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Abstract

Background: In systems biology it is common to obtain for the same set of biological entities information from multiple
sources. Examples include expression data for the same set of orthologous genes screened in different organisms and data
on the same set of culture samples obtained with different high-throughput techniques. A major challenge is to find the
important biological processes underlying the data and to disentangle therein processes common to all data sources and
processes distinctive for a specific source. Recently, two promising simultaneous data integration methods have been
proposed to attain this goal, namely generalized singular value decomposition (GSVD) and simultaneous component
analysis with rotation to common and distinctive components (DISCO-SCA).

Results: Both theoretical analyses and applications to biologically relevant data show that: (1) straightforward applications
of GSVD yield unsatisfactory results, (2) DISCO-SCA performs well, (3) provided proper pre-processing and algorithmic
adaptations, GSVD reaches a performance level similar to that of DISCO-SCA, and (4) DISCO-SCA is directly generalizable to
more than two data sources. The biological relevance of DISCO-SCA is illustrated with two applications. First, in a setting of
comparative genomics, it is shown that DISCO-SCA recovers a common theme of cell cycle progression and a yeast-specific
response to pheromones. The biological annotation was obtained by applying Gene Set Enrichment Analysis in an
appropriate way. Second, in an application of DISCO-SCA to metabolomics data for Escherichia coli obtained with two
different chemical analysis platforms, it is illustrated that the metabolites involved in some of the biological processes
underlying the data are detected by one of the two platforms only; therefore, platforms for microbial metabolomics should
be tailored to the biological question.

Conclusions: Both DISCO-SCA and properly applied GSVD are promising integrative methods for finding common and
distinctive processes in multisource data. Open source code for both methods is provided.
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Introduction

In biology several important research questions focus on the

integration of data that come from different sources (e.g.,

organisms, measurement platforms) but that are gathered under

the same set of conditions or for the same set of biomolecules (e.g.,

genes, metabolites). Examples where different organisms are

compared include the study of orthologous genes [1–3] and the

comparison of the genome wide expression of yeast and human for

the same set of equivalent cell-cycle states [4]. Examples where

different measurement platforms form the different sources are the

integration of ChIP-chip, motif, and expression data collected for

the same set of genes [5] and metabolomics data obtained for the

same set of Escherichia coli samples using either gas chromatog-

raphy mass spectrometry (GC-MS) or liquid chromatography

mass spectrometry (LC-MS) as a chemical analysis method. In all

these examples, the use of multiple sources to collect data on the

same set of entities leads to data consisting of multiple data blocks;

this introduces a problem of data fusion.

Important biological questions for such multisource data often

aim at 1) finding the important biological processes underlying the

data as a whole and 2) disentangling therein the biological
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processes shared between the different sources and the biological

processes specific for a particular source. For example, the

interspecies comparative analysis of the expression of orthologous

genes aims at finding processes that are conserved (common) and

processes that are diverged (distinctive for both organisms); see [6].

The comparison of the genomewide expression between yeast and

human in equivalent cell-cycle states also aimed at common (e.g.,

cell-cycle oscillations) and distinctive (e.g., yeast-specific phero-

mone response) processes ([4]). In the example of GC-MS and LC-

MS data sets, it may be of interest to find the biological processes

of which the associated metabolites are targeted by only one of the

analytical methods [7].

A fruitful method to tackle the problem of finding the important

biological mechanisms that underlie a single data block is SVD

(PCA) [8]. This method and variants thereof (e.g., nonnegative

matrix factorization [9]) have also been used in the context of data

integration by using two-step approaches. Either by first applying a

separate SVD to each data block and subsequently comparing the

results [10] or by first building a model based on one particular data

block and then projecting the remaining data blocks on the model

[11]. As these approaches do not rely on a common model structure

that holds for all data blocks simultaneously, they are less well suited

to find the processes underlying all data and disentangling therein

processes shared between all data sources and processes distinctive

for a particular source. In fact, only few methods have been

proposed that do not require prior information and that model all

data simultaneously, instead of using a segmented strategy. [12]

proposed a method that uses a simultaneous strategy to find the

common components but that models the distinctive components

for each data block separately conditional upon the common

components. Similarly, [13] proposed a method that uses a

segmented strategy to extract the distinctive components of each

data block separately, and subsequently, uses a simultaneous

strategy to extract the common components. To our knowledge,

only two methods have been proposed that fit a fully integrated

simultaneous modelling framework and that disentangle common

and distinctive sources of variation. First, it was proposed to use the

generalized singular value decomposition (GSVD) as a generaliza-

tion of SVD to two data blocks that simultaneously gives an answer

to the second question of finding common and distinctive

mechanisms [4]. Second, the idea to reveal common and distinctive

processes by a proper rotation of the components resulting from a

simultaneous components analysis (SCA) was introduced by [14]

under the name DISCO-SCA. In this paper we will compare for the

first time both approaches and clearly show that standard

application of the GSVD may yield components that barely

approximate the data and that do not capture the underlying

processes. On the other hand, DISCO-SCA gives an optimal (in the

least squares sense) approximation of the data and yields a good

recovery of the underlying processes. As we will show, the GSVD

can be adapted to a method closely related to DISCO-SCA [15].

In this paper, we first formally introduce the methods with

emphasis on data analysis aspects. Then the GSVD and DISCO-

SCA decompositions are formulated. The performance of both

methods is compared on simulated data and the adapted GSVD is

introduced and applied to the same simulated data. Two empirical

applications, one on the genomewide expression of human and yeast

for synchronized cell-cycle states [4], and one on the metabolome of

E. coli measured by GC-MS and LC-MS [16] are discussed.

Methods

We will rely on the following notation: matrices are denoted by

bold uppercase characters, vectors by bold lower case characters,

and scalars (single numbers) by italic characters [17]. The

superscript T is used to denote the transpose of matrices and

vectors. The cardinality of an index is denoted by the capital of the

letter used to run the index. For example, the kth data block is

denoted by Xk with k running from 1 to K. The data of interest in

this paper consist of two data matrices, X1 and X2, that have a

common set of entities. Let this common set refer to the columns

of the data matrices. Then, X1 is of size I16J (i.e., X1 has I1 rows

and J columns) and X2 is of size I26J where in general I1?I2.

1. Generalized singular value decomposition
A generalization of the singular value decomposition to a

simultaneous decomposition of two data matrices with a common

set of column entities is offered by the generalized singular value

decomposition. The original GSVD as introduced by [18] requires

that I2$J; [19] generalized the GSVD to I2 of any size. Here, we

follow their presentation of the GSVD.

Decomposition. Let Q be the rank of the concatenated

matrix Xc = [X1
T X2

T]T, then

X1~U1S1VT, ð1Þ

X2~U2S2VT, ð2Þ

with U1 (of size I16I1) and U2 (of size I26I2) orthogonal, S1 (I16Q)

and S2 (I26Q) matrices with zeros everywhere except for the

diagonal positions of the square matrix containing the first Q rows

and columns of S1 and the last Q rows and columns of S2. For

these diagonal positions, it holds that s2
1qq+s2

2qq = 1 (see [19] for a

proof). V (J6Q) is a matrix of full rank that represents the common

structure shared between X1 and X2.

Estimation. Several algorithms have been proposed to

compute the GSVD, for an overview and comparison we refer

to [20]. The results described in this paper were obtained using a

MATLAB implementation of the algorithm described in [19], see

section 1 in Information S1; the code is available at the end of

Information S1. Note that MATLAB has a built-in GSVD

function but this does not make any assumptions on the ranks of

the data and therefore may yield results different from those

described in the literature.

Properties. The GSVD is a full decomposition of the data

blocks X1 and X2; unlike SVD, it does not give an optimal (in the

least squares sense) rank R approximation in presence of noise

correlated with the data. This is explained in Information S1

(section 2). In line with the general ideas underlying SVD and

PCA [4], suggested to base the rank R GSVD approximation on

the R components that account for the maximal amount of

variation in the concatenated data. As proven in Information S1,

the VAF in the concatenated data by the qth component equals

vT
q vq, with vq the qth vector of the common structure V in (4) and

(5). It is important to realize that we are interested in

approximating [X1
T X2

T]T and not, for example, in the derived

data X1X2
21 (assuming the special case of an invertible matrix

X2). In the latter case, the GSVD gives the ordinary SVD of these

derived data and thus can be used for the optimal approximation

of X1X2
21 (see [21] for an application).

Whether a component is common or distinctive, can be

determined from the complementary values s2
1qq and s2

2qq: If

both s2
1qq and s2

2qq are close to 0.5, the component is common; if

s2
1qq is close to one (and thus s2

2qq close to zero), the component is

distinctive for X1; and if s2
2qq is close to one, the component is

distinctive for X2. In fact s2
1qq (s2

2qq) can be interpreted as the

Common and Distinctive Processes
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proportion of VAF by GSVD component q in data block X1 (X2);

see section 2.1. of Information S1.

2. Common and distinctive simultaneous components
Simultaneous component methods are a class of closely related

integrative methods using a simultaneous modelling approach. Let

the PCA decomposition of a single data block Xk into R

components be

Xk~TRkPT
RkzEk, ð3Þ

with TRk of size Ik6R and PRk of size J6R. All simultaneous

component methods are a generalization of PCA to more than one

data matrix by imposing PR1 = .. = PRK = PR on the matrix-

specific PCA decompositions (3). We refer to [22] for a general

framework and to [23] for the link between simultaneous

component methods and Tucker-1 in case of three-way data.

Decomposition. Let R be the desired rank of the approxi-

mation of the data, then the simultaneous component decompo-

sition of X1 and X2 is given by

X1~TR1PT
RzE1, ð4Þ

X2~TR2PT
RzE2, ð5Þ

with PR
TPR = I in case the columns refer to the samples and

[TR1
T TR2

T][TR1
T TR2

T]T = I in case the columns refer to the

variables. Note that the matrices PR are the same for each data

block which explicitly shows that the same low-dimensional space

(of dimension R) is used for both data blocks with exactly the same

component scores PR (columns refer to the samples) or component

loadings PR (columns refer to the variables). The simultaneous

components represent hidden biological processes underlying the

data. The scores express how the samples are related to these

simultaneous components, e.g., how strongly the underlying

biological process is involved in the cellular state. The component

loadings express how the variables are related to the simultaneous

components, e.g., how strongly a gene is up- or down-regulated in

the underlying biological process.

Estimation. The least squares estimation of the simultaneous

component model with R components can be obtained by a SVD

of the concatenated data Xc = UcScVc
T; in case the columns refer

to the variables the concatenated matrix-specific component scores

[TR1
T TR2

T]T are set equal to UcR and the common loadings PR

(the same matrix of loadings is used for each data block) are set

equal to VcRScR, in case they refer to the samples the loadings are

[TR1
T TR2

T]T = UcRScR and the component scores are PR = VcR

(the same matrix of component scores is used for each data block).

Properties. The data are approximated by the R simulta-

neous components associated to the largest singular values of the

concatenated data Xc. This is the least squares approximation and

thus yields the maximal variation accounted for in the concate-

nated data. The VAF by simultaneous component r equals s2
crr.

To find common and distinctive components, an additional step

is introduced. Let TR1, TR2, and PR give an optimal approxima-

tion of Xc. Then [TR1
T TR2

T]TB and PRB with B an (orthogonal)

rotation matrix is optimal too. [14] propose to use this rotational

freedom to rotate the simultaneous components to a partially

specified target that defines distinctive components as components

with all zero scores for the data block that they do not underlie (the

remaining parts are left unspecified). Let TTarget denote the target,

then the rotation matrix B is found using the following objective

function [24–25],

min
B

W. TT arg et{ TT
R1TT

R2

� �T
B

� ����
���

2

s:t: BTB~I, ð6Þ

with W a matrix with ones on the positions corresponding to the

zeros specified in the target and with zeros on all remaining

position and N denoting the elementwise product. In this way only

those parts targeted to be zero add to the objective function; the

remaining parts have no influence on it. An illustration of the

decomposition of X1 and X2 in three simultaneous components

and the associated target matrix for the case of one distinctive

component for X1, one for X2, and one common component is

given in Figure 1. For the estimation of B, we relied on an efficient

numerical procedure that uses surrogate functions [26] (this is

different from [14] which relies on general purpose rotation

routines). When two or more components have the same status

(e.g., two distinctive components for X1), this yields two equal

columns in the target matrix and thus an indeterminacy due to the

rotational invariance of the rotation criterion for these compo-

nents. In such cases, we additionally rotate these components such

that the first one explains maximal VAF in [TR1
T TR2

T]T and

each subsequent component explains the maximal variation in the

residual variation (confer singular value decomposition). The

source code of the MATLAB implementation of this procedure is

available in Information S1. If one knows how many common

components and how many distinctive components for X1 and X2

underlie the data, the target and thus also the rotation matrix B
follow automatically. When such information is not available, we

propose a strategy based on a comparison of all possible targets.

For each of the target rotations, the deviation of the rotated

solution from the target is measured and the solution with the

lowest deviation is retained. As a measure of deviation, we propose

to take the maximum of the componentwise deviations. The

componentwise deviation is measured 1) for a distinctive

component, as the proportion of variation accounted for in the

data block where the component should be absent and 2) for a

common component, as the absolute difference in proportion of

variation accounted for between the two data blocks (see sections

3.1 and 3.2. for an illustration of the strategy). In this way, the

solution is retained that attains the target best for each component.

Related method. Our method is based on revealing under-

lying dimensions just as in factor analysis, with multigroup common

factor analysis being its extension to the case of multiblock data. The

main difference is that the dimensions in PCA are based on a linear

combination of the variables and, more importantly, that our

method can be applied directly while multigroup factor analysis is a

supervised method that needs prior information (e.g., derived from

PCA/SVD). Another difference is that multigroup factor analysis

does not allow for factors that underlie all data blocks and that are at

the same time outspokenly distinctive.

Results

The performance of GSVD and DISCO-SCA is compared first

for simulated data and then for two empirical data sets; a first

empirical data set is on comparative genomics using synchronized

cell cycle experiments for the human, and yeast genomes and a

second one is on coupled metabolomics data as obtained for the

same samples of E. coli but using different chemical analysis methods.

1. Simulated data example
The simulated data were generated under a model that fits both

the GSVD and DISCO-SCA decompositions:

Common and Distinctive Processes
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X1~UR1SR1VT
RzE1, ð7Þ

X2~UR2SR2VT
RzE2, ð8Þ

with U1
TU1 = I, U2

TU2 = I, VTV = I, and with X1 of size 144628

and X2 of size 44628 and R = 6. S1 and S2 are diagonal matrices

defining whether the components are common (equal singular

values: s1rr = s2rr) or distinctive (e.g., to impose a component that is

distinctive for X1, s1rr is set equal to a substantial value and s2rr to

zero). For example, in case of two distinctive components for X1,

two distinctive for X2, and two common components:

diag S1ð Þ~ 27:91 0:00 22:73 22:34 0:00 16:42½ �,

diag S2ð Þ~ 27:91 26:95 0:00 22:34 18:94 0:00½ �,

with the diag notation indicating that the diagonal of the matrix is

taken. In order to generate more realistic data, we used the GC-

MS and LC-MS data (to be discussed in the next section) in the

following way: U1 and U2 are formed by the six left singular

vectors associated to the six largest singular values of the GC-MS

and LC-MS data respectively and V by the six right singular

vectors associated to the largest singular values of the concatenated

data. E1 and E2 were generated from a normal distribution with

mean zero and variance such that these residual matrices account

for 20 percent of the variation of X1 and X2 respectively. We

generated a single representative datapair (X1,X2) for three

different cases: only common components (s1rr = s2rr for all

i = 1…6), only distinctive components (three for each data block),

and a mix of common and distinctive components (two distinctive

for each data block and two common). These three cases were

analyzed both by the GSVD and DISCO-SCA.

A first measure of performance that we will consider, is the

proportion of VAF because this indicates how well the data are

approximated by the components. Table 1 summarizes the results:

The three panels refer to the three simulated cases, namely only

distinctive components in the top panel, a mix of common and

distinctive components in the middle panel, and only common

components in the bottom panel. Within each panel of Table 1,

the proportion of variation that is accounted for in each datablock

by each of the six components (the lines C1–C6) and their total

(the ‘Total’ line) is displayed. In the first two columns this is for the

imposed structure as represented by (7) and (8), in the middle two

columns this is for the components as obtained by the GSVD, and

in the last two columns this is for the components obtained from

DISCO-SCA. Note that we selected both for the GSVD and

DISCO-SCA the six components with the highest VAF in the

concatenated data. We consider six components because this is the

number of (common and distinctive) components we generated.

Clearly DISCO-SCA outperforms GSVD when common compo-

nents are present (middle and bottom panel): whereas the DISCO-

SCA model fits well to the data in terms of the proportion of VAF,

this is not the case for the GSVD. When all components are

distinctive, both methods have a good fit.

Second, the recovery of the underlying true structures (common

scores VR and block-specific scores UR1 and UR2) is evaluated.

Block-specific parts for which skrrurk is a zero vector, are not

included in the calculations because urk is arbitrary in these cases.

Figure 1. Visualization of the DISCO-SCA approach. Green is used for negative scores, black for (close to) zero scores, and red for positive
scores. From left to right the method proceeds as follows: 1) The data are decomposed by SCA into matrices [TR1

T TR2
T]T and PR of rank 3; 2) a

partially specified target is defined with one specific component for each data block and one common component by specifying zeros for the parts in
the specific components that correspond to the data block in which the component should not be present; 3) the matrix [TR1

T TR2
T]T is optimally

rotated to the target resulting in the DISCO-SCA rotated matrix [TR1
T TR2

T]T B and the counter-rotated matrix BTPR
T.

doi:10.1371/journal.pone.0037840.g001
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A suitable measure of performance, is the average Tucker’s

coefficient of congruence w calculated between the columns of the

true and recovered structures: it can be interpreted as a correlation

(21#w#1) and is sensitive to rotations but not to scaling [27]. In

the calculation of w, we accounted for permutations and reflections

of the components. The insensitivity to scaling makes that the

recovery of UR1 and UR2 or of UR1SR1 and UR2SR2 yields the

same value (unless one of the diagonal values of SR1 or SR2 equals

zero). Table 2 reports the average w value over 100 replications:

The previously described data generation procedure was used but,

in order to introduce variability over the replicate values in UR1,

UR2, and V, these structures were derived from data based on

sampling observations (with replacement) from the empirical GC-

MS and LC-MS data (and hence not derived from the actual data

as we did to produce the results in Table 1). Clearly, the recovery

by GSVD in presence of common components is inferior to the

recovery by DISCO-SCA and this is the more so the more

common components are present.

Summarized, DISCO-SCA outperforms GSVD for the three

simulated data cases as it gives a better approximation of the data

and a better recovery of the underlying common and distinctive

processes. The performance of the GSVD seems to deteriorate

gradually in presence of common components. In section 2 of

Information S1 we explain this trend of decreasing performance

for more common components, in section 3 we show that the full

(i.e., no rank reduction) GSVD decompositions are not unique in

several cases, including the case of perfect common and perfect

distinctive data and in section 4 we confirm the results using more

extensive simulations.

Interestingly, as shown in section 5 of Information S1, the

GSVD can be used in a way that it becomes a least-squares

method, either by a minor modification of the algorithm of [19]

(MATLAB code for this adapted algorithm is included at the end

of Information S1), or equivalently by replacing the data by data

derived from the rank R least squares approximation of the

Table 1. Proportion of variation accounted for by GSVD and DISCO-SCA for data generated to have a certain common and/or
distinctive structure.

Imposed GSVD DISCO-SCA Ad. GSVD

X1 X2 X1 X2 X1 X2 X1 X2

Distinctive C1 0.00 0.48 0.00 0.50 0.01 0.50 0.01 0.50

C2 0.44 0.00 0.43 0.00 0.45 0.00 0.43 0.00

C3 0.23 0.00 0.23 0.00 0.24 0.01 0.25 0.01

C4 0.00 0.21 0.01 0.20 0.01 0.21 0.01 0.20

C5 0.13 0.00 0.14 0.00 0.13 0.01 0.14 0.01

C6 0.00 0.10 0.01 0.14 0.01 0.13 0.01 0.14

Total 0.80 0.80 0.82 0.84 0.85 0.86 0.85 0.86

Common & Distinctive C1 0.31 0.30 0.00 0.25 0.31 0.29 0.29 027

C2 0.20 0.19 0.15 0.00 0.20 0.19 0.22 0.20

C3 0.20 0.00 0.15 0.00 0.20 0.01 0.01 0.25

C4 0.00 0.20 0.06 0.08 0.01 0.25 0.20 0.01

C5 0.11 0.00 0.04 0.10 0.12 0.01 0.01 0.12

C6 0.00 0.10 0.01 0.12 0.01 0.12 0.12 0.01

Total 0.82 0.80 0.41 0.55 0.84 0.86 0.84 0.86

Common C1 0.27 0.27 0.06 0.11 0.28 0.29 0.23 0.23

C2 0.18 0.19 0.03 0.09 0.19 0.20 0.17 0.21

C3 0.12 0.12 0.05 0.07 0.12 0.13 0.12 0.12

C4 0.10 0.10 0.02 0.08 0.10 0.09 0.12 0.11

C5 0.07 0.07 0.05 0.06 0.08 0.09 0.09 0.12

C6 0.06 0.06 0.03 0.07 0.07 0.06 0.11 0.08

Total 0.79 079 0.24 0.48 0.84 0.86 0.84 0.86

Proportion of variation accounted for (VAF) by each of six components (the lines C1–C6) and their total (the ‘Total’ line). These are the six components with highest VAF
in the concatenated data. In the left panel we show the proportion of VAF as imposed on each data block, while in the three panels at the right we show the proportion
of VAF as recovered by GSVD, DISCO-SCA, and adapted GSVD. In the top panel all imposed components are distinctive, in the middle panel the components are a mix of
common and distinctive components, and in the bottom panel all components are common.
doi:10.1371/journal.pone.0037840.t001

Table 2. Recovery by GSVD and DISCO-SCA for data
generated to have a certain common and/or distinctive
structure.

GSVD DISCO-SCA

VR UR1 UR2 VR UR1 UR2

Distinctive 0.92 0.86 0.96 0.99 0.98 0.98

Comm. & dist. 0.82 0.56 0.67 0.99 0.98 0.98

Common 0.55 0.34 0.43 0.96 0.93 0.94

Congruence between constructed and recovered scores in each of the three
conditions (only distinctive components, common and distinctive components,
only common components).
doi:10.1371/journal.pone.0037840.t002

Common and Distinctive Processes
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concatenated data, as suggested by [15], and followed by a GSVD

algorithm that determines the rank of the data (e.g., the algorithm

in [19]). Note that the first step in the latter approach is a

simultaneous component analysis. Application of this adapted

GSVD to the simulated data yields the proportion of VAF in the

last columns of Table 1. As expected, the total VAF by the adapted

GSVD is the same as for DISCO-SCA; both methods give an

optimal approximation of the data. The recovery of the underlying

structures by the adapted GSVD improves the GSVD though it

remains below the recovery obtained with DISCO-SCA (averaged

over 100 replications and over VR, UR1, and UR2, w&:91 for the

fully distinctive case, w&:88 for the mixed case, and w&:64 for the

common case). This can be explained by the correspondence

between the data generation mechanism and 1) the rotation to a

target partially specified by zeros and 2) the additional rotation of

DISCO-SCA for components of the same type to maximal VAF.

2. Empirical data examples
2.1. Cross-species comparative genomics. A domain

where it is of particular interest to find common and specific

processes, is comparative genomics that studies the similarities and

differences in the genomes of different species. A better

understanding of the genome is gained by finding both evolution-

ary conserved and diverged elements. Also, knowledge of gene

function in one species can be of use for the annotation of the gene

in other species. Here, we will re-analyze data on the genome wide

expression of the human and yeast genomes in cell-cycle

experiments [4]. These involve the expression of 12 056 human

and 4 523 yeast genes on 18 arrays (see [4] for more information

and links to the data). For yeast, the culture was synchronized in

the M/G1 phase and monitored over two cell cycle periods (7–

119 minutes with a seven minutes interval); for human, cultures

were synchronized initially in S phase and monitored over

34 hours with a 2 hour interval. As in [4] (see the supplementary

Mathematica code of [4]), the first measurement of yeast is aligned

with the first in human, the second with the second, and so on. We

consider the first 12 time points yielding data of size 12 056612

and 4523612.

The data were mean-centered and scaled to sum-of-squares one

per gene prior to the analysis. This avoids obtaining a dominant

component that merely reflects absolute differences between genes

and is the recommended preprocessing strategy for principal

component analysis [28]. An additional interpretational advantage

is that the loadings then equal the correlation of the gene

expression profile with the components and thus allows for the use

of enrichment tools that include the correlation as a metric to rank

the genes. A further pre-processing step is that we divided each

data block by the square root of the number of its genes to avoid

that the GSVD and DISCO-SCA solutions are dominated by the

much larger human data block [22]. Within each data block, the

loadings then equal the correlations divided by the square root of

the number of genes in the data block. Because this is a constant

scaling factor within each data block and the enrichment analyses

are conducted per block, this means that the correlation can still be

used as a metric to rank the genes. Data obtained in this manner

were used as input for the GSVD and DISCO-SCA analysis.

As a first step in the analyses, a decision has to be made on how

many components underlie the data. Therefore, we subjected the

data to a simultaneous component analysis and we inspected the

VAF by each component in each data block to decide how many

components explain the structural part in the data, see Figure 2

(with the components ordered in function of the overall VAF).

This type of plot generalizes the scree graph used in principal

component analysis (see [29]) for one data block to the case of

multiple data blocks. In Figure 2, there is a more pronounced

decrease in VAF after the first and fifth component for both the

human and yeast data suggesting that there is a dominant process

underlying the data and that the first five components are distinct

from noise. Therefore, we will reduce the data to 5 components.

Second, both for DISCO-SCA and the (adapted) GSVD, we have

to decide how many of these five components are common, how

many are specific for human and how many for yeast. For

DISCO-SCA, we rotated the five simultaneous components to all

21 possible combinations of common, human specific, and yeast

specific components. Figure 3 displays the deviation from the

target against the number of distinctive components, defined as the

deviation of the component with maximal deviation (for a

distinctive component the deviation is measured as the proportion

of VAF in the data block where the component should be absent

while for a common component the deviation is measured as the

difference in the proportion of VAF between the data blocks). The

lowest value is obtained for the solution with three common

components, one yeast-specific and one human-specific compo-

nent. The VAF of this solution resembles the solution found by the

adapted GSVD; see Table 3 that displays the VAF by DISCO-

SCA, GSVD and adapted GSVD. Except for the GSVD, all

solutions account for a large portion of the total variation (73

percent for the human data, 80 percent for the yeast data). Note

that the human specific DISCO-SCA and adapted GSVD

component does not have a clear status as it still accounts for a

substantive amount of variation in the yeast data.

The biological validation and the annotation of the components

is based on a gene set enrichment analysis using the correlation of

the expression profile with the component scores as a metric for

ranking the genes. As mentioned above, with proper pre-

processing of the data, the correlation coincides with the loading

of the gene on the component: higher loadings (in absolute value)

indicating that the gene is more important for the component.

This makes existing tools for enrichment analysis that include the

correlation as a metric (for example GSEA [30,31]) proper tools

Figure 2. Proportion of variation accounted for by SCA in each
data block. Upper panel : for the human data; lower panel: for the
yeast data. The components are ordered according to the VAF for the
concatenated data.
doi:10.1371/journal.pone.0037840.g002
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for the analysis of PCA based methods. GSEA also includes the

option to use a self-defined ranking of the genes; this was used for

the annotation of the naive and adapted GSVD results. The

common components are significantly enriched (FWER,.05; this

statistic is based on a permutation test where the ranks for the

biological gene sets are compared to ranks for randomly created

gene sets) in gene ontology terms related to the cell cycle (e.g. Cell

cycle, DNA replication, Mitosis, M phase; see Table S1 and Table

S2). GSVD finds fewer terms than DISCO-SCA and the adapted

GSVD. All methods are able to identify the relation of ribosome

biogenesis to the yeast cell cycle [32] but most terms related to

ribosomal RNA are identified by DISCO-SCA. Only DISCO-

SCA retrieves the yeast-specific response to pheromones, which is

consistent with [4]. Further support of a common cell cycle space

is given by Figures 4, 5, and 6 that plot the first two common

components found by the DISCO-SCA (Figure 4), adapted GSVD

(Figure 5), and the GSVD (Figure 6). Each panel depicts the time

points as oriented vectors defined by the component scores of the

(first) two common components and the genes - annotated for their

cell cycle related function - as the loadings on these components.

Panels at the left refer to the yeast data, at the right to the human

data. The simultaneous modelling approach is reflected in the

positions of the time points: these are exactly the same for both

species (although differentially labelled). In general the ordering of

the time points is that of a clock where the latest time folds back to

the earliest time. Similar gene labels cluster together and these

clusters are ordered according to the cell cycle phase. To assess the

cluster-quality of the labelled genes in Figures 4, 5, and 6, we

checked whether genes with the same cell-cycle phase label appear

close together and well-separated from genes with another label.

As a measure, we used the correlation between, on the one hand,

closeness between the pairs of labelled genes in the modelled space

with, and, on the other hand, a binary vector indicating whether

the pair has the same (0) or different (1) cell cycle phase annotation

[33]. As a measure of closeness between a pair of labelled genes,

we calculated the cross product of the loadings in the five-

dimensional solution space. This correlation amounts for the

human data to .45 for DISCO-SCA and the adapted GSVD and

to .39 for the GSVD; for the yeast data it amounts to .40 for

DISCO-SCA, .38 for the adapted GSVD, and .32 for the GSVD.

In this particular example with only 12 time points, the

performance of the GSVD is not much worse than that of the

adapted GSVD or DISCO-SCA. As illustrated in Information S1

(see section 4.1.), the performance deteriorates with an increasing

number of data columns. While DISCO-SCA and the adapted

GSVD still recover the common cell cycle space when including

all 18 time points in the analysis, this is no longer the case for the

GSVD. As previously, we assessed the quality of clustering of the

cell cycle phase annotations with the correlation of the cross

products calculated between pairs of genes in the five component

space with a binary vector indicating whether the pair of genes has

the same (0) or different (1) annotation. This correlation drops, for

the human data, drastically to 0.08 for the GSVD and just a little

(to 0.42) for DISCO-SCA and the adapted GSVD; for the yeast

data it drops to 0.20 for the GSVD and to 0.35 for DISCO-SCA

and the adapted GSVD.

2.2. Metabolomics data. The metabolome composition of

28 samples of E. coli, collected under different environmental

conditions and harvested at different elapsed fermentation times

was analyzed using mass spectrometry (MS) in combination with

on the one hand gas chromatography (GC) and on the other hand

Table 3. Proportion of variance accounted for the comparative genomics data by DISCO-SCA, by the GSVD, and by the adapted
GSVD.

DISCO-SCA GSVD adapted GSVD

human yeast TOTAL human yeast TOTAL human yeast TOTAL

C1 0.23 0.23 0.23 0.08 0.10 0.10 0.11 0.10 0.10

C2 0.04 0.30 0.17 0.04 0.43 0.22 0.05 0.43 0.23

C3 0.22 0.08 0.15 0.22 0.03 0.14 0.35 0.08 0.22

C4 0.13 0.11 0.12 0.10 0.08 0.08 0.13 0.09 0.11

C5 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.10 0.09

Total 0.73 0.81 0.77 0.52 0.72 0.63 0.73 0.81 0.76

Proportion of variance accounted for the comparative genomics data by DISCO-SCA (with 3 common components: C1, C4, C5; one human component: C3; and one
yeast component: C2), and by the GSVD and adapted GSVD. The components are ordered to have maximum congruence between the different analysis methods.
doi:10.1371/journal.pone.0037840.t003

Figure 3. Deviation from the target structure in function of the
number of distinctive components. All possible combinations of
common and yeast and human-specific components in a model with
five components are tried as a target for the DISCO rotation. The
deviation of the DISCO-SCA solution from this target is displayed
against the number of distinctive components. The targets are labelled
by the numbers between brackets (the first number indicates the
number of distinctive components for yeast, the second for human).
The line connects solutions with the lowest deviation for a fixed
number of distinctive components.
doi:10.1371/journal.pone.0037840.g003
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Figure 4. Common cell cycle space as found with DISCO-SCA. Both the time points and the cell cycle annotated genes are displayed with
respect to the first two common components. The time points are displayed as oriented vectors; the genes as labelled points. The gene labels refer to
phases of the cell cycle: M (magenta), M/G1 (magenta), G1 (red), G1/S (red), S (black), S/G2 (blue), G2 (blue), G2/M (green).
doi:10.1371/journal.pone.0037840.g004

Figure 5. Common cell cycle space as found with the adapted GSVD. Both the time points and the cell cycle annotated genes are displayed
with respect to the first two common components. The time points are displayed as oriented vectors; the genes as labelled points. The gene labels
refer to phases of the cell cycle: M (magenta), M/G1 (magenta), G1 (red), G1/S (red), S (black), S/G2 (blue), G2 (blue), G2/M (green).
doi:10.1371/journal.pone.0037840.g005

Figure 6. Common cell cycle space as found with the naı̈ve GSVD. Both the time points and the cell cycle annotated genes are displayed with
respect to the first two common components. The time points are displayed as oriented vectors; the genes as labelled points. The gene labels refer to
phases of the cell cycle: M (magenta), M/G1 (magenta), G1 (red), G1/S (red), S (black), S/G2 (blue), G2 (blue), G2/M (green).
doi:10.1371/journal.pone.0037840.g006
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liquid chromatography (LC) as a separation method [16]. This

resulted in two coupled data blocks: a GC-MS block with the peak

areas of 144 metabolites in the 28 conditions and a LC-MS block

with the peak areas of 44 metabolites in these same conditions.

The GC-MS and LC-MS methods used in this study were

complementary methods and detected in general different classes

of metabolites although some classes are detected by both methods

[7]. Full metabolome coverage by applying as many chemical

analysis methods as possible is in practice generally too expensive;

therefore it is useful to know which platform targets the important

metabolites in a specific biological setting [7]. Here we will

illustrate the use of DISCO-SCA to find the biological processes

targeted by GC-MS, by LC-MS, and by both detection methods.

In the data considered here, only those metabolites that were

detected in at least 20 percent of the experiments were used;

furthermore, the data were manually curated and normalized

[34]. Measurement values below the detection threshold were set

equal to one half of the smallest detected value [16]. To deal with

skewness and asymmetry, the square root of each value was taken

[27]. Because the metabolites differ largely in abundance and we

do not want the most abundant metabolites to dominate the

analysis, the values were mean centered and scaled to sum of

squares one per metabolite. Similarly, because the block of GC

data is much larger, each block was scaled to sum of squares one.

A first question that has to be answered is how many dimensions

are needed to describe the important processes that underlie the

fused GC-MS/LC-MS data. In the literature on simultaneous

component analysis few guidelines are offered to assist in this

choice. Here, we make use of a generalization of the scree graph

used in principal component analysis (see [29] for a discussion on

selecting the number of principal components) to simultaneous

component analysis by displaying the proportion of VAF by the

simultaneous components in each of the data blocks (see [22]):

Figure 7 displays for each component the proportion of VAF in

the GC data (upper panels) and the LC data (lower panels). Panels

at the left refer to the simultaneous components while panels at the

right refer to the GSVD components. Both for SCA and GSVD,

the components are ordered according to the proportion of VAF

in the concatenated data. For SCA (the left panels (a) and (b) in

Figure 7) it seems that there is a sudden decrease after the fifth

component for GC and after the third for LC. As we are also

interested in components that are distinctive for GC, we will retain

five components in the approximation. In total these five

components account for 51% (GC) and 68% (LC) of the variation

(note that the adapted GSVD for R = 5 would give the same total

VAF). For the GSVD, the five components that account for

maximal variation in the concatenated data, account for 17%

(GC) and 59% (LC) of the variation respectively. This confirms

Figure 7. Proportion of variation accounted for in each data block. Panel (a): by SCA for the GC data; panel (b): by SCA for the LC data; panel
(c): by GSVD for the GC data; panel (d): by GSVD for the LC data. For each method, the components are ordered according to the VAF in the
concatenated data. The bars for the rank 5 approximation are coloured in red.
doi:10.1371/journal.pone.0037840.g007

Common and Distinctive Processes

PLoS ONE | www.plosone.org 9 May 2012 | Volume 7 | Issue 5 | e37840



what we observed for the simulated data: DISCO-SCA (and thus

also the adapted GSVD) gives a better approximation of the data;

the difference in VAF for the GC data is large.

The simultaneous components are a mix of information that is

distinctive and information that is common to the different data

matrices. To disentangle these sources of variation, we use the

rotational freedom of PCA to rotate the metabolite loadings to a

partially specified target. We tried all possible types of targets for

five components (21 possible patterns of common and distinctive

components). Figure 8 displays the deviation from the target

against the number of distinctive components. The least deviating

solution is the one with two distinctive components for the GC

data, two distinctive for the LC data, and one common

component.

The proportion of VAF per data block by the five simultaneous

components before and after the rotation is shown in Table 4 for

each data block. Clearly the rotation reveals the common and

distinctive components. Note that rotation does not change the

total proportion of VAF by SCA. In Table 4, also the results for

the adapted GSVD are shown. These are almost identical to the

results obtained with DISCO-SCA, which is confirmed by high

average Tucker congruence values (w&:90) both for the common

and block-specific structures. In the remainder of this section, we

discuss the interpretation of the DISCO-SCA results.

To interpret the biological processes captured by the simulta-

neous components, we use the scores of the different fermentation

samples on each of the five components (see Table 5) and of the

metabolites (see the heatmap of the hierarchically clustered

metabolite loadings on the five components in Figure 9). A

description of the experimental design underlying these batches

can be found in [16], here it is summarized by the first two

columns of Table 5 that label the experiments in relation to the

Figure 8. Deviation from the target structure in function of the
number of distinctive components. All possible combinations of
common and yeast and human-specific components in a model with
five components are tried as a target for the DISCO rotation. The
deviation of the DISCO-SCA solution from this target is displayed
against the number of distinctive components. The targets are labelled
by the numbers between brackets (the first number indicates the
number of distinctive components for GC, the second for LC). The line
connects solutions with the lowest deviation for a fixed number of
distinctive components.
doi:10.1371/journal.pone.0037840.g008

Table 4. Proportion of variance accounted for the mass
spectrometry data by the simultaneous components before
(SCA) and after rotation (DISCO-SCA) and by the adapted
GSVD.

SCA DISCO-SCA Adapted GSVD

GC LC GC LC GC LC

C1 0.07 0.31 0.04 0.31 0.03 0.31

C2 0.13 0.13 0.06 0.15 0.07 0.15

C3 0.11 0.11 0.16 0.05 0.16 0.05

C4 0.12 0.05 0.13 0.04 0.15 0.04

C5 0.08 0.08 0.11 0.12 0.11 0.12

Total 0.51 0.67 0.51 0.67 0.51 0.67

Proportion of VAF by each of the five simultaneous components (lines C1–C5)
and their total (‘Total’) for simultaneous components analysis before (SCA) and
after rotation (DISCO-SCA) and for adapted GSVD.
doi:10.1371/journal.pone.0037840.t004

Table 5. Scores of the 28 E. coli samples on the DISCO-SCA
components.

LC1 LC2 GC1 GC2 LC-GC

Reference 16 0.13 20.02 0.07 0.09 0.29

24 20.17 20.04 0.05 0.11 0.10

32 20.24 0.01 20.03 0.07 20.21

40 20.15 0.10 0.07 0.09 20.27

48 0.12 0.15 0.04 0.03 20.22

pH + 16 20.63 0.19 0.18 0.17 0.21

24 0.13 0.34 20.14 0.12 20.17

40 0.07 0.41 0.10 0.08 20.20

48 0.09 0.00 0.11 0.13 20.05

Oxygen + 40 0.01 20.09 20.22 20.06 0.10

Oxygen ? 16 0.16 20.03 0.03 0.20 0.26

24 20.18 20.04 20.26 0.04 0.09

40 20.05 20.22 20.49 20.10 20.09

64 20.05 20.12 20.46 20.12 20.10

phosphate + 16 0.19 20.10 0.07 0.14 0.24

24 0.28 20.17 20.02 0.13 0.21

40 20.07 20.17 20.19 20.09 0.14

48 20.15 0.11 20.01 0.03 0.07

phosphate 2 16 20.02 0.01 20.03 0.17 0.04

24 0.19 0.28 20.20 0.08 20.18

40 0.31 0.13 0.07 0.07 20.08

succinate 24 0.02 0.20 0.11 20.44 0.23

40 0.00 0.16 0.11 20.53 0.12

48 0.02 0.03 0.14 20.47 0.03

Wild type 16 0.13 20.14 0.21 0.16 0.17

24 20.21 20.24 0.18 0.09 20.02

40 20.11 20.32 0.27 20.09 20.40

48 0.17 20.39 0.25 20.10 20.31

Scores of the 28 samples on the components. The first two columns describe
the experimental design; the next two the scores on the distinctive LC
components; the fifth and sixth the scores on the distinctive GC components;
and the last the scores on the common component.
doi:10.1371/journal.pone.0037840.t005
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reference condition (‘+’ means more than in the reference, ‘2’ less,

and ‘oxygen?’ means that not the dissolved oxygen level but the

steering speed of the fermenter was controlled) and elapsed

fermentation time. The first distinctive component for LC shows

mainly an effect of the growth condition with an elevated pH at

the early (16 hrs) phase, leading to an abundance of nucleotides

important for the energy metabolism in a cell (i.e. AXP, GXP,

UXP en CXP). The second LC-specific component shows an

effect on the flavin nucleotides FAD and FMN and several other

seemingly unrelated nucleotides and CoA esters that are more

abundant in conditions with an elevated pH or reduced phosphate

level at the mid-logarithmic phase and depleted in the wild type

strain. The first specific GC component is associated to the

‘oxygen?’ fermentation condition resulting in a changing, i.e.

reduced, dissolved oxygen concentration in the course of the

fermentation. Besides a large number of (unidentified) disaccha-

rides, pyruvate and lactate are present in abundance under this

condition. This is in agreement with a likely reduced flux through

the electron transport chain condition under this environmental

condition resulting in the recycling of reducing equivalents via

lactate formation. The second specific GC component is

associated to succinate catabolism, leading to an increase in

concentration of metabolites like fumarate, malate, aspartate, and

a-ketoglutarate. This makes biological sense as these metabolites

are one or two enzymes removed from succinate in central

metabolism. The common component reflects a linear fermenta-

tion time effect with very positive scores for the short fermentation

times and very negative scores for the long fermentation times.

Previously, these data were analyzed by a simultaneous compo-

nent analysis, followed by a rotation to simple structure [22]. In

that analysis, the currently clear presence of two distinctive

processes for each separation method and of one common process

was not revealed. In addition, the linear effect of fermentation time

found here as a mechanism caught by both separation methods,

did not show up in this previous analysis.

Discussion

The GSVD was proposed as a method to find common and

distinctive processes in fused biological data. However, as shown,

the GSVD is a full decomposition of the data and does not yield an

optimal approximation of the original data by a limited number of

components. As an alternative with the property of an optimal

approximation by a few components, simultaneous component

methods with rotation to common and distinctive components

(DISCO-SCA) was proposed. Using simulated data, we showed

that DISCO-SCA recovers the underlying common and distinc-

tive processes whereas the GSVD only recovers the distinctive

processes which is not the most interesting property since many

real-life functional genomics data sets have some degree of overlap

or commonness. The use of DISCO-SCA to find common and

distinctive processes was illustrated in two applications and

compared with the results of a naı̈ve GSVD analysis. First, for a

case of comparative genomics with the genome wide expression of

human and yeast in synchronized cell cycle experiments, it was

shown that the common components found by DISCO-SCA and

the adapted GSVD were more enriched for terms related to cell

cycle than GSVD. Furthermore, as shown, the performance of the

GSVD deteriorates the more experiments or samples are

considered. Second, for metabolomics data obtained for the same

samples of E. coli grown under different environmental conditions

but targeted with two different metabolomics platforms (GC-MS

and LC-MS): the analysis revealed processes specific for LC

(energy metabolism, flavin cofactor related metabolism), specific

for GC (recycling of reducing equivalents, succinate catabolism),

and common processes (linear time effect). The GSVD analysis

accounted in case of the GC data for much less variance (17%

compared to 51%).

Interestingly, it appeared that the GSVD can be easily

implemented in a way that it yields an optimal approximation of

the data. Results of applying the adapted GSVD algorithm to the

simulated and empirical data were shown to be highly similar to

DISCO-SCA. In fact, there is a close resemblance between the

methods. DISCO-SCA is a two-step method, namely SCA and

rotation. The GSVD also involves SCA in the first step (in the

approach of [15] and in the algorithm of [18]). Furthermore, we

showed in section 5 of Information S1 that the adapted GSVD

algorithm 1) is equivalent to a simultaneous component analysis

also followed by a rotation and 2) imposes the same structure on

the data as imposed by a particular simultaneous component

analysis model, namely SCA-IND [35].

DISCO-SCA and the GSVD, properly applied, are promising

methods to tackle other biological questions such as identifying

diverged versus conserved processes in evolutionary biology. In

addition, cases with more than two data blocks can be considered.

The application of DISCO-SCA to such cases is straightforward.

An extension of the GSVD (not adapted!) to find the common

components in more than two data blocks has been proposed [36];

an extension that also includes specific components has not yet

been developed.
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Figure 9. Heatmap of the metabolite loadings on the five common and distinctive components obtained with DISCO-SCA. The
heatmap displays the loadings of the metabolites on the five components obtained with DISCO-SCA. The first two components are distinctive for LC,
the second two for GC, and the fifth component is common. Upper part: GC data; lower part: LC data.
doi:10.1371/journal.pone.0037840.g009
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