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Nonreciprocal current from electron 
interactions in noncentrosymmetric 
crystals: roles of time reversal 
symmetry and dissipation
Takahiro Morimoto1 & Naoto Nagaosa2,3

In noncentrosymmetric crystals with broken inversion symmetry  , the I-V (I: current, V: voltage) 
characteristic is generally expected to depend on the direction of I, which is known as nonreciprocal 
response and, for example, found in p-n junction. However, it is a highly nontrivial issue in 
translationally invariant systems since the time-reversal symmetry T plays an essential role, where the 
two states at crystal momenta k and −k are connected in the band structure. Therefore, it has been 
considered that the external magnetic field (B) or the magnetic order which breaks the T-symmetry is 
necessary to realize the nonreciprocal I-V characteristics, i.e., magnetochiral anisotropy. Here we 
theoretically show that the electron correlation in T-broken multi-band systems can induce 
nonreciprocal I-V characteristics without T-breaking. An analog of Onsager’s relation shows that 
nonreciprocal current response without T -breaking generally requires two effects: dissipation and 
interactions. By using nonequilibrium Green’s functions, we derive general formula of the nonreciprocal 
response for two-band systems with onsite interaction. The formula is applied to Rice-Mele model, a 
representative 1D model with inversion breaking, and some candidate materials are discussed. This 
finding offers a coherent understanding of the origin of nonreciprocal I-V characteristics, and will pave a 
way to design it.

Noncentrosymmetric crystals exhibit a variety of interesting physical phenomena. These include ferroelectricity1, 
photovoltaic effect (shift current)2–10, and second harmonic generation11–13. Among them, nonreciprocal dc cur-
rent response in inversion broken systems has been attracting a keen attention in condensed matter physics. 
Nonreciprocity (or rectifying effect) is a current response where the I-V characteristic differs when current flows 
toward left and when it flows toward right (i.e., I(V) ≠ −I(−V)). The nonreciprocal current response is important 
both for fundamental physics of inversion broken materials and also for applications such as diode. Conventional 
example of nonreciprocity is a p-n junction, in which the direction of the current changes the thickness of deple-
tion layer, and hence, the resistivity. Nonlinear current response has been intensely studied in a mesoscopic 
setup14–16. In contrast to such artificial heterostructures, nonreciprocity in crystals is a more nontrivial issue. 
Current responses in crystals are governed by Bloch electrons with good momentum k and their band structure. 
In the presence of time-reversal symmetry (TRS), the band structure satisfies the relationship =σ σ−k k   (σ rep-
resents the spin and σ the opposite spin to σ), which indicates that no nonreciprocity appears for noninteracting 
electrons in the Boltzmann charge transport picture as illustrated in Fig. 1(a). Specifically, the applied electric field 
causes a shift of the Bloch electrons in the momentum space. The symmetry in the band structure due to the TRS 
results in symmetric shifts with respect to the direction of the applied electric field E, and the conductivity does 
not depend on the direction of E. There are two ways to break TRS: (i) introducing time-reversal breaking term to 
a microscopic Hamiltonian and (ii) introducing irreversibility at the macroscopic level. The former microscopic 
TR breaking is achieved with application of an external magnetic field B or introducing magnetic order. 
Nonreciprocal current response in the presence of magnetic field is known as magnetochiral anisotropy and has 
been actively studied17–24.
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The other way to break TRS is incorporating irreversibility at the macroscopic level, i.e., (ii). Generalizing 
Onsager’s relation to nonlinear current response, we find that nonreciprocal current may appear due to the effect 
of dissipation/relaxation even when microscopic Hamiltonian obeys the TRS. Furthermore, there exists a system-
atic description for the second order nonlinear current responses that is based on the gauge invariant formulation 
of nonequilibrium Green’s functions under the static E field25,26. This formulation allows us to show that some 
electron interaction effects are necessary for nonreciprocal current response in bulk crystals under the TRS, 
on top of the dissipation effects. Such electron interactions include Coulomb electrons between electrons and 
electron-phonon interactions. In particular, it turns out that elastic scattering from disorder potential is not able 
to support nonreciprocal current response. These general symmetry considerations naturally lead us to study 
nonreciprocal current response with electron interactions in the Boltzmann transport picture that incorporates 
dissipation effects through relaxation of electron distribution functions.

Indeed, the situation changes in the presence of electron interactions, since electron interactions can modify 
the effective band structure when the applied electric field changes the electron distributions. In the steady state 
with nonzero current in noncentrosymmetric crystals, the interaction effect modifies the energy band in an 
asymmetric way with respect to the direction of E, as illustrated in Fig. 1(b), and enables us to circumvent the 
original constraint of TRS since systems with E and –E are not related with TRS and ≠ −σ σ−E E( ) ( )k k, ,   in gen-
eral. In the Boltzmann transport picture, this asymmetric change of effective band structure leads to nonrecipro-
cal current responses. By using the gauge invariant formulation of nonequilibrium Keldysh Green’s functions, we 
derive a general formula for the nonreciprocal current in the weak interaction limit. It shows that nonreciprocal 
current in inversion broken materials is proportional to the strength of electron interaction and inversely propor-
tional to typical band separation and bandwidth. We find that the nonreciprocity in noncentrosymmetric crystals 
is a quantum mechanical effect that is described by the complex nature of Bloch wave functions and interband 
matrix element which is unique to inversion broken systems. An estimate of the nonreciprocity shows that doped 
semiconductors and molecular conductors are good candidate materials for the nonreciprocity from electron 
correlation. We also discuss possible nonreciprocity in the molecular conductor TTF-CA27,28.

In this paper, we focus on the nonlinearity in I-V characteristic of dc transport. Meanwhile, there are other non-
linear current responses in  -broken crystals which have their origins in the complex nature of Bloch wave func-
tions and should be compared with the nonreciprocal response in the present case. One example is a shift current6–10, 
a dc current induced by photoexcitation of electrons beyond the band gap. The shift current is generated from the 
shift of wave packet centers for valence and conduction bands, and this shift is essentially described by Berry phases 
of valence and conduction electrons. The present nonreciprocal response and the shift current have similarity in that 
both rely on the multi-band nature of  -broken systems. Yet, an important difference is that the nonreciprocal 
response arises from intraband metallic transport that is induced by static electric fields, while the shift current 
involves optical excitation of interband electron-hole pairs with photon energy larger than the band gap. Other 
examples are nonlinear Hall effect and low-frequency circular photogalvanic effect (CPGE)29–31. They are known as 
geometrical effects described by the Berry curvature dipole of Bloch electrons. They are similar to the present non-
reciprocal response in that both are intraband effects. However, the nonlinear Hall effect and the geometrical part of 
the CPGE are transverse (Hall) responses, in that they are described by off-diagonal components of the nonlinear 
conductivity tensor (σabb and σaab, respectively, with a ≠ b). In this sense, they are contrasted to the present nonrecip-
rocal current which is a longitudinal current response described by diagonal components σaaa and essentially 
involves the effect of dissipation.

Results
Time reversal symmetry constrains nonreciprocal current responses in bulk crystals. Based on general symmetry 
considerations, we show that nonreciprocal current response in crystals generally require two ingredients: (i) 

Figure 1.  Schematic picture of the current responses in noncentrosymmetric crystals. For simplicity, here we 
consider the spinless electrons. (a) The conductivity of noninteracting electrons does not depend on the 
direction of the applied electric fields due to the time-reversal symmetry  . (b) Effective dispersion relation of 
interacting electrons are modified by the applied electric field E due to the electron correlation in a different way 
depending on its direction. This makes the conductivity depend on the direction of E, which is the 
nonreciprocal current response.
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dissipation, and (ii) interactions. First, we generalize Onsager’s theorem to nonlinear current responses and show 
that the effect of dissipation is crucial for nonreciprocal current response. We then show by using gauge invariant 
formulation of Keldysh Green’s function that nonreciprocal current generally requires some interactions (e.g., 
electron-electron interactions and electron-phonon interactions). These two conditions suggest that the nonre-
ciprocal current response can be captured by Boltzmann equation picture (that incorporates relaxation of electron 
distribution function) once we incorporate E-linear change of band structure induced by electron interactions.

The nonreciprocal current response is captured by an E2 term in the current response. In the Boltzmann trans-
port picture, the current J induced by the applied electric field E is given by

τ= | |J e v E2
(1)F

2



with the relaxation time τ and the Fermi velocity vF, for a one-dimensional system as depicted in Fig. 1. In non-
centrosymmetric systems, the effective band structure with correlation effect can change asymmetrically in an 
applied electric field, and the Fermi velocity is modified as vF(E) = vF,0 + cE + O(E2). Therefore, noncentrosym-
metric systems can host nonreciprocal current response given by the E2 term in J = 2(e2/ℏ)τ(vF,0E +cE2). Since 
the E-linear change of the band structure is described by the self energy linear in E, we study Green’s function 
and self energy in the steady state realized with the applied electric field. By using these results, we derive the 
general formula of nonreciprocal current, and then apply it to Rice-Mele model which is a prototypical model of 
ferroelectrics.

Onsager’s theorem and its generalization.  In this section, we present a general consideration on the 
nonreciprocal current response in terms of the time reversal symmetry. We generalize Onsager’s relationship to 
nonlinear current responses, and show that the effect of dissipation is crucial for nonreciprocal current response.

In the linear response, Onsager’s relationship indicates that the conductivity σij is constrained as

σ σ= , (2)ij ji

when the microscopic Hamiltonian preserves time reversal symmetry32. This relationship is derived by consid-
ering the time reversal transformation in the Kubo formula for the linear conductivity as explained in Methods. 
Now we study how Onsager’s theorem can be extended to nonlinear current responses. We consider the second 
order current response,

ω ω σ ω ω ω ω+ = .J E E( ) ( , ) ( ) ( ) (3)i ijj j j1 2 1 2 1 2

For systems of noninteracting electrons, the nonlinear conductivity σ ω ωi i( , )ijj n n1 2
 in the imaginary time for-

malism satisfies the relationship

σ ω ω σ ω ω= − − −( ) ( )i i i i, , , (4)ijj n n ijj n n1 2 2 1

under time reversal symmetry. (For the derivation, see Method section.) Naively, this seems to suggest that the 
nonlinear conductivity σijj(ω1,ω2) vanishes in the dc limit (ω1 → 0 and ω2 → 0). However, there is a subtlety in the 
analytic continuation to real frequencies as follows. We notice that nonlinear conductivity with Matsubara fre-
quencies in the upper half plane is transformed to that with Matsubara frequencies in the lower half plane. Since 
the real axis is a branch cut in the complex ω plane, the analytic continuation of iωn → 0 for the two quantities, 
σijj(iω1, iω2) and σijj(−iω2, −iω1), lead to different results in general. This indicates that relationship similar to the 
Onsager’s relation does not necessarily constrain the dc nonlinear conductivity to vanish.

Interestingly, the extended Onsager’s relation in the above shows that nonreciprocal current response 
(nonzero σijj) inevitably involves macroscopic irreversibility, i.e., the effect of dissipation, since the branch cut 
at Im[ω] = 0 is associated with macroscopic irreversibility. Specifically, such discontinuity for ω → ±0i appears 
in the self energy by incorporating dissipative processes such as impurity scattering. To see this, it is useful to 
consider the case of linear conductivity. Metallic conductivity σxx(ω) has a branch cut and the limit of ω → +0i 
gives a dissipative current response which is proportional to the relaxation time τ. In contrast, Hall conductivity 
σxy(ω) does not involve such branch cut and corresponds to nondissipative current response (independent of τ). 
Therefore, the nonreciprocal current response requires dissipation and should be proportional to the relaxation 
time τ.

In passing, we note that Eq. (4) also indicates that the dissipation is essential for shift current which is a photo-
current caused by an optical resonance at a frequency ω above the band gap and described by σijj(ω, −ω)33. If there 
is no effect of dissipation, we can naively take analytic continuation of Eq. (4), which leads to σijj(ω, −ω) = −σijj(ω, 
−ω) = 0. Thus nonzero shift current requires some irreversibility. This observation is coherent with the fact that 
shift current essentially relies on optical absorption which is an irreversible process.

Absence of dc nonreciprocal current in noninteracting systems.  In this section, we show that 
dc nonreciprocal current response does not appear when we do not incorporate effects of electron interactions 
that cause an effective change of the band structure under the applied electric field. We first show that no non-
reciprocal current response appears in periodic systems. We then generalize the proof to the systems with static 
disorder potentials and show that incorporating the effects of elastic scattering does not lead to nonreciprocal 
current response.
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We study systems with an applied electric field by using Keldysh Green’s function and its gradient expan-
sion34–37. In particular, we use its gauge invariant formulation which enables us to treat the effect of E directly25. 
In the presence of a constant external electric field E, the Green’s function and the self energy are expanded with 
respect to E as25,26

ω ω ω ω= + + +G k G k E G k E G k O E( , ) ( , )
2

( , )
8

( , ) ( ), (5)E E0

2
3

2

ω ω ω ωΣ = Σ + Σ + Σ +k k E k E k O E( , ) ( , )
2

( , )
8

( , ) ( ), (6)E E0

2
3

2

where we set ħ = 1, e = 1 for simplicity. The unperturbed part of the Green’s function G0 is given by

ω











= − −


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
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Σ







−
G G

G
H

0 0
,

(7)

R K

A

R K

A
0 0

0

1
0 0

0

with the unperturbed Hamiltonian H (without E). The linear order correction to the Green’s function GE is given 
by

=





Σ + ∂ ∂ − ∂ ∂







.ω ω
− − − −G G i G G G G G G G

2
(( ) ( ) ( ) ( ))

(8)E E k k0 0
1

0 0
1

0
1

0 0
1

0

In order to describe the nonequilibrium steady state with applied electric fields, we suppose that the system is 
coupled to a heat bath. The coupling to the heat bath stabilizes the nonequilibrium electron distribution, and is 
incorporated through the self energy Σ0 as ωΣ = Γ i( ) /2R A

0
/  and ω ωΣ = Γi f( ) ( )K

0 , where Γ is the coupling 
strength and f(ω) is the Fermi distribution function (for details, see Methods)34,35.

The second order current response is given by the expectation value,

∫ ω ω= − 



.

<J i d dk v k G ktr ( ) ( , ) (9)E E
2 2

In order to show the absence of the second order current response in noninteracting systems, we set 
E-dependent self energy corrections to zero Σ = Σ =( 0)E E2 . Here, we also assumed that the heat bath coupled to 
the system (and gives Σ0) is large enough such that it is not modified with applying electric fields. With vanishing 
E-dependent self energies, GE2 can be written as25

= − ∂ ∂ − ∂ ∂
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We can show that the expectation value JE2 vanishes in the presence of TRS as follows. The TRS defined with 
= K  constrains Green’s functions and velocity operator as

ω ω= −G k G k( , ) ( , ) , (11)T
0 0

ω ω= − −G k G k( , ) ( , ) , (12)E E
T

= −v k v k( ) ( ) , (13)T

where T denotes transposition with respect to the band index. This transformation law leads to cancellation of the 
integrand of JE2 between k and −k. For example, the first term in GE2 in Eq. (10) gives the contribution which 
transforms as

ω ω ω

ω ω ω

ω ω ω

∂ ∂

= − − − ∂ − ∂ −

= − − − ∂ − ∂ −

ω

ω

ω

−

−

−

v k G k G k G k

v k G k G k G k
v k G k G k G k

tr[ ( ) ( , ) ( ( , )) ( ( , ))]

tr[ ( ) ( , ) ( ( , )) ( ( , ))]
tr[ ( ) ( , ) ( ( , )) ( ( , ))], (14)

k E
T T T

k E
T

k E

0 0
1

0 0
1,

0 0
1

and cancels out between k and −k. (In the last line, we used trA = trAT). We can show the cancellation for other 
terms in JE in a similar way. This indicates that the nonlinear current ∝E2 vanishes under the TRS in bulk crystals 
if we do not incorporate E-linear band modification described by ΣE.

It is easy to generalize the above argument to systems with static disorder potential. We consider a system of 
the system size L with the periodic boundary condition. We introduce a phase twist at the periodic boundary with 
the phase θ. In this case, the velocity matrix element v and the nonequilibrium Green’s function GE2 become func-
tions of the phase twist θ instead of the momentum k. When the disorder is uniform and the system has transla-
tion symmetry on average, physical quantities are obtained by averaging over the phase twist θ. We note that this 
procedure is very similar to the discussion of Chern number in quantum Hall systems with disorder potential38. 
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Thus, the nonlinear current response JE2 is given by a similar expression to Eq. (9) by replacing k with θ. [The 
expression for ω θG ( , )E2  is also obtained by replacing k with θ in Eq. (10)]. Since similar symmetry constraints 
hold for G and v under the TRS [i.e., G0(ω,θ) = G0(ω, −θ)T, GE(ω,θ) = −GE(ω, −θ)T, v(θ) = v(−θ)T], the integrand 
of JE2 satisfies

θ ω θ θ ω θ



 = − 

 − − 


< <v G v Gtr ( ) ( , ) tr ( ) ( , ) , (15)E E2 2

and cancels between θ and −θ. This proves that elastic scattering from static disorder potential does not induce 
nonreciprocal current response.

These considerations indicate that E-linear change of band structure (ΣE) is essential for nonreciprocal current 
response in bulk crystals. The E-linear change of band structure requires some kind of electron interactions, such 
as Coulomb interactions and electron-phonon interactions. Since the current response proportional to E2 arises 
from the E-linear change of band structure in the Boltzmann transport picture, it suffices to consider ΣE and 
neglect ΣE2. Although we can study this nonreciprocal current response by directly looking at GE2 with incorpo-
rating ΣE, it is equivalent and more concise to compute ΣE and then use the relationship Eq. (1) with the Fermi 
velocity modified by E.

So far, we discussed general conditions to achieve nonreciprocal current response in bulk crystals. In order 
to proceed to explicit calculations of nonreciprocal current, we need to specify the form of the self energy, i.e., 
how the self energy Σ is expressed in terms of the Green’s function G. We consider electron-electron interaction 
shown in the Feynman diagram Fig. 2(a) and show that it gives rise to nonreciprocal current through E-linear 
band structure change. Incidentally, we also show explicitly that elastic scatterings from isotropic impurity poten-
tial [Fig. 2(b)] does not lead to nonreciprocal current, which is consistent with the above general symmetry 
consideration.

Nonequilibrium steady state under the applied electric field.  Now we move on to demonstration of 
nonreciprocal current responses with electron interactions by performing explicit calculations. We consider the 
cases of weak interactions and perform Hartree-Fock approximation in the gauge invariant formulation of 
Keldysh Green’s functions. In order to describe E-linear change of the effective band structure, we first study the 
nonequilibrium steady state under the electric field by looking at <GE . Once <GE  is obtained, we can compute the 
E-linear change of band structure by studying ΣE

R that corresponds to the diagram in Fig. 2.
The E-linear change of electron occupation has intraband and interband contributions, since the Green’s func-

tion for a  -broken system generally has a matrix structure with respect to band index. The intraband contribu-
tion is written as

∑π δ ω ε δ=
Γ

− −<G i v k k2 ( ) sgn( ) ( ),
(16)

E F
k

k F i,11 ,
F i

F i
,

,

for the band 1 that we assume crosses with the Fermi energy (for details, see Methods). Here, kF,i are the Fermi 
momenta for the band 1. This change of the lesser Green’s function linear in E describes the effect of the applied 
electric field where the electron occupation is shifted in the momentum space as k → k + τE near the Fermi sur-
face (with τ = 2π/Γ). This coincides with the picture of the semiclassical Boltzmann equation as illustrated in 
Fig. 1(a).

Next, the interband contribution for <GE  is given by

∑
π

δ ω δ= −
| |

− −<G
v

v E
k k( ) ( ),

(17)
E

k

k

k g k
F F i,12

12,

11, ,
,

F i,

and = −< < ⁎G G( )E E,21 ,12 , for the bands 1 and 2 (for details of the derivation, see Methods.). Here, we assume that the 
band 1 is the partially filled valence band and the band 2 is the unoccupied conduction band as illustrated in 
Fig. 1, and Eg,k denotes the band gap at the momentum k. This term arises from a quantum mechanical effect that 
the electric field also modifies the wave function in addition to the shift of the momentum at the Fermi energy. 

Figure 2.  Diagrams that we consider for (a) electron-electron interaction, (b) impurity scattering. The electron-
electron interaction is incorporated by the Hartree term. We use the Born approximation (the second order 
perturbation) for the impurity scattering.
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Thus the electron distribution in the steady state effectively has an interband component near the Fermi energy. 
We note that this interband component of <GE  cannot be captured by semiclassical treatment with Boltzmann 
equation, and is a quantum effect captured by the current approach that uses the gauge invariant formulation of 
Keldysh Green’s functions. This interband component gives the origin of the nonreciprocity when the electron 
interaction is incorporated. In contrast, when we consider effects of scattering by short-range impurities within 
the Born approximation [described by the diagram in Fig. 2(a)], we do not find the E-linear change of the effective 
band structure, as detailed in Methods.

Formula of nonreciprocal current in two band systems.  Now we show that nonreciprocal current 
appears from E-linear band structure change once we introduce electron-electron interactions, and derive a gen-
eral formula for nonreciprocal current in two-band systems. The effect of electron interactions is minimally 
incorporated by the self energy arising from the Hartree contribution to ΣE

R as shown in Fig. 2(a).
For simplicity, we consider a two-band model, where the unit cell contains two sites, and the wave functions 

of valence and conduction bands (labeled by 1 and 2, respectively) are represented by
⁎

⁎( )u
v

v
u,

(18)k
k
k k

k

k
1, 2,Ψ = Ψ =





− 



.

We then consider two copies of the original system, each labeled by ↑ and ↓, and introduce the onsite interac-
tion given by

∑= ↑ ↓H U n n ,
(19)i

i iint , ,

with the site index i. We treat the effects of the onsite interaction in terms of Hartree-Fock approximation, 
and study the effective band structure. Since the two copies (↑ and ↓) are decoupled in the noninteracting 
Hamiltonian, only the Hartree term appears in the present case. (We suppose that the Hartree correction in the 
equilibrium is already included in the original Hamiltonian.) In the following, we focus on the electronic struc-
ture of the ↑ component, and suppress the label for the two copies for simplicity. By using the momentum space 
representation of Hint (for details, see Methods), the self energy from the Hartree contribution is given by

∫
ω
π π

Σ =
′

| | − | |

× ′ + ′′ ′
<

′ ′
<⁎ ⁎

k iaU d dk u v

u v G k u v G k

( )
2 2

( )

[ ( ) ( )], (20)

E
R

k k

k k E k k E

,11
2 2

,12 ,21

with the lattice constant a. Now we assume that there are two Fermi momenta at ±kF with the same Fermi velocity 
vF. By using the Green’s function in the steady state [Eq. (17)], this is expressed as

π
Σ =

| | − | |
| |

.k aU u v
v E

u v v( ) ( ) Im[ ]
(21)

E
R k k

k g k
k k k,11

2 2

11, ,
12,

F F
F F F

This self energy is an even function with respect to k from TRS (such as T K= ), which is important in obtain-
ing nonreciprocal current response as we will see next.

We now study the nonreciprocal current response by using the self energy ΣE
R. The current induced by an 

electric field (linearly in E) is given by

τ= − −J v v E( ) , (22)k k11, 11,F F

from the Boltzmann transport approach. An application of the electric field modifies the band structure as 
 → + Σ k( )E

E
R

1 1 2 ,11 , and hence, the Fermi velocity as → + ∂ Σv v k( )k k
E

k E
R

11, 11, 2 ,11F F
. Since the obtained self energy 

Σ k( )E
R

,11  is an even function of k, the velocity corrections at ±kF do not cancel out in evaluating the correction to 
the current response in Eq. (22). Thus, we obtain the nonlinear current response δJ (the part of current response 
proportional to E2) as

δ τ

τ

π

= ∂ Σ − ∂ Σ

=
∂ | | − | |

| |

= =−

=

( )J k k E

aU u v

v E
u v v E

( ) ( )

2 ( )
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(23)

k E
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R

k k

k k k k k
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k k k

,11 ,11
2

2 2

11, ,
12,

2

F F

F

F F
F F F

which is the general formula for two-band systems in one-dimension. This can be generalized to systems in 
higher dimensions if we replace the summation over the Fermi points with an integral over the Fermi surface. The 
above formula indicates that the nonreciprocity ratio γ of the nonlinear current to the original current is roughly 
estimated as

γ δ
≡ 

J
J

U
E

eEa
W

,
(24)g k, F

where W is the bandwidth. Here we used uk, vk ~ 1 and ∼v vk k11, 12,F F
 for rough order estimates.
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The obtained formula indicates that breaking of inversion symmetry is essential for the nonreciprocity. When 
the system is inversion symmetric, the wave function is expressed with real numbers due to the combination of 
inversion symmetry   and TRS ( =IT K). Therefore, we obtain =u v vIm[ ] 0k k k12,F F F

 in inversion symmetric 
systems and no reciprocity appears. This clearly shows that the nonreciprocity in the current mechanism essen-
tially relies on the complex nature of wave functions in noncentrosymmetric crystals.

Nonreciprocal current in Rice-Mele model.  We study nonreciprocal current in a representative model of 
ferroelectrics, Rice-Mele model, by taking into account onsite interaction. We show that E-linear band structure 
change is associated with effective modulation of parameters in the Hamiltonian that is induced by the applied 
electric field E.

Rice-Mele model is a representative 1D two-band model with broken inversion symmetry, and is described 
by a Hamiltonian39,

∑ ∑

∑

δ
= + . . − − + . .

+Δ − .

+ +
† †

†

H c c h c t c c h c

c c

1
2

( )
2

( 1) ( )

( 1)
(25)

i
i i

i

i
i i

i

i
i i

1 1

Rice-Mele model is a minimal model for molecular conductors33,40–42 and ferroelectric perovskites43. In the 
momentum representation, the Hamiltonian reads

σ δ σ σ= + + ΔH ka t kacos
2

sin
2

, (26)x y z

where Pauli matrices σ’s act on two sublattices (A and B) in the unit cell, and a is the lattice constant. For 
Rice-Mele model, the wave functions in Eq. (18) are given by = − θu sink 2

 and = φ θv e cosk
i

2
, with the parameters 


θ = − Δ

| |
cos 1

k1,
 and φ = tan−1 δt. The energy dispersion for the valence band is given by

δ= − + + Δ
ka t kacos
2

sin
2

,
(27)k1,

2 2 2 2

and  = −k k2, 1,  for the conduction band, as shown in the right panel of Fig. 3 with black line.
We again consider two copies of Rice-Mele model and introduce the onsite interaction given by

∑= ↑ ↓H U n n ,
(28)i

i iint , ,

where ↑ and ↓ label the two identical copies. By focusing on the electronic structure of the ↑ component, we sup-
press the label for the two copies for simplicity.

Now we study the nonequilibrium steady state under the electric field E applied along the 1D chain, by using 
the nonequilibrium Green’s functions, Eq. (17). The electric field is described by the Hamiltonian, 

= − ∑H eEa ini iele . The application of the electric field effectively changes the parameters δt and Δ, which can be 
easily obtained within the Hartree approximation since the expectation values are directly computed from the 
lesser component of the Green’s function. From the Hartree term, the occupation of site A is modified as

∫δ
π

π

= +

=
| |

< <⁎ ⁎n iEa dk u v G k u v G k

Ea
v E

u v v

2 2
[ ( ) ( )]

Im[ ],
(29)

A k k E k k E

k g k
k k k

,21 ,12

11, ,
12,

F F
F F F

(For details of the derivation, see Methods.) Similarly, the occupation of site B is modified in the opposite way as 
δnB = −δnA. Thus the Hartree term effectively changes the staggered potential Δ as

Figure 3.  Schematics of the effective parameter change induced by the electric field combined with the electron 
correlation and the associated effective band structures. We adopted parameters δt = 0.1, Δ = 0.3. The changes 
of Δ from the applied electric fields are ±0.2.
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π
Δ → Δ +

| |
.

EaU
v E

u v vIm[ ]
(30)k g k

k k k
11, ,

12,
F F

F F F

Notice that the change of Δ is opposite in sign depending on the direction of E. This situation is schematically 
illustrated in Fig. 3. Since the parameter changes are asymmetric with respect to the sign of E in the δt − Δ space, 
the effective band structure  E( )k1,  becomes different for the electric fields +E and −E. The nonlinear current in 
the nonequilibrium steady state is obtained from the conventional Boltzmann equation approach for this modi-
fied band structure in the presence of E. Namely, the linear conductivity is given by

σ τ= | |E v E( ) 2 ( ) , (31)F

with E-dependent Fermi velocity = ∂
=

v E E( ) ( )F k k k k1,
F
 (where kF is the Fermi momentum). The E-linear change 

of the effective band structure leads to E-linear term in vF(E), which results in the nonlinear current response ∝E2. 
Thus the asymmetry in band structure changes leads to the nonreciprocity of the current with respect to the 
direction of E.

The nonreciprocity is quantified by the ratio of the change of electric conductivity γ = [σ(E) − σ(0)]/σ(0) in 
the presence of the applied electric field. We note that γ = δJ/J and the crude approximation is given in Eq. (24). 
This approximation is also obtained from the E-linear change of the parameters in Rice-Mele model in Eqs (27) 
and (30). Explicit evaluation of Eq. (23) gives the nonreciprocity ratio of γ = 5 × 10−7 for typical parameters 
of Rice-Mele model (δt = Δ = 0.3t, U = t, kF = 0.1π/a along with t = 1 eV and a = 1 Å) and the electric field of 
E = 105 V/m. This order of the nonreciprocity is comparable to those in materials showing magnetochiral anisot-
ropy18, as we will discuss further in the discussion section.

Discussions
Finally, we give an estimate of the nonreciprocal response induced by the present mechanism for realistic materi-
als. Typical magnitude of the nonreciprocity is determined by γ = δJ/J in Eq. (24). When the band gap and 
Coulomb energy are both of the order of 1 eV, the ratio δJ/J reduces to eEa/W, which is the ratio between the 
electric potential in the unit cell and the bandwidth. This allows us to estimate typical nonreciprocity as follows. 
We consider the current of 1 mA that flows in a wire of the area 1 mm2, which amounts to a current density of 
j = 103 A/m2. For usual metals, conductivity is roughly given by σ  10 A/Vm6 , and hence, the electric field pres-
ent in the wire is σ= −

E j/ 10 V/m3 . In this case, the electric potential in the unit cell of a Å1  is 
−

eEa 10 eV13 . Since the bandwidth is typically 1 eV, this indicates nonreciprocity ratio is δ −
J J/ 10 13. This 

should be compared to the typical order of nonreciprocity for materials showing magnetochiral anisotropy. Bi 
helix18 and molecular solids21 show the nonreciprocity measured in resistivity change δρ as δρ/ρ = γ′IB with 
γ′ − − −
 A T10 3 1 1. For I = 1 mA and B = 1 T, the typical nonreciprocity is δ δρ ρ −

 J J/ / 10 6. Thus the nonreci-
procity induced by electron correlation is very small for good metals. On the other hand, we can expect compa-
rable nonreciprocity for doped semiconductors whose conductivity ranges from 10−1~105 A/Vm. For example, for 
the doped Si of σ = 10−1 A/Vm and the bandwidth W 1eV in the presence of the current density j = 103 A/m2, 
we obtain the nonreciprocity of δ −

J J/ 10 6, which becomes comparable with typical materials showing mag-
netochiral anisotropy.

Another candidate is the molecular conductor TTF-CA which is a strongly correlated insulator. Of course, our 
theory for weakly correlated metals is not directly applicable. However, it is interesting to estimate the nonreci-
procity ratio anyway, since the carriers in TTF-CA (thermally activated or provided by impurity sites) may be 
treated as electrons having a Fermi surface, and the Hartree approximation sometimes becomes a good approxi-
mation at least for the ground states. The typical order of electric field that can be applied is E 10 V/m5 27,28. 
Since the lattice constant is a 1nm, the electric voltage in the unit cell becomes −

eEa 10 eV4 , and the band-
width is given by .W 0 2eV. Thus the nonreciprocity ratio can be 10−3 which may be comparable with that in 
magnetochiral anisotropy in Bi helix18. We again note that this is a number obtained from a naive application of 
Eq. (24) to TTF-CA beyond the applicability of our theory, but this suggests that it is an interesting future prob-
lem to study TTF-CA as a candidate of strongly correlated materials for nonreciprocity, from both theoretical and 
experimental points of view.

Our analysis is mostly valid for weakly interacting systems because we adopted Hartree approximation to 
incorporate the correlation effect. Therefore, the study of nonreciprocal responses of strongly interacting cases 
remains as an interesting future problem. Meanwhile, our symmetry considerations from generalization of 
Onsager’s theorem suggests that nonreciprocal current response can generally appear in the presence of dissi-
pation and interactions, regardless of the strength of the interaction. We may also note that Hartree approxi-
mation sometimes gives a good description for some ground state properties, even for strong U cases, such as 
magnetically ordered ground states. Our approach may give a good approximation for nonlinear properties of 
those states, since the nonreciprocal current response is a nonequilibrium property near the ground state under 
a moderate electric field.

Methods
Derivation of generalized Onsager’s theorem.  In this section, we present general symmetry consider-
ations on the nonreciprocal current response with respect to the time reversal symmetry by extending Onsager’s 
relationship to nonlinear current.

We consider a system of noninteracting electrons that are described by Green’s function in the Lehmann 
representation,
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∑ω α β β α
ω

= 〈 | | 〉 〈 | | 〉
+

+ −
β

α β

β β

α β

Ω
− −α β†G i e c c e e

i E E
( ) ,

(32)
ab n a b

E E

n,

where |α〉 is a many-body state that satisfies α α| 〉 = | 〉αĤ E  with the many-body Hamiltonian Ĥ, β is the inverse 
temperature, =β β− Ω − ˆ

e eTr[ ]H , and ca and †ca  are annihilation and creation operators of an electron with a single 
particle state a. (Here α,β are labels for many-body states, whereas a, b are labels for single particle states.) We 
write the current operator v̂i along the ith direction as

∑=ˆ †v v c c( ) ,
(33)i

ab
i ab a b

where v is a matrix for a velocity operator in the single particle representation.
In the linear response, Onsager’s relationship indicates that the conductivity σij is constrained as

σ σ= , (34)ij ji

in the presence of time reversal symmetry32. This relationship is derived by considering the time reversal trans-
formation in the Kubo formula for the linear conductivity,

∑σ ω
ω β

ω ω ω= +
ω

i v G i i v G i( ) 1 tr[ ( ) ( )],
(35)

ij n
n i

i m n j m
m

where iωn, iωm are Matsubara frequencies, and tr is a trace over single particle states (labeled by a, b). The time 
reversal symmetry,  = K , indicates

ω ω=G i G i( ) ( ), (36)m
T

m

= − .v v (37)i i
T

These actions of   in the many-body representation are obtained by using α α| 〉 = | 〉 ⁎( )  in Eqs (32) and (33). 
(We note that this is closely related to symmetry constraint in a single particle Hamiltonian, H(k) = HT(−k), in 
the momentum representation). By using these relationships, the Kubo formula can be rewritten as

∑

∑

σ ω
ω β

ω ω ω

ω β
ω ω ω

σ ω

= +

= +

=

ω

ω

i v G i i v G i

v G i i v G i

i

( ) 1 tr[ ( ) ( )]

1 tr[ ( ) ( )]

( ), (38)

ij n
n i

i
T T

m n j
T T

m

n i
j m n i m

ji n

m

m

and leads to the Onsager’s relationship. Here we rewrote the trace in the reverse order in the second line and used 
the fact that the transposition in the trace does not change its value.

Next we study how Onsager’s theorem can be extended to nonlinear current responses. We consider the sec-
ond order current response,

ω ω σ ω ω ω ω+ = .J E E( ) ( , ) ( ) ( ) (39)i ijj j j1 2 1 2 1 2

The nonlinear conductivity σ ω ω( )i i,ijj n n1 2
 has a contribution from a triangle diagram which is given by

∑σ ω ω
ω ω β

ω ω ω

ω ω ω

= +

+ +
ω

i i v G i i v G i

i i v G i

( , ) 1 tr[ ( ) (

) ( )], (40)

ijj n n
n n i

j m n j m

n n i m

tr

m
1 2

1 2
1

1 2

since there are no vertex corrections for noninteracing systems. The time reversal symmetry indicates that

∑

∑

σ ω ω

ω ω β
ω ω ω ω ω ω

ω ω β
ω ω ω ω ω ω

σ ω ω

=
−

+ + +

=
−

− − −

= − − − .

ω

ω

i i

v G i i v G i i i v G i

v G i i v G i i i v G i

i i

( , )
1 tr[ ( ) ( ) ( )]

1 tr[ ( ) ( ) ( )]

( , ) (41)

ijj n n

n n i
j
T T

m n j
T T

m n n i
T T

m

n n i
j m n j m n n i m

ijj n n

tr

tr

m

m

1 2

1 2
1 1 2

1 2
2 1 2

2 1

Naively, this seems to suggest that the nonlinear conductivity σijj(ω1,ω2) vanishes in the dc limit (ω1 → 0 and 
ω2 → 0). However, we notice that nonlinear conductivity with Matsubara frequencies in the upper half plane is 
transformed to that with Matsubara frequencies in the lower half plane. Since the real axis is a branch cut in the 
complex ω plane, the analytic continuation of iωn → 0 for the two quantities, σijj(iω1, iω2) and σijj(−iω2, −iω1), lead 
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to different results in general. This indicates that relationship similar to the Onsager’s relation does not necessarily 
constrain the dc nonlinear conductivity to vanish. Instead, this extended Onsager’s relation indicates that nonre-
ciprocal current necessarily involves irreversibility such as dissipation and relaxation.

In a similar manner, we can also derive an extended Onsager’s relation for shift current. Shift current is dc current 
induced by optical absorption above the band gap and photoexcitation of electron-hole pairs that have finite polari-
zation7,10. It is described by a nonlinear current response, ω ω σ ω ω ω ω+ =J E E( ) ( , ) ( ) ( )i ijj1 2

shift
1 2 1 2  with ω2 ≈ −ω1. 

The nonlinear conductivity σshift has two contributions as σshift = σtr(ω1,ω2) + σbubble(ω1,ω2), where the latter piece is a 
correlation function of paramagnetic current v̂i and diamagnetic current ≡ ∑ˆ †v v c c( )ab ab a bdia,ij dia,ij

44. Time reversal 
symmetry leads to the same relation,

σ ω ω σ ω ω= − − −( , ) ( , ), (42)ijj ijj
shift

1 2
shift

2 1

since σbubble also obeys the same transformation law under the TRS with σtr as follows. In the momentum rep-
resentation, matrix elements for diamagnetic current are given by

=
∂

∂
.v

v
k (43)ij

j

i
dia,

Accordingly, TRS constrains diamagnetic current operator as

=v v , (44)T
dia dia

due to an extra k derivative. The nonlinear conductivity for shift current is written as

∑ ∑σ ω ω
ω ω β

ω ω ω= 


+ 

.

ω=
( ) ( )i i v G i i v G i, 1 tr ( )

(45)
ijj n n

n n i i
j m n ij m

bubble

1,2
dia,

m
i1 2

1 2

Under TRS, this transforms as

∑ ∑

∑ ∑

σ ω ω

ω ω β
ω ω ω

ω ω β
ω ω ω

σ ω ω

= − 


+ 


= − 


− 


= − − −

ω

ω

=

=

( )
( )

( )
( )

i i

v G i i v G i

v G i i v G i

i i

,
1 tr ( )

1 tr ( )

, , (46)

ijj n n

n n i i
i
T T

m n ij
T T

m

n n i i
i m n ij m

ijj n n

bubble

1,2
dia,

1,2
dia,

bubble

m
i

m
i

1 2

1 2

1 2

2 1

where we used the symmetry between ωi n1
 and ωi n2

 to fit the transformation law with that for σtr. Therefore, 
nonzero shift current also requires irreversibility that introduces a branch cut at the real axis in the ω space and 
makes two limits ω → ±i0 different. In this case, the irreversibility comes from optical transition and creation of 
electron hole pairs across the band gap.

Keldysh Green’s function.  In this section, we summarize basic notations of Keldysh Green’s functions that 
we need for our discussion35,37,45. In the Keldysh Green’s function formalism, we consider the Keldysh component 
of the Green’s function in addition to the retarded and advanced Green’s function. Keldysh component describes 
the electron occupation in the nonequilibrium state, while the retarded and advanced components describe the 
spectrum of the system. The Dyson equation for the Green’s function is given by

ω










= − −




Σ Σ

Σ






−
G G

G
H

0 0
,

(47)

R K

A

R K

A

1

with the Hamiltonian H.
In the thermal equilibrium, the Keldysh Green’s function is obtained by solving the Dyson equation. We 

suppose that the system is weakly coupled to a heat bath with broad spectrum, which determines the electron 
distribution of the system. The coupling to the heat bath (such as electron reservoirs) is described by the self 
energy given by35





Σ Σ

Σ






= Γ







− −






i
f

0

1
2

2 1

0 1
2

,

(48)

R K

A

where Γ is the strength of the coupling to the bath, and f(x) = 1/[1 + exp(x/kBT)] is the Fermi distribution func-
tion with the temperature T.

The observables in the nonequilibrium steady state is obtained from Keldysh Green’s function. We define the 
lesser component of the Green’s function as
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ω ≡ − + .<G k G G G( , ) 1
2

( ) (49)
K R A

By using G<, we can write the expectation value of a general fermion bilinear as

∫
ω
π

ω〈 〉 = − .<†c c i d G
2

( ) (50)j i ij

The lesser Green’s function is concisely obtained from the equation

= Σ< <G G G , (51)R A

where the lesser component of the self energy encodes the information of the electron distribution and is given by

ω ωΣ ≡ Σ − Σ + Σ = Γ .< k i f( , ) 1
2

( ) ( ) (52)
K R A

Keldysh Green’s function under the applied electric field.  In this section, we study the nonequilib-
rium electron distribution realized under the applied electric field. We compute the E-linear part of the lesser 
Green’s function <GE  in Eq. (6) in the gauge invariant formulation. In doing so, we use the diagram in Fig. 2(b) to 
specify the form of self energy Σ<

E in Eq. (6). (We note that the electron interaction in Fig. 2(a) does not change 
electron distribution and does not contribute to Σ<

E. Furthermore, it turns out in the end that the contribution of 
impurity scattering to Σ<

E is actually negligible under TRS.) Specifically, we consider the delta function type impu-
rity [V(r) = uδ(r − r0) with density n]. In the second-order Born approximation, the self energy is given by

∫ω
π

ωΣ =k nu dk G k( , )
2

( , ), (53)E E
2

which corresponds to the diagram in Fig. 2(b). In the right hand side, GE denotes the bare Green’s function 
that does not include the effect of impurity scattering. We note that the impurity scattering also modifies the 
self energy Σ0 in the zeroth order in E, but this correction only changes the coupling Γ in Eq. (48) and can be 
absorbed by redefining Γ accordingly.

The current response in the nonequilibrium steady state under the electric field is captured by the lesser 
Green’s function <GE  which gives a contribution linear in E. We consider a multiband system and suppose that the 
Bloch wave functions are given by Ψi,k which satisfy Ψ = ΨH i k i k i k, , ,  with the energy dispersion i k,  (where i is the 
band index). First we start with the intraband component of <GE ii,  for the band i (where we omit the band index i 
in the following, for simplicity). By assuming that G0 and v have a single component, equation (8) gives

ω

δ ω

ω

=




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



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22 2
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

where we used ω δ ω∂ = − −ωf ( ) ( )F . This expression is simplified by using the relationship

∑π δ


 − + 
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− Γ | |
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(55)F k
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2

4

2 2 1 ,
F i

2
, 

that holds for a positive integer n, and the Fermi momenta kF,i, where we only keep the leading order in terms of 
1/Γ. By using Eq. (54) with Eq. (53), the impurity scattering gives rise to ωΣ<( )E  given by

ω π δ ω ε

δ

δ

Σ =
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−

×
∑ −
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,

Here, the numerator in the right hand side vanishes since the TRS leads to ∑ =
| |

0k
v
vF i

k

k,
, and hence, ωΣ =<( ) 0E  

follows. Thus we obtain

∑π δ ω ε δ=
Γ

−
| |

− .<G i v
v

k k2 ( ) ( )
(57)

E F
k

k

k
F i,

F i,

This change of the lesser Green’s function linear in E describes the effect of the applied electric field where the 
electron occupation is shifted in the momentum space as k → k + τE near the Fermi surface (with τ = 2π/Γ). This 
corresponds to the picture from the semiclassical Boltzmann equation as illustrated in Fig. 1(a).
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Next we consider the interband component, <GE ,12, by focusing on the valence and conduction bands which are 
labeled by 1 and 2, respectively. Equation (8) gives

=





Σ + ∂ Σ − ∂ Σ







.ω ω
< < < <G G i G v v G G

2
(( ) ( ))

(58)E
R

E
A

k k
R A

,12 0,11 ,12 11 0,11 ,12 ,12 0,22 22 0,22

We assume that the Fermi energy is located within the band 1 and does not cross the band 2. In this case, the 
second term in the right hand side reduces to



∑

δ ω

π
δ ω δ

− Σ
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− −

= −
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F F i

,12 0,11 ,12 0,22

12,
0,11 0,11 0,22 0,11 0,22 0,22

12,

11, ,
,

F i,

with = −Eg k k k, 2, 1,  , where we only kept the leading term with respect to 1/Eg,k. (Here we used Eq. (55) for 

G GR A
0,11 0,11 and discarded the second term.) Since the right hand side is inversely proportional to the band gap Eg,k, 

the self energy Σ<
E ,12 obtained from Eq. (53) is proportional to Γ E/ g k, F

, which is negligible in the left hand side of 
the above equation given that ∝G E1/A

g k0,22 , F
. Therefore the lesser part of the Green’s function is given by

∑
π

δ ω ε δ= −
| |

− − .<G
v

v E
k k( ) ( )

(60)
E

k

k

k g k
F F i,12

12,

11, ,
,

F i,

We note that <GE ,21 is obtained from the relationship

= −< < ⁎G G( ) , (61)E E,21 ,12

as a consequence of the hermiticity of expectation values in Eq. (50).

Effective band dispersion with impurity scattering.  In this section, we study the effective band disper-
sion in the presence of E and impurity scattering by looking at ΣE

R. We show that impurity scattering is insufficient 
for nonreciprocal current response because the change of the band dispersion turns out to be the same for positive 
and negative electric fields.

From Eq. (8), the retarded part of the equation for GE reads

=





Σ + − − −







G G i G v v G G
2

( ( ) ( ) ) ,
(62)E

R R
E
R R

k k
R R

0 0 0 0

with vk = ∂kH, where we used ∂ωΣR = 0. For simplicity, we consider a two-band system, where the Green’s func-
tion is given by

ω
δ=

− + ΓG
i

1 ,
(63)

ij
R

i
ij0,

2

where i, j = 1, 2 are labels for valence and conduction bands, respectively. For the diagonal components, we obtain

= ΣG G G , (64)E ii
R

ii
R

E ii
R

ii
R

, 0, , 0,

since the second term in Eq. (62) vanishes trivially. The diagonal part of the self energy is momentum independ-
ent and vanishes as

∫

∫

ω
π

π ω
ω

Σ =

=









 − +











Σ = .
Γ( )

nu dk G

nu dk

k i

( )
2

2
1

( )
( ) 0

(65)

E ii
R

E ii
R

i

E ii
R

,
2

,

2

2

2 ,


Off-diagonal part is determined from

 

 ω ω

− Σ

= − −

= −
−

− + − +
.

Γ Γ( ) ( )

G G G
i G G v v G G

iv

i i

2 ( )

( )

2 (66)

E
R R

E
R R

R R
k k

R R

k

,21 0,22 ,21 0,11

0,22 0,22 ,21 ,21 0,11 0,11

,21 1 2

1 2

2
2 2

2

By integrating over the momentum, we obtain
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 

 

∫

∫
π

ω

π ω ω





−


Σ

= −
−

− + − +Γ Γ( ) ( )

nu dk G G

nu dk iv

i i

1
2

( )

2
( )

2
,

(67)

R R
E
R

k

2
0,22 0,11 ,21

2 ,21 1 2

1 2

2
2 2

2

which leads to nonzero ΣE
R

,21 in general. Therefore, the effective Hamiltonian is given by




=







Σ

Σ







H

E

E
2

2

,

(68)

E
R

E
R

1 ,12

,21 2

and the effective band structure of the valence band in the presence of E is obtained by diagonalizing H as


   

=
+

−
−

+
|Σ |

.˜
E

2
( )

4 4 (69)
E
R

1
1 2 2 1

2 2
,21

2

This is an even function with respect to E; the effective band structure depends on the strength of electric field 
|E|, but is independent of the direction of the applied field. Therefore, no reciprocal current appears when we use 
Boltzmann equation approach based on this modified band structure.

We note that this conclusion is not changed even when we treat the impurity scattering by self-consistent 
Born approximation. In the self-consistent Born approximation, GE in Eq. (53) is taken as a full Green’s function 
including the effect impurity scattering. In this case, the self energy ΣE is obtained by repeating the above calcula-
tion and taking convergence. In the every step of the repetition, the energy dispersion is modified as Eq. (68) and 
still gives a symmetric dispersion in k. After repeating this many times, the dispersion remains symmetric in k. 
Therefore, self-consistent treatment of impurity scattering still gives no nonreciprocal current response.

Electron-electron interaction in two-band model.  In this section, we derive Eq. (20) for the self energy 
that arises from the electron-electron interaction in the case of a two-band model. We also derive Eq. (29) for the 
expectation value of density operators. These expressions are obtained by using the momentum space representa-
tion of the interaction Hamiltonian.

We consider the onsite interaction that is given by

∑= +↑ ↓ ↑ ↓H U n n n n( ),
(70)n

A n A n B n B nint , , , , , , , ,

with the site index n. Expressing the Hartree contribution to the self energy requires momentum representations 
of the density operators nA,i and nB,i, where we omit the indices for two copies (↑ and ↓) since the expressions are 
identical for two copies. For the wave functions in Eq. (18), the creation operators of Bloch states are written as

∑= +† † †c
N

e u c v c1 ( ),
(71)k

n

ikn
k A n k B n1, , ,

∑= − +† ⁎ † ⁎ †c
N

e v c u c1 ( ),
(72)k

n

ikn
k A n k B n2, , ,

where N is the system size. By using inverse Fourier transformation, the creation operators in the site basis are 
expressed with Bloch states as

∑= −−† ⁎ † †c
N

e u c v c1 ( ),
(73)A n

k

ikn
k k k k, 1, 2,

∑= +−† ⁎ † †c
N

e v c u c1 ( ),
(74)B n

k

ikn
k k k k, 1, 2,

where k runs momenta in the first Brillouin zone (e.g., k = 2πj/Na for j = 0, …, N − 1 with lattice constant a). Now 
the density operators are given by

∑= 
 +

− − 


− −† ⁎ † ⁎ †

† ⁎ ⁎ †

c c
N

e u u c c v v c c

u v c c v u c c

1

, (75a)

A n A n
k k

i k k n
k k k k k k k k

k k k k k k k k

, ,
,

( )
1, 1, 2, 2,

1, 2, 2, 1,

1 2

1 2
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2
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∑= 
 +

+ + 
.

− −† ⁎ † ⁎ †

† ⁎ ⁎ †

c c
N

e v v c c u u c c

v u c c u v c c

1

(75b)

B n B n
k k

i k k n
k k k k k k k k

k k k k k k k k

, ,
,

( )
1, 1, 2, 2,

1, 2, 2, 1,

1 2

1 2
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

The retarded part of the self energy is given by46

∫∑ω ω
π

ω

Σ = −
′ 


− 
 ′ ′

′
′ ′

′ ′
<

k i
N

d U

U G k

( , )
2

( , ), (76)

E m m
R

k
m k m k m k m k

m k m k m k m k E m m

, ( , ) ( , );( , ) ( , )

( , ) ( , );( , ) ( , ) ,

1 2 1 3 2 4

3 1 2 4 3 4

by using the momentum space representation for the interaction Hint which is given by

∑ ∑ δ= − + − −

× † †

H
N

k k k k

U c c c c

1
2

( )

, (77)

m m m m k k k k

m k m k m k m k m k m k m k m k

int
, , , , , ,

1 2 3 4

( , ) ( , );( , ) ( , ) , , , ,

1 2 3 4 1 2 3 4

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

with the band index mi. The first term in Eq. (76) is the Hartree term, and the second is the Fock term. The 
momentum representations of the interaction that are relevant for the Hartree term contributing to ΣE

R
,11 are 

given by

= | | | | + | | | |′ ′ ′ ′U U u u v v[ ], (78)k k k k k k k k(1, ),(1, );(1, ),(1, )
2 2 2 2

= | | | | + | | | |′ ′ ′ ′U U u v v u[ ], (79)k k k k k k k k(1, ),(2, );(1, ),(2, )
2 2 2 2

= −| | + | |′ ′ ′ ′U U u v u v( ) , (80)k k k k k k k k(1, ),(1, );(1, ),(2, )
2 2

= −| | + | | .′ ′ ′ ′
⁎ ⁎U U u v u v( ) (81)k k k k k k k k(1, ),(2, );(1, ),(1, )

2 2

By using Eq. (76), the self energy ΣE
R

,11 is written as

∫∑ ω
π

Σ = − | | | | + | | | | ′

+ | | | | + | | | | ′

+ −| | + | | ′ + ′ .

′
′ ′

<

′ ′
<

′ ′
<

′ ′
<⁎ ⁎

k iU
N

d u u v v G k

u v v u G k

u v u v G k u v G k

( )
2

{( ) ( )

( ) ( )

( ) [ ( ) ( )]} (82)

E
R

k
k k k k E

k k k k E

k k k k E k k E

,11
2 2 2 2

,11

2 2 2 2
,22

2 2
,12 ,21

The first two terms in the integral vanishes due to TRS. Specifically, GE,ii(k) is an odd function of k due to TRS 
as in Eq. (16), and |uk|2 and |vk|2 are even functions of k, which indicates that the first two terms vanish after inte-
grating over k′. Thus we end up with

∫
ω
π π

Σ = | | − | | ′ + ′′ ′
<

′ ′
<⁎ ⁎k iaU d dk u v u v G k u v G k( )

2 2
( ) [ ( ) ( )], (83)E

R
k k k k E k k E,11

2 2
,12 ,21

where we replaced the sum ∑k′ with the integral ∫ π
Na dk

2
.

Next, we derive the changes of the density δnA and δnB caused by the electric field E. By using Eqs (50) and 
(75), the change of the density at A site is given by

∫δ
π

= − | | + | |

− − .

< <

< <⁎ ⁎

n iEa dk u G k v G k

u v G k u v G k
2 2

[ ( ) ( )

( ) ( )] (84)

A k E k E

k k E k k E

2
,11

2
,22

,21 ,12

Since the first and second terms vanish due to TRS, we obtain

∫δ
π

= + .< <⁎ ⁎n iEa dk u v G k u v G k
2 2

[ ( ) ( )] (85)A k k E k k E,21 ,12

Similarly, the change of the density at A site is given by

∫δ
π

= − +< <⁎ ⁎n iEa dk u v G k u v G k
2 2

[ ( ) ( )], (86)B k k E k k E,21 ,12

which is opposite in sign compared to δnA.

Data availability.  The data that support the findings of this study are available from the corresponding 
author upon request.
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