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Introduction
Multiple sclerosis (MS) is a chronic disease of the 
central nervous system, without any known cure. As 
many disease-modifying therapies (DMTs) are cur-
rently available for the management of MS, there is 
a growing need to evaluate the comparative effec-
tiveness and safety of those DMTs. Real-world 
data (RWD) sources, such as disease registries (e.g. 
MSBase and NeuroTransData), electronic medical 
records, and administrative claims databases, have 
increasingly been recognized as an essential part of 
evidence-based research in the MS literature, partly 
due to their ability to provide larger cohorts and 
longer follow-up and to capture various factors related 
to disease progression in clinical practice settings.1,2 
Specific opportunities and challenges to each type of 
data source have previously been described in the 
context of MS,3 and thorough reports of currently 

available MS registries, covering over 500,000 MS 
patients, have recently been published.2,4

RWD offer great opportunities for comparative effec-
tiveness research but are associated with specific chal-
lenges. In particular, confounding occurs when patient 
characteristics at study entry (i.e. baseline) affect both 
the probability of receiving the treatment and the out-
come. As a result, differences in the outcome between 
treated and control patients may be partially attributa-
ble to differences in the distribution of their confound-
ers rather than to the treatment itself. Propensity score 
(PS) methods have rapidly gained popularity as a 
confounding adjustment approach among clinical 
researchers in MS (Figure 1), with matching or weight-
ing of study participants being the most commonly 
used methods in the field.5 In parallel, PS approaches 
have undergone significant methodological advances, 
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making it difficult for practitioners and end-users to 
keep up with the fast pace of new information.

To provide reliable real-world evidence, it is critical 
that PS approaches are correctly implemented and 
adequately reported.6 Unfortunately, the quality of 
reporting and implementation of PS methods in MS 
studies is often suboptimal.5 Improvements in the 
application and reporting of propensity score analyses 
are urgently needed to enhance the reproducibility 
and generalizability of research findings. This article, 
targeted to MS clinicians and researchers, therefore 
aims to offer exhaustive practical guidance on the 
implementation of PS matching and weighting for 
comparing the relative effectiveness of two treat-
ments. A comprehensive review of PS methods is 
beyond the scope of this paper and has already been 
provided in the broader context of neurology.7

Basic principles of propensity scores
The PS is the patient’s probability of receiving the 
treatment versus control (e.g. standard of care or 
active comparator) given a sufficient set of individ-
ual characteristics at baseline (before or at the time 
of cohort entry, before treatment initiation). In ran-
domized controlled trials, the true PS is known by 
design. In contrast, the PS is unknown in RWD 
because treatment selection is not randomized and 
may depend on several factors such as characteris-
tics of the patient and preferences of their treating 
physician. Therefore, it should be estimated from 
the observed data of the patient and their clinical 
environment.

A PS analysis leverages the balancing property of the 
PS to control for confounding in RWD.8 The balanc-
ing property means that the distribution of measured 
covariates between the treatment and control group is 
expected to be similar for neighboring PS values. 
For example, we can choose patients from the treat-
ment and control groups with similar estimated PS 
values (say, estimated PS values close to 0.75). 
These patients are expected to have similar values 
for baseline covariates, and thus may be considered 
comparable. Then, on average, differences in out-
comes between treated and control patients can only 
be attributed to differences in treatment, provided 
that all confounders have been measured and used to 
estimate the PS. While randomization in clinical tri-
als ensures that, on average, patients in the treatment 
and control groups are comparable with respect to 
both measured and unmeasured confounders,9 the 
estimated PS in RWD ensures comparability with 
respect to measured confounders only.

Methods that use the PS to control for confounding, 
like any approach that attempts to estimate causal 
effects, must meet four conditions to allow estimation 
of the causal effect: no unmeasured confounding, 
positivity, consistency, and no interference.8,10 These 
conditions are explained and illustrated in Table 1. In 
MS, the positivity condition, which requires every 
patient to be eligible to receive either treatments 
given their baseline characteristics, can easily be vio-
lated. This situation typically arises when DMTs are 
marketed at different dates or when they have differ-
ent contraindications. For example, imagine a study 
comparing natalizulimab (marketed in 2006) to 

Figure 1. Number of publications by year identified on PubMed with the search query (multiple sclerosis) and 
(propensity score).
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ocrelizumab (marketed in 2017) in the United States 
between 2010 and 2020. Patients who started natali-
zumab prior to 2017 were not eligible to receive ocre-
lizumab. Consequently, a PS analysis will violate the 
positivity condition because calendar year affects MS 
patient care, prognosis, and outcomes, thus acting as a 
confounder. Restricting the study period to patients 
who started either treatment when both were available 
on the market may resolve this structural positivity 
violation.

Recommendations for the implementation of 
propensity score matching and weighting
In the next sections, we give a step-by-step procedure 
to apply PS matching and weighting, starting from the 
selection of covariates to include in the PS model and 
ending with specific considerations for sensitivity 
analyses. Based on evidence gathered from the pub-
lished biostatistics and epidemiology literature, we 
summarize recommendations on how best to conduct 
each step, where possible. Guidelines for reporting a 

PS analysis are summarized in Table 2, and examples 
of good practice in a few, targeted studies in other dis-
ease areas are described in Supplemental Table 1. We 
provide example R code to reproduce the main steps 
of the analysis in the Supplemental Material, section 2.

Covariate selection
Covariates included in a PS model must be selected 
to restore balance in the covariate distribution of 
treated and control patients. Enough covariates must 
be included to achieve this goal, and thus to control 
for confounding. The general consensus on covariate 
selection for the PS is to rely on expert knowledge in 
relevant disease areas to better capture the relation-
ship among covariates, treatment, and outcome (see 
Supplemental Table 2).11 Covariates that are con-
founders or risk factors for the outcome should be 
included in the PS model.12 Inclusion of covariates 
that are only predictors of treatment but not associ-
ated with the outcome should be avoided as their 

Table 1. A brief explanation of conditions required for the use of propensity score methods.

Condition Description Example

No unmeasured 
confounding

All confounders must be measured in the 
data source. If two confounders are strongly 
correlated, it is sufficient to measure only one 
of them (exchangeability). This condition 
cannot be verified in practice, but sensitivity 
analyses can quantify the impact of violations

The number of gadolinium-enhancing lesions 
may be a confounder in the treatment–outcome 
relationship of interest, yet the data source 
for the study (e.g. a claims database) does 
not capture it. Then, the condition of no 
unmeasured confounding is violated

Positivity Each patient should a priori be eligible for 
both treatments. Positivity violations may be 
deterministic (e.g. the patient with comorbidity 
is not eligible to receive the treatment) or 
random (e.g. the patient is eligible, but the 
sample was too small to capture that aspect). 
This condition may be verified empirically

In a study comparing the effectiveness of two 
DMTs, the study period should be restricted to 
the time period when both drugs were available 
to patients for positivity to be satisfied

Consistency Also known as “well-defined treatment” or “no 
multiple versions of treatment.” This condition 
requires that there be only one version of 
the treatment. When multiple versions of the 
treatment exist (e.g. different doses), disease 
area expert consensus should inform whether 
considering the different versions as the same 
treatment is warranted

Patients receiving either a low- or high-dose 
interferon beta-1 may be grouped into one 
treatment arm. For consistency to hold, the 
effect of low- or high-dose interferon beta-1 on 
the outcome should be the same

No interference This condition requires that a patient’s 
outcome is not influenced by other patients’ 
treatment assignments. For example, this 
condition is violated when the outcome is an 
infectious disease, where treating an individual 
may protect others from infection. In MS, this 
condition likely holds, although available data 
rarely allow its plausibility to be assessed

If a participant is prescribed a DMT, and his 
spouse is not (while both are in a study), but 
they share the medication, then this condition 
is violated

DMT: disease-modifying therapy; MS: multiple sclerosis; PS: propensity score; RWD: real-world data.
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inclusion tends to increase the variance of the treat-
ment effect estimates.12,13 Importantly, covariates 
included in the PS model must be captured at base-
line; adjusting for covariates which are measured 
after baseline is strongly discouraged because such 
covariates may be affected by the treatment.14

In MS, a recent review found that an average of eight 
covariates (range: 3–16) were selected to construct 
the PS, with the following baseline covariates most 
frequently used: age, sex, disease duration, number of 
relapses in the 12 months prior to baseline, Expanded 
Disability Status Scale (EDSS) score at baseline, and 

Table 2. Summary of recommendations on the reporting of propensity score methods in multiple sclerosis research.

Manuscript section Proposed items to report

Abstract 1. Indicate target estimand (e.g. ATE, ATT)
2.  Indicate PS approach used and provide brief summary specific to the approach (e.g. provide matching ratio and 

sampling method used if using PS matching)

Introduction 1. State research question
2. Indicate choice of the target population and target estimand in relation to the research question

Methods Covariate selection for PS model
1. Indicate method used for selecting covariates (e.g. empirical knowledge)
2.  List covariates (and proxy variables) used for PS estimation and how they were handled in the analysis (e.g. 

categories, interactions, polynomial terms, splines)
PS estimation
3. Indicate method used for PS estimation (e.g. logistic regression)
4.  Indicate how missing data and sparsity was addressed in PS estimation (if relevant)
PS method used
5. State type of PS method used (matching, weighting)
6.  If PS matching: provide details of matching algorithm such as type of matching (e.g. nearest neighbor), 

matching ratio, caliper width, sampling with/without replacement, statistical method for the analysis of 
matched data

7.  If PS weighting: Specify the type of weights (e.g. stabilized) and whether weights were applied throughout or 
as subgroup-specific weights (if heterogeneity present), statistical method used for variance estimation, method 
used for truncation (if applicable)

Balance assessment and PS diagnostics
8. Indicate balance measure and threshold (e.g. absolute SMD, <0.1) and overlap assessment methods
9.  For PS weighting: Report distribution of unstabilized and stabilized weights (mean, max, min, range, if 

applicable) and whether weights were truncated (if applicable)
Estimation of treatment effect and standard errors
10.  Report model used to estimate treatment effect and the standard error (e.g. bootstrapping, cluster-robust 

standard error)
11. List covariates included in outcome model (if applicable)
Other
12. Indicate how PS conditions were verified and, when possible, if they were met
13. Indicate how adherence was handled
14. Describe additional analyses (subgroup, sensitivity)
15. Report software packages used

Results 1. Report sample size at each stage (eligible, included, analyzed)
2.  For each treatment group, provide number of patients, distribution of baseline characteristics (including 

missing data), and SMDs for all covariates before and after matching/weighting
3. Report any covariate imbalances and whether additional adjustments were made
4. Provide numerical and/or graphical representation of PS distribution (e.g. histogram)
5. Report crude and the adjusted point estimate of the treatment effect and associated measure of variability

Discussion 1.  Interpret effect estimate in relation with research question, choice of PS approach, target population and 
estimand

2. Explain how potential unmeasured confounding was addressed
3. Provide a justification of PS conditions in the current research context

Appendix 1. Provide results from additional analyses (subgroup, interactions or effect modifications, sensitivity analyses).
2. Provide more details of PS approach if needed (e.g. diagnostics, HdPS algorithm)

ATE: average treatment effect; ATT: average treatment effect in the treated; HdPS: high-dimensional propensity score; PS: propensity score;  
SMD: standardized mean difference.
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previous treatments.5 However, only 21% of the 
reviewed studies reported how the list of covariates 
was determined.5

A practical issue with covariate selection for the PS is 
that relevant confounders are sometimes unavailable 
in the data source, which violates the condition of no 
unmeasured confounding. We provide examples and 
discuss mitigation strategies in the Supplemental 
Material, section 2.

Data-driven covariate selection approaches, such 
as statistical tests or automated machine learning 
approaches (e.g. forward or backward selection, 
LASSO), are often used in the medical literature. 
Caution is advised when using these methods because 
some are designed to select covariates that optimize 
the prediction of treatment assignment, which may 
lead to the exclusion of important covariates (e.g. risk 
factors), threaten the positivity condition, and lead to 
poor covariate overlap (see section “Assessment of 
overlap and positivity”).12,15

Estimation of the propensity score
Once a set of covariates is selected, different mode-
ling approaches can be used to arrive at the final PS 
model, with the overarching goal of achieving covari-
ate balance after PS matching or weighting (see sec-
tion “Assessment of balance”). Logistic regression is 
the most popular approach among researchers in MS.5 
Kainz et al.16 recommend an iterative procedure to 
guide the construction of the PS model. First, all 
selected covariates should be included as main effects 
in the regression model, along with biologically plau-
sible nonlinear (e.g. polynomial or splines) and inter-
action terms. Second, if balance is not achieved for a 
given covariate based on the initial model, consider 
adding nonlinear or interaction terms for that covari-
ate. Finally, repeat the first and second steps until the 
balance is achieved on all covariates, if possible (see 
section “Treatment effect estimation and interpreta-
tion” for recommendations when the balance is not 
achieved). The final model should be reported clearly, 
with all interaction and non-linear terms detailed, and 
whether and how covariates were transformed. Such 
details were seldom explicitly reported in MS 
studies.5

Logistic regression requires the PS model to be cor-
rectly specified (i.e. the appropriate covariate trans-
formations, nonlinear terms, and interaction terms 
are included) for the estimated PS to possess the bal-
ancing property.8 In practice, this requirement is 
often unrealistic. Alternatively, flexible modeling 

approaches such as machine learning methods and 
splines remain agnostic to the specification of the PS 
model and instead focus on finding the most accurate 
predictions for the PS.17 However, such methods may 
deteriorate covariate balance and overlap if these 
properties are not considered during the estimation of 
the PS model.18 The use of flexible modeling meth-
ods to estimate the PS in MS remains limited; none of 
the 39 papers included in a recent review on the use 
of PS methods in MS reported using such methods.5

Goodness-of-fit tests (“how well the model describes 
the data”) such as the Hosmer–Lemeshow test statis-
tic and model discrimination measures (“how well the 
model differentiates between patients with or without 
the outcome”) such as the c-statistic should not be 
used to guide variable selection, evaluate whether the 
PS model has been correctly specified, or detect 
unmeasured confounding.19–21 These measures assess 
the prediction accuracy and model fit of the PS model 
while the goal of the PS is to achieve covariate bal-
ance. Hence, the adequacy of the fitted PS model 
should be evaluated accordingly with balance assess-
ment metrics (see section “Assessment of overlap and 
positivity”).

Assessment of overlap and positivity
PS overlap refers to the range of estimated PSs cov-
ered by both treatment groups. High overlap is desir-
able because it indicates that treated and control 
patients are more comparable, thus warranting a 
comparison between the two treatments with a PS 
analysis. PS overlap is assessed by inspecting the 
distributions of the estimated PSs between the 
treated and control groups with visual (e.g. side-by-
side boxplots and mirrored histograms) and numeri-
cal tools (summary statistics of the estimated PS by 
treatment group).20,22 An example of mirrored histo-
grams is shown in Figure 2 using a simulated data 
set. Trimming (i.e. excluding patients in) the regions 
of non-overlap can be performed. However, if a 
large portion of the original sample is removed after 
trimming, the study population might change and, 
as a consequence, differ from the original target 
population.23 This might also suggest an insufficient 
overlap between the two treatments, which can be a 
sign that the two treatments are used in different 
populations and that the comparative effectiveness 
question is not relevant.24

The positivity condition can be examined empirically 
with the estimated PSs and the visual and numerical 
tools described above. Poor overlap or estimated PSs 
too close to 0 or 1 both indicate a potential positivity 
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violation, suggesting that some patients would not 
have been eligible to receive the alternative treatment. 
Additional verification steps should be taken, for 
example, by inspecting the covariates of patients with 
extreme estimated PSs or in the non-overlapping 
region(s) to understand which factors led to such find-
ings. Covariates can also be tabulated by the treatment 
group to identify random positivity violations.25

Assessment of balance
Standardized mean differences (SMDs) are the most 
popular numerical summaries of covariate balance in 
MS.5 They are the preferred measure to compare pro-
portions or means of a covariate between treatment 
groups because they are not influenced by measure-
ment scale or sample size. Performing numerical and 
visual checks with SMDs before and after matching, 
or in the unweighted and weighted samples in the 
case of PS weighting, is generally recommended; 
Figure 3 shows an example of a Love plot, which 
provides a concise prematching and postmatching (or 
weighting) balance summary for all covariates.26 A 
threshold should be defined a priori to classify a 
covariate as adequately balanced. Although there is 

no universally accepted threshold, the value of 0.1 is 
often used in practice, where an SMD (in absolute 
value) below 0.1 indicates sufficient balance on the 
covariate.20 To some extent, the threshold for accept-
able balance depends on the prognostic importance 
of the confounders; less stringent thresholds may be 
appropriate for covariates weakly associated with 
the outcome while more stringent thresholds may 
be used for important ones.22 Balance should also 
be assessed for the entire distribution of the covari-
ate and not merely for means or proportions (see 
Supplemental Material, section 3). MS researchers 
should employ a range of complementary visual and 
numerical diagnostics as opposed to relying on a 
single one.20,27

Assessment of balance should not be conducted with 
statistical tests (e.g. t-test, McNemar tests, and 
Wilcoxon rank test) because these are affected by 
sample size. For example, nonsignificant differences 
between treatment groups after matching may be 
due only to a reduced sample size after discarding 
unmatched patients. More fundamentally, statistical 
tests make inference on balance at the population 
level, which is inappropriate because a balance must 
rather be achieved in the sample.14,28

Figure 2. Mirrored histograms showing the distributions of the estimated propensity scores by hypothetical treatment 
groups (DMT A vs DMT B). The distributions show good overlap. The data presented in this figure are based on a 
simulated data set.
DMT: disease-modifying therapy.
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Researchers should check the balance for all covari-
ates, including those not included in the PS model.22 
If imbalances are observed in some of the covariates 
that were not initially selected to estimate the PS, 
researchers should reassess whether they are impor-
tant covariates and, if so, include them in the PS 
model. If imbalances remain despite efforts to improve 
the PS model through the iterative model building 
procedure, strategies can be adopted at the treatment 
effect estimation step (see section “Treatment effect 
estimation and interpretation”). However, this might 
also be a sign that the data are not suitable to answer 
the comparative effectiveness research question.22

Implementation of matching
PS matching involves forming matched sets of treated 
and control patients with a similar value of the esti-
mated PS. The intent is to mimic treatment randomi-
zation, to allow estimation of the treatment effect by 
direct comparison of outcomes within matched sets. 
The implementation of matching implies choosing an 
appropriate algorithm to form the matched sets (see 
Austin29 for a description of matching algorithms). 
This entails decisions on several factors: what is 
the target population, how to define the closeness of 

matched patients, whether matching should be per-
formed with or without replacement, and how many 
control patients should be matched to each treated 
patient. To some extent, the choices depend on the 
characteristics of the available data.

The choice of the matching algorithm must be aligned 
with the target estimand (Table 3).30 This is crucial 
because treatment effect estimates may generalize to 
different target populations and thus the target esti-
mands will differ, especially if the distribution of the 
PS and covariates differ between the two treatment 
groups.31 Most applications of matching match con-
trol patients to treated patients and thus estimate 
the average treatment effect in the treated (ATT). If 
instead, treated patients are matched to control 
patients, the target estimand becomes the average 
treatment effect in the controls (ATC). Full matching 
successively matches controls to treated patients, and 
vice versa, thus targeting the average treatment effect 
(ATE).

Matching patients requires a choice of a metric to 
quantify the similarity of patients within a matched 
set. Austin32 recommends matching based on the dif-
ference between the estimated PSs in the treated and 
control patients on the logit scale up to a fixed distance 

Figure 3. Love plot with absolute standardized mean differences between two hypothetical treatment groups  
(DMT A vs DMT B) for a subset of covariates before and after matching. The vertical dotted line represents the threshold 
of 0.1 under which balance is considered acceptable. The data presented in this figure are based on a simulated data set.
DMT: disease-modifying therapy, EDSS: Expanded Disability Status Scale, GdE: gadolinium-enhancing, MSFC: multiple sclerosis 
functional composite.
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(i.e. caliper). The use of a caliper is encouraged to 
ensure better comparability between treatment groups 
in the matched sample. Smaller calipers will result in 
more homogeneous matched sets (reduced bias) but 
may also reduce the number of matched sets (increased 
variance).33 Although there is no universally accepted 
caliper width, Austin32 recommends using 0.2 stand-
ard deviation of the logit of the estimated PSs.

Matching without replacement is most commonly 
used in the MS literature.5 In the context of matching 
controls to treated patients, matching with replace-
ment can decrease bias because controls who are sim-
ilar to more than one treated patient can be used 
multiple times.22,28 It is especially helpful in situations 
when there are more treated patients than controls,28 
but it affects the estimation of the standard error of 
the treatment effect (see section “Estimation of stand-
ard error”). When matching with replacement, the 

number of times each control is used as a match 
should be inspected to ensure that the treatment effect 
estimate is not based on only a small number of 
controls.28 When there are at least twice as many con-
trol patients as treated patients, Austin29 discourages 
matching with replacement because it results in treat-
ment effect estimates with similar bias compared to 
matching without replacement, but with increased 
variability.

In MS, 1:1 (treated:control) matching is most com-
monly implemented.5 Alternatives, such as fixed or 
variable 1:k matching which respectively finds k or 
up to k control matches for each treated patient, have 
been studied in limited settings. In the context of 
fixed 1:k matching without replacement, Austin34 
found that increasing k increases the bias in the treat-
ment effect estimator while decreasing its variance 
and recommended matching with a fixed ratio of 1:1 

Table 3. Brief explanation of most common target of inferences (estimands).

Estimand Description Example clinical question Example

Average treatment 
effect (ATE)

Treatment effect in the 
entire population, that is, 
in a population of patients 
with baseline characteristics 
similar to those of patients 
who received either the 
treatment or the control.

“How would the outcome 
have differed if the entire 
population had been 
treated or if instead the 
entire population had 
received the control 
treatment?”

A study compares drug A 
(the treatment) to drug B 
(the control) in adults, where 
patients who receive drug A 
are, on average, older than 
those receiving drug B. The 
ATE estimates the effect 
of drug A vs drug B in a 
population of adult patients of 
any age.

Average treatment 
effect in the treated 
(ATT)

Treatment effect in the 
patient population who 
actually received the 
treatment, that is, in a 
population of patients with 
baseline characteristics 
similar to those of patients 
who received the treatment.

“How would the outcome 
in the treated patients have 
differed if those patients 
had instead received the 
control treatment?”

In the same study, the ATT 
estimates the effect of drug 
A vs drug B in a population 
of patients similar to those 
who received drug A (the 
treatment), so older patients.

Average treatment 
effect in the control 
(ATC)

Treatment effect in the 
patient population who 
received the control, that is, 
in a population of patients 
with baseline characteristics 
similar to those of patients 
who received the control.

“How would the outcome 
in the control patients have 
differed if those patients 
had instead received the 
treatment?”

In the same study, the ATC 
estimates the effect of drug A 
vs drug B in a population of 
patients similar to those who 
received drug B (the control), 
so younger patients.

Average treatment 
effect in the 
overlap population 
(ATO)

Treatment effect in 
the patient population 
in equipoise between 
treatments, that is, in a 
population of patients with 
baseline characteristics 
which could appear with high 
probability in either treatment 
group

“How would the outcome 
have differed if patients 
in equipoise between 
treatments had been 
treated or if instead these 
patients had not been 
treated?”

In the same study, the ATO 
estimates the effect of drug A 
vs drug B in a population of 
patients with characteristics 
likely to appear in both 
treatment groups, so middle-
aged patients.
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or 1:2. Rassen et al.35 found that variable ratio match-
ing without replacement can decrease the variance of 
the treatment effect estimates without substantially 
increasing bias. However, they focused on continu-
ous outcomes in situations where the number of con-
trols is greater than the number of treated patients. 
Wang et al.36 instead argued that, in the context of 
binary outcomes, the modest reduction in variability 
from variable ratio matching should be weighed 
against the practical advantages and transparency of 
1:1 matching. In particular, variable-ratio matching 
complicates the display of baseline characteristics 
and balance assessments in the matched sample when 
matched sets have different numbers of patients.35,37

Regardless of the choice of matching algorithm, the 
matched sample should be described in terms of sam-
ple size (overall and by treatment group), percent 
reduction in sample size from the original sample 
(overall and by treatment group), number of matched 
sets formed, and number of patients in each matched 
set (when using 1:k or variable ratio matching). 
Baseline characteristics in the matched sample should 
be displayed in a table along with the characteristics 
of the sample prior to matching. This is because the 
characteristics of the target population may have 
changed after implementing matching if any patients 
(for the ATE) or treated/control patients (for the ATT/
ATC) were discarded due to an inability to find suita-
ble matches. Visual tools can also help the reader 
appreciate this change.23

Implementation of weighting
PS weighting involves estimating weights based on 
the PS for each patient. The intent of PS weighting is 
to create an “artificial” population in which confound-
ing is removed and outcomes can be directly com-
pared. Careful consideration must be given to the 
choice of weights to reflect the targeted estimand (see 
Table 3).30 The most common weights, which are 
described in Desai and Franklin,24 include inverse 
probability of treatment weights, targeting either 
the ATE or ATT depending on their specification. 
Alternatively, the overlap weights could be used to 
target a population of high clinical interest, that is, 
individuals for whom the treatment choice is 
ambiguous.38

Extreme estimated PSs (e.g. <0.05 or >0.95) can 
result in a large or small inverse probability of treat-
ment weights and thereby distort the representative-
ness of patients with very high probability of receiving 
a given treatment.24 This can increase the variability of 
the treatment effect estimate.39 Stabilized weights can 

be used as a mitigation strategy (see appendices in pre-
vious studies39,40). Truncation (i.e. setting the extreme 
estimated PSs to prespecified threshold values) is also 
used to address extreme weights, although this will 
reduce the variance of the treatment effect estimator at 
the cost of potentially increasing its bias.24 If large 
weights are an issue, the general recommendation is to 
choose a more extreme threshold for truncation (e.g. 
choosing the first percentile of the estimated weights 
rather than the fifth percentile).24 Alternatively, the 
overlap weights are less sensitive to extreme weights.38 
We note that overlap weighting is a recent technique 
and that the study of its statistical properties is a topic 
of active research.

Treatment effect estimation and interpretation
In the matched or weighted sample, the treatment 
effect can be estimated by direct comparison of the 
outcomes if balance was achieved on all observed 
covariates. The treatment effect can then be inter-
preted at the level of the target population as described 
in Table 3; that is, it has a marginal interpretation.

If some covariates remained unbalanced despite fol-
lowing the iterative procedure to model the PS, a 
common strategy to deal with the residual imbalance 
is to estimate the treatment effect by fitting a so-
called outcome model, a regression model that fur-
ther adjusts for some covariates. Ho et al.22 suggest 
including all or a subset of the covariates used to fit 
the PS model in the outcome model, while Nguyen 
et al.41 propose including only the unbalanced covari-
ates, a procedure known as double-adjustment. 
Shinozaki and Nojima42 advise against adjusting for 
covariates not included in the PS model because this 
might reduce the covariate balance achieved by the 
PS adjustment and consequently lead to bias in the 
estimated treatment effect. A direct consequence of 
covariate adjustment in the outcome model is that the 
estimated treatment effect (partially) depends on the 
distribution of patient-level characteristics and can 
therefore no longer be interpreted at the level of the 
target population.43 In a recent review, 9 of 28 MS 
studies that used PS matching for the comparative 
effectiveness of two treatments reported imbalances 
after matching, yet only one study took specific 
actions to address the imbalances (i.e. adjusting for 
the imbalanced covariates in the outcome model for 
the treatment effect).5

Estimation of standard error
Estimation of the standard error for the estimated 
treatment effect after PS matching or weighting 
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requires special considerations. Ignoring these con-
siderations may lead to biased standard error esti-
mates, ultimately exposing the study to potentially 
erroneous conclusions.

For PS matching, the variability of the estimated 
treatment effect is affected by the correlation between 
outcomes of patients in a matched set because patients 
within a matched set are more likely to be similar 
compared to two unmatched patients.44 When match-
ing without replacement, this correlation can be 
accounted for with a cluster-robust standard error 
estimator which treats the matched sets as clusters. 
Such standard errors can be obtained from general-
ized estimating equations or generalized linear mixed 
models, or with analytic formulas (see Greifer45 for 
implementations in R). Standard errors from the 
matched bootstrap, which resamples matched sets 
instead of resampling patients from the full sample, 
also perform adequately in some settings.46,47 When 
matching with replacement, the standard error estima-
tion must account for an additional source of correla-
tion introduced into the data because control patients 
may appear more than once in the matched sample. 
Standard error estimation in this context remains an 
active area of research; a few cluster-robust standard 
error estimators which also account for the duplica-
tion of controls in the matched sample have been 
evaluated in different contexts, however, without any 
proving consistently superior.48,49 Standard errors 
based on the bootstrap can also be considered because 
they appear to perform well in practice.48,50 While 
Abadie and Imbens51 showed that the standard boot-
strap is not generally valid for matching with replace-
ment (i.e. may not produce asymptotically correct 
standard errors), their findings were limited to the 
simple context of matching on a single covariate. 
Others have found that this theoretical result has little 
practical implications when matching on the esti-
mated PS,50 warranting the use of the standard boot-
strap with caution. The most effective implementation 
of bootstrapping (e.g. whether to resample patients in 
the original sample or matched pairs in the matched 
sample) in any particular context remains an open 
question.

For PS weighting, standard errors are affected by the 
fact that weights “duplicate” some patients, thus 
introducing correlation in the weighted sample akin to 
the correlation introduced by duplicated controls in 
matching with replacement. Moreover, the standard 
errors must account for the fact that the weights are 
estimated instead of known, fixed quantities. Robust 

(often called “sandwich”) standard error estimators 
can be used in this context,52–54 with several imple-
mentations available in R.55–57 However, a recent 
study found that robust standard error estimators may 
be inappropriate when used with inverse probability 
of treatment weights targeting the ATT, in which case 
estimators based on stacked estimating equations 
should be preferred.54,58 The bootstrap provides an 
alternative to estimate standard errors, although it is 
more computationally intensive.50,59

Role of sensitivity analyses
A PS analysis depends on several key conditions, 
some of which are difficult or even impossible to 
evaluate in practice. For this reason, it is recom-
mended to explore whether treatment effect estimates 
are sensitive to changes in decisions made in the 
course of the PS analysis via sensitivity analyses.

Bias due to unmeasured confounding remains the 
main concern after a PS analysis. However, in MS, a 
recent review found that only 34% of studies using PS 
methods reported a sensitivity analysis for unmeas-
ured confounding.5 Advanced sensitivity analysis 
methods for unmeasured confounding quantify how 
the estimated treatment effect may be affected by an 
unmeasured confounder under some assumptions. 
Some methods require explicit specification of the 
nature of the unmeasured confounding. For example, 
the method of Lin et al.60 quantifies how the observed 
treatment effect and confidence interval change under 
different assumptions about the type and distribution 
of an unmeasured confounder and about its antici-
pated associations with the outcome and treatment. 
Rosenbaum bounds are another example of such a 
method.61 Other sensitivity analysis methods avoid 
making any assumption about the nature of the 
unmeasured confounding. For example, the E value is 
a continuous measure that quantifies how strong an 
unmeasured confounder would have to be to explain 
away the observed treatment effect.62 E values can 
be easily applied to several common outcomes in 
MS, such as binary, count, and survival outcomes. 
However, Ioannidis et al.63 warn that E values are 
prone to misinterpretation and misuse if they are 
blindly reported without understanding the nature of 
the unmeasured confounding in the specific context 
of the study.

Other sensitivity analyses (high-dimensional PS and 
choices of different thresholds and methods) are 
described in the Supplemental Material, section 4.
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Discussion and conclusion
Our motivation for providing this set of recommenda-
tions arose from a recent review, which highlighted 
several methodological and practical issues often 
overlooked or not adequately reported in MS studies 
using PS methods.5 To address these gaps, we aimed 
to provide step-by-step guidance for MS researchers 
to implement PS matching and weighting in the con-
text of comparative effectiveness research of two 
treatments. Although there exists no one-size-fits-all 
solution for the implementation of PS methods, we 
discussed how choices at each step of a PS analysis 
should be driven by the research question and avail-
able data. Therefore, our recommendations, which 
leveraged evidence from the biostatistics and epide-
miology literature, aimed to provide context-specific 
guidance to ultimately enhance the validity of RWD 
analyses in the field of MS.

PS methods may remove most confounding biases 
when implemented properly, which makes them 
attractive to researchers. However, PS methods can-
not salvage a poor study design. They tackle a specific 
issue (confounding at baseline) under specific condi-
tions; most notably no unmeasured confounding. 
Other approaches (e.g. instrument variable methods) 
have known advantages over PS-based methods in the 
presence of unmeasured confounding. In section 5 of 
the Supplemental Material, we briefly highlight two 
common situations in MS research which cannot be 
directly addressed with the PS methods described in 
this guideline: time-varying confounding and differ-
ential treatment adherence.

This guideline has some limitations. It covers the 
basics of the implementation of PS matching and 
weighting in contexts common in the MS literature, 
yet several aspects are not discussed. There are addi-
tional analytic decisions that require careful consid-
eration in the context of PS analyses, for example, 
handling of missing data, subgroup analyses, and 
clustered data. Missing data are frequent in RWD in 
MS, especially for MRI measurements.64 Ignoring the 
missing data via a complete-case analysis can lead to 
bias if data are not missing completely at random 
while ignoring the covariates with missing data in the 
PS analysis can lead to bias if the covariates are 
important confounders. Methods to integrate multiple 
imputation strategies in PS analyses have been dis-
cussed in the literature.65,66 Subgroup analyses are 
often conducted in MS after a PS analysis to identify 
treatment effect heterogeneity.67–69 Appropriate meth-
ods to perform subgroup analyses in the context of PS 
matching or weighting have been discussed in the 

literature.70,71 Finally, RWD in MS are often collected 
across clinical sites, hospitals, or countries, thus intro-
ducing clustering in the data. Patients from a given site 
(or hospital or country) are more similar than patients 
across sites due to similarities in disease management, 
resources, or other factors. For example, Bovis et al.72 
found that the EDSS score is clustered by geographi-
cal regions. Clustering that occurs naturally in the data 
source should be accounted in all modeling steps, in 
the estimation of the PS and in the imputation of miss-
ing data. For example, the former can be achieved 
via generalized estimating equations and the latter by 
adopting multilevel imputation methods.73

Over the last decades, PS methods have undergone 
significant methodological advances, making it diffi-
cult for subject-area researchers to keep up with the 
fast pace of new information. Optimal use of these 
invaluable tools for comparative effectiveness research 
in MS relies on their most appropriate implementa-
tion. While guidelines on PS methods have been pub-
lished in neurology7 and in other disease areas,74–76 
reaching the MS research community with recommen-
dations tailored to the field was urgently needed. These 
guidelines provide the necessary practical tools to 
ensure continuous improvements in the quality of MS 
research.
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