowledge-based approaches to identify the subtasks during the
TUG test for perioperative TKA. The performance of the typical algorithm in overall accuracy ranges
from 60% to 74% with respect to different techniques and window sizes. Compared to the performance
of the typical algorithm, the best overall accuracy of the proposed algorithm can achieve 92% using
AdaBoost with a window size of 128 samples. Obviously, the proposed approach can effectively tackle
the technical challenges in subtask identification, including variability, fragmentation and ambiguity.

Based on Table 3, the proposed algorithm using SVM and AdaBoost techniques have better overall
accuracy than those using other techniques and the proposed algorithm using kNN underperforms
compared to those using others. Therefore, SVM and AdaBoost techniques are recommended to identify
the subtasks in each phase of perioperative TKA, especially in the postoperative phase. Additionally,
there are sizable differences between the performances using different machine-learning techniques in
the postoperative phase. This is because great subtask variability and individual differences exist in
the postoperative phase, caused by postoperative pain and adaptation period from a new implant after
TKA surgery. The experimental results show that the selection of a machine-learning technique in the
postoperative phase has a great impact on the algorithm performance.

According to Table 4, the sensitivity of walking-out and walking-in presents a better performance
than that of the other subtasks in each phase, and that of sit-to-stand and stand-to-sit generally
underperform compared to the other subtasks. This is because the elapsed time of each subtask is
unbalanced in the TUG test, which results in a disproportionate ratio of identification error in each
subtask. In the situation of identical misidentified data points, a subtask with a shorter elapsed time
has greater influence on the identification error than one with a longer elapsed time. Moreover, the
indistinct boundary between subtasks often confuses the proposed segmentation approach. The patient
may execute the next subtask while he/she is still performing the current subtask. For example, a
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patient may start walking ahead before he/she finishes sit-to-stand, or a patient may start stand-to-sit
while turning around.

The window size of the sliding window is a common issue in activity recognition and motion
identification. A large window size may blur the pattern of target motion due to the inclusion of
patterns of other motions. However, a small window size cannot cover the entire pattern of target
motion, leading to a training error. The use of a suitable window size has the potential to increase the
performance. Since the elapsed time of each subtask is unbalanced in the TUG test, there may be a
tradeoff between the performance and window size selection. This study adopted 96, 128 and 160
samples (0.75, 1 and 1.25 s) as the window size. The average accuracy of different adopted window
sizes over each phase is shown in Figure 10. Generally, the most suitable window size is 96 samples
for the preoperative and postoperative 6-week phases and 128 samples for the postoperative and
postoperative 2-week phases. Nevertheless, the differences between the average accuracy using
different window sizes are within 3%. By the proposed approach, all adopted window sizes can be
utilized as a suitable window size.
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The number of sensors implicating collected data volume may impact on recognition ability
and computational complexity. Based on the previous works [34–36], the performance of activity
recognition using more sensors is higher than that using only one sensor. The reason is that more
movement patterns can be embodied in the recognition models while using more sensors. To involve
more movement patterns from various body parts, six sensors were utilized to collect the movement
data in this study. In the future, the segmentation performance using a different number of sensors
will be evaluated and the best combination of sensor placement will be investigated.

In this study, the perioperative TKA was divided into four phases to collect sensing data for the
TUG test: preoperative, postoperative, postoperative 2-week and postoperative 6-week. Therefore,
four classifiers were trained for four phases because of differences in the recovery progress between
phases. In addition, the patients were allowed to perform the TUG tests with a walker for safety in
the experiment. The subtask pattern of sensing data from the patient performing the TUG test with
a walker is different from that without a walker. In the experiment, all patients performed the TUG
test without a walker in the preoperative phase and with a walker in the postoperative phase. In the
postoperative 2-week and postoperative 6-week phases, the walker is an optional auxiliary appliance
when patients perform the TUG test. Therefore, we plan to train two classifiers to separate the data of
patients performing the TUG test with and without a walker in the future.

6. Conclusions

The outcome measurement and quantitative assessment are important processes for perioperative
TKA. The TUG test has been realized and used to validate tools to measure basic mobility and
balance capabilities. The outcome of subtasks can reveal important clinical information related
to subjects. This study aims to design a subtask segmentation approach using machine-learning
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models and knowledge-based postprocessing during the TUG test for perioperative TKA. A series of
signal-processing mechanism and pattern recognition approaches involving machine learning-based
multi-classifiers, fragmentation modification and subtask inference are designed and developed to
tackle technical challenges—i.e., motion variability, fragmentation and ambiguity. The reliability of
the proposed approach was validated with 26 TKA patients. The experimental results reveal that the
accuracy of the proposed subtask segmentation approach using an AdaBoost technique with a window
size of 128 samples for the TUG test is 92%, which is an improvement of at least 15% compared to that
of the typical subtask segmentation approach using machine-learning models only.
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