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Abstract A digenetic platyhelminth Schistosoma is the

causative agent of schistosomiasis, one of the neglected

tropical diseases that affect humans and animals in

numerous countries in the Middle East, sub-Saharan

Africa, South America and China. Several control methods

were used for prevention of infection or treatment of acute

and chronic disease. Mass drug administration led to

reduction in heavy-intensity infections and morbidity, but

failed to decrease schistosomiasis prevalence and eliminate

transmission, indicating the need to develop anti-schisto-

some vaccine to prevent infection and parasite transmis-

sion. This review summarizes the efficacy and protective

capacity of available schistosomiasis vaccine candidates

with some insights and future prospects.
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Introduction

Schistosomiasis (also referred to as bilharzia) is a parasitic

disease caused by trematodes, blood flukes with a sophis-

ticated life cycle involving an intermediate host freshwater

snail, and a definitive host (humans or animals). It is a

neglected tropical disease (NTD) closely linked to poverty,

and infects 240 million people in 74 developing countries

in the tropics and sub-tropics, and 779 million, mostly

children are at risk (Loverde 2019; Chisha et al. 2020; Kura

et al. 2020). The burden of schistosomiasis in 2016 was

estimated at 2 543 364 disability-adjusted life years

(DALYs) (World Health Organization 2019). Most of

human infections are caused by Schistosoma haematobium

(endemic in Africa and Middle East), S. mansoni (in

Central South America, Africa, and Middle East), and S.

japonicum (in Eastern Asia) (Di Bella et al. 2018). Schis-

tosoma mansoni and S. japonicum are responsible for

chronic hepatic and intestinal fibrosis while S. haemato-

bium causes fibrosis in the urinary tract (McManus and

Loukas 2008).

There is interrelation between schistosome infection and

host immune responses, as worms can live for several

decades in contact with products of immune responses

circulating in the blood. The study of this interaction can

help in disease control by searching for new drug or

developing a vaccine (Fonseca et al. 2012). Praziquantel

(PZQ, pyrazino-isoquinolone) is the only readily effective

drug widely used for the treatment of the three main par-

asites causing human schistosomiasis. It has good phar-

macologic properties such as it can be given as a single oral

dose, is usually well tolerated, with low cost and limited

side effects (LoVerde 2019). However, schistosome

chemotherapy still has some limitations (Kittur et al. 2017;

Wiegand et al. 2017). Praziquantel-based mass drug

administration programs require several rounds of treat-

ment. Additionally, only a fraction of the target population

receives the drug, because preventive chemotherapy for

schistosomiasis was found to be still required in 2018 in 52

countries and was received by 19.1 out of 104.8 million

adults (18.2%) and 76.2 million out of 124.4 million chil-

dren attending school (61.2%) (World Health Organization

2019). The coverage of the numerous children that do not
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attend school in poor, rural endemic communities and pre-

school age children is certainly much lower. These data

explain ntensity of infection and morbidity were reduced in

several countries, but prevalence and DALYs remain dra-

matically high (Deol et al. 2019). Indeed, the World Health

Organization recommended periodic PZQ treatments only

as a short-term measure for the control of morbidity (World

Health Organization 2019). Therefore, vaccines, alone or

combined with chemotherapy, present the best strategy for

long-term control of schistosomiasis (Ross et al.

2002, 2015).

Disappointingly, up to date there is no commercial

vaccine available against any of the human schistosomes

emphasizing the need for continued efforts towards

achieving this elusive goal (Hewitson and Maizels 2014;

McManus et al. 2020). Many groups have made recom-

mendations about which vaccine candidate should be

developed against schistosomiasis, suggesting that an

effective prophylactic vaccine should reduce the morbidity

(Siddiqui and Siddiqui 2017), as well as reduce adult worm

burden and egg excretion rates by 75% in immunized

individuals (Molehin 2020). The current review will pre-

sent a comprehensive overview on the efficacy of experi-

mental, but unlicensed, vaccines against schistosomiasis in

both humans and animals, delineating new formulations of

the present candidates or future vaccine discovery.

The major reason for schistosomiasis spread is the

inability of the immune system elements to recognize and

eliminate migrating larvae and adult worms. Radiation-at-

tenuated (RA) schistosome larvae vaccine has shown

capability to induce consistently high protective immune

(Th1 and Th2) responses against challenge infection in

laboratory animals (Coulson 1997; Street et al. 1999), and

revealed that a schistosomiasis vaccine is a real goal,

despite that multiple concerns regarding this approach

make it unsuitable for use in humans (Coulson 1997).

Furthermore, these promising results paved the way for the

discovery of different vaccine candidate antigens, irradi-

ated cercariae vaccine-associated S. mansoni antigens (IrV)

(Soisson et al. 1992, 1993), fatty acid-binding protein

(FABP, Sm14), paramyosin, calpain large subunit (Sm-

p80), superoxide dismutase (SOD), glutathione-S-trans-

ferase (GST), glyceraldehyde 3-phosphate dehydrogenase

(SG3PDH), cysteine peptidases (CPs) (Othman and El Ridi

2014; Pearson et al. 2015), the surface membrane antigen,

Sm23 (Harn et al. 1985; Reynolds et al. 1992; Koster et al.

1993) and many other antigens (Table 1). Despite the

discovery and publication of numerous promising vaccine

antigens candidates, only four have shown promises in

human clinical trials and were chosen due to access, and

protective immunity potential in non-human primates.

These recombinant antigens include S. haematobium

28-kD GST (rSh28GST) (Boulanger et al. 1999; Johnson

et al. 2003), S. mansoni 14-kDa (Sm14) (Moser et al.

1991), S. mansoni tetraspanin, a 9-kDa surface antigen,

Sm-TSP-2, (Smyth et al. 2003), and S. mansoni calpain

(Sm-p80) (Siddiqui et al. 1993).

Recently, many of the above-mentioned antigen candi-

dates, including TSP-2, Sm23, GST, Sm29 and calpain,

were identified in extracellular vesicles (EVs) of schisto-

some adult worms, (Kifle et al. 2020a). Extracellular

vesicles are membrane-surrounded vesicles that are con-

tinually secreted by different types of cells and play an

important role in removing unnecessary cell components,

cell–cell communication, and inter-cellular transfer of their

mRNA, microRNA (miRNA), lipid and protein cargo

(Pluchino and Smith 2019). Such close host- parasite

interactions suggest EVs may play a role in protection

against schistosomiasis (Kifle et al. 2020a; b), allowing the

host immune effectors, namely antibodies, to interact with

otherwise inaccessible worm cytosolic, tegumental, and

surface membrane antigens, and activate immune cells

capable of chasing and harming the parasite (El Ridi and

Tallima 2013a; b).

Vaccine candidates in clinical trials

28 kDa glutathione S-transferase

Schistosoma haematobium 28 kDa glutathione S-trans-

ferase (Sh28GST) vaccine is expressed in the tegument and

sub-tegument of adult (Taylor et al. 1988) and larval

(Balloul et al. 1985) schistosomes, and is a predominant

ESP (Knudsen et al. 2005; Hansell et al. 2008; El Ridi and

Tallima 2009, 2013a; El Ridi et al. 2017). It has a main role

in fatty acid metabolism and prostaglandin D2 synthesis,

and may contribute to the parasite immune evasion (Tebeje

et al. 2016). Several studies were made using the recom-

binant protein (expressed in Saccharomyces cerevisiae) in

rodents, primates and cattles (Johnson et al. 2003; Capron

et al. 2005; Baiocco et al. 2006). The results showed partial

protective effect against schistosome infection, significant

reduction of the worm burden (40–60%), in addition to

significant reduction in female worm fecundity and eggs

viability (Boulanger et al. 1991; Xu et al. 1991; Bushara

et al. 1993; McNair et al. 1993; Capron et al. 1994).

Notably, recombinant S. haematobium glutathione

S-transferase (rShGST) vaccine mediated high levels of

protection associated with intense specific IgG and IgA

antibody responses in baboons and patas monkeys (Bou-

langer et al. 1991, 1995, 1999). Phase 1 trial was designed

to investigate the safety and tolerability of two or three

subcutaneous injections of 100 lg rSh28GST antigen with

Alum as adjuvant in young, healthy, Caucasian male adult

volunteers. The vaccine was perfectly safe for use in adults
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Table 1 Major schistosome vaccine candidates

Sm Schistosoma mansoni, Sh Schistosoma hematobium, Fh Fasciola hepatica, G3PDH, glyceraldehyde 3-phosphate dehydrogenase, GST glu-

tathione-S-transferase, TSPs tetraspanin; CB, cathepsin B, CL cathepsin L, PRX Peroxidase, MAP Multiple antigen peptide
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and highly immunogenic, inducing interleukin (IL)-5 and

IL-13, absence of IgE, and predominance of IgG1 anti-

bodies capable of inhibiting the enzymatic activity of the

immunogen (Riveau et al. 2012). Safety, tolerability and

immunogenicity of the vaccine were also demonstrated in

adults and children residing in endemic regions (Mo et al.

2014). rShGST is the only schistosomiasis antigen that has

reached Phase 3 clinical trials. In Phase 3, 250, 6–9 years-

old Senegalese children, were cured of schistosome

infection and randomized to receive three subcutaneous

injections of either rSh28GST/Alhydrogel (Bilhvax group)

or Alhydrogel alone (control group) with four-week inter-

vals, and then a booster one year after the first injection.

The vaccine protective capacity was evaluated by recur-

rence of natural infection within approximately two years

following PZQ treatment on week 44, 8 weeks before the

booster injection (on week 52). Children immunized with

rSh28GST showed elevated levels of specific IgG1, IgG2,

and IgG4 antibody but a lack of IgG3 and IgA isotypes. In

human populations, acquired immunity is linked with IgG3

and IgA antibodies to Sh28GST. Failure in achieving

protection against urinary schistosomiasis might be due to

the antibody isotype issue (Riveau et al. 2018) or to the

confounding impact of the PZQ treatment before the first

and last immunization (Alsallaq et al. 2017).

Schistosoma mansoni 14 kDa fatty acid binding

protein

Schistosoma mansoni 14 kDa (Sm14) fatty acid binding

protein (FABP) is located in the basal lamella of the

tegument and gut epithelium (Brito et al. 2002; Tendler and

Simpson 2008). Schistosomes lack an oxygen-dependent

pathway for the synthesis of fatty acids and sterols. Hence,

they are entirely dependent on the host by using Sm14 to

absorb and transport fatty acids from the host (Tendler and

Simpson 2008; Tebeje et al. 2016). Sm14 is, hence, con-

sidered a good target for development of an effective

vaccine against schistosomiasis. Its recombinant form

(rSm14) showed significant protective immunity against S.

mansoni in outbred Swiss mice and New Zealand White

rabbits (60–95%). In addition, it induced immune cross

protection against Fasciola hepatica infection. So, it is

potentially used against different infections and has great

appeal in terms of human and animal health (Tendler et al.

1995, 1996; Tendler and Simpson 2008; Santini-Oliveira

et al. 2016). Otherwise, outbred Swiss mice immunized

once with rSm14-Bacillus Calmette-Guerin (rSm14-BCG)

and challenged with S. mansoni cercariae showed reduction

(48%) in worm burden that was analogous to that obtained

by vaccination with rSm14 protein (Varaldo et al. 2004).

Hence, the antigen was allowed to move forward to

clinical trials to assess its safety and immunogenicity on

humans. In Phase 1a and 1b trials (2011–2014), rSm14 was

formulated with glucopyranosyl lipid adjuvant (GLA)

adjuvant in an oil-in-water emulsion and used to immunize

20 male and 10 female volunteers from a non-endemic area

for schistosomiasis in Rio de Janeiro state, Brazil. Results

showed no adverse events related to the vaccine, which

elicited significant increase in Sm14-specific total IgG,

with no IgE observed at any time, and stimulated both Th1

and Th2 cytokines (Tendler et al. 2015; Santini-Oliveira

et al. 2016). Accordingly, the results supported this product

as a safe, strongly immunogenic vaccine against schisto-

somiasis, and paved the way for follow-up phase 2 trials

(2015–2017). In phase 2a trial, rSm14 vaccine was safe

with long lasting immunogenicity when administrated to

30 male adults from endemic area for both S. man-

soni and S. haematobium in Senegal River Basin (Tendler

et al. 2018). Accordingly, Phase 2b and phase 3 trials are

planned (McManus et al. 2020).

https://clinicaltrials.gov/ct2/show/NCT03041766

https://clinicaltrials.gov/ct2/show/NCT03799510

Tetraspanins

A family of tetraspanins (TSPs) is highly expressed in the

S. mansoni tegument membranocalyx, and outermost

membrane of the intra-mammalian stages of the parasite,

apparently accessible to the immune system elements; the

portion readily exposed to the host immune system is the

extracellular loop (van Balkom et al. 2005; Braschi et al.

2006; Braschi and Wilson 2006; Wilson 2012). Schisto-

soma mansoni TSPs (Sm-TSP-1 and Sm-TSP-2) play

important roles in tegument stability, development, or

maturation (Tran et al. 2006, 2010). IgG1 and IgG3 (no

IgE) antibodies isolated from naturally immune individuals

recognized TSP-2, not TSP-1, when compared to anti-

bodies from chronically infected or naı̈ve individuals

(Correa-Oliveira et al. 1989, 2000; Tran et al. 2006; Lou-

kas et al. 2007). As well, TSP-2 conferred high level of

protection in mice with generation of IgG antibodies,

which correlated positively with protective immunity in

naturally resistant people. Therefore, efficacy trials have

focused on the TSP-2 antigen reflecting its use as schis-

tosomiasis vaccine (Pearson et al. 2015; Hotez et al. 2019).

Vaccination of CBA/CaH mice with rSm-TSP-2 for-

mulated with adjuvant conferred high levels of protective

immunity against challenge infection with S. mansoni,

characterized by reduction of 57% and 64% in adult worm

and liver egg burdens, respectively. While immunization

with rTSP-1 resulted in lesser protective immunity than

rTSP-2 represented by 34% and 52% reduction in adult

worm and liver egg burdens, respectively (Tran et al.

2006). Along with ShGST and Sm14, TSP-2 has reached

the clinical trial phase 1 and showed that the TSP-2/alum
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(Al) hydrogel in formulation with or without an aqueous

GLA formulation (GLA-AF) was well tolerated and safe to

use for humans when administrated to healthy young adults

who reside in non- S. mansoni-endemic area (Keitel et al.

2019). Furthermore, phase 1b dose-escalation study has

been undertaken to assess the safety and immunogenicity

of Sm-TSP-2 with or without AP 10-701 (new nomem-

clature of GLA-AF) in healthy Ugandan adults (Keitel

et al. 2019)

https://clinicaltrials.gov/ct2/show/NCT03910972.

Recently, TSPs were found to be localized in adults S.

mansoni and S. hematobium tegument vesicles, not on the

surface membrane (Schulte et al. 2013; Sotillo et al. 2015),

supporting a mechanism of action via release in EVs (i.e.

ESP) (Sotillo et al. 2016; Samoil et al. 2018; Kifle et al.

2020a; Mekonnen et al. 2020). The study of Mekonnen

et al. (2020) reported that ShTSP-2 conferred a highly

significant protection against heterologous challenge (S.

mansoni) model of infection. However, it is not clear how

the ability of anti-TSP antibodies to block vesicle uptake

by host target cells explains the potential of TSPs as

promising anti-fluke vaccine (Kifle et al. 2020b).

Vaccine candidate in pre-clinical trials

Sm-p80

Sm-p80 is the large subunit (heavy chain) of the S. mansoni

calcium-activated neutral protease, calpain (Siddiqui and

Siddiqui 2017), immunolocalized in different schistosome

life stages at the inner membrane of the tegument and

underlying musculature (Braschi and Wilson 2006). It is an

excretory-secretory product (ESP) released upon larvae

skin invasion and during migration in the lung (Knudsen

et al. 2005; Hansell et al. 2008; El Ridi and Tallima

2009, 2013a; El Ridi et al. 2017), and was predominant in

adult worms-derived EVs (Kifle et al. 2020a). Calpain

helps the worm escape the immune response by surface

membrane turnover, by degradation of fibronectin, and

inhibiting blood clot formation around the worm (Siddiqui

et al. 1993; Kumagai et al. 2005; Wang et al. 2017).

Despite calpain location on the inner side of the surface

membrane of schistosome, it represents a target for vaccine

development. It has been tested for efficacy in different

forms, like prime boost, recombinant (r), or DNA based

forms and showed significant protection capacity, had

remarkable efficacy in fecundity reduction, and reduced the

egg-induced pathology with transmission blocking poten-

tial in rodents and baboons (Siddiqui et al. 1993; Siddiqui

et al. 2003a, b, 2005a; Ahmad et al. 2009a, b, c; Zhang

et al. 2010, 2014; Karmakar et al. 2014a; Le et al. 2018).

Of note, Sm-p80 ortholog expressed in the tegument of S.

japonicum and S. haematobium adult worms significantly

conferred cross-species protection in rodents and baboons

against S. mansoni, S. japonicum, and S. haematobium

infections (Zhan et al. 2014; Karmakar et al. 2014b, c;

Molehin et al. 2017).

Findings in both mice and baboons have confirmed that

Sm-p80 vaccine-based protection involves antibodies and

type 1 cytokines (Torben et al. 2011). Immunization of

C57BL/6 mice and olive baboons with Sm-p80 combined

with GLA adsorbed on aluminum hydroxide (Sm-

p80 ? GLA-alum) resulted in worm burden reduction by

39–44%, and production of Sm-p80-specific total IgG and

IgG subtypes (IgG1, IgG2a, IgG2b and IgG3), with an

elevation in Th1 cytokines IFN-c, IL-2 and TNF-a (Zhang

et al. 2018a). Furthermore, in double-blind preclinical trial,

olive baboons immunized with Sm-p80/GLA-SE (GLA

suspended in a stable squalene-based oil-in-water emul-

sion, SE) showed considerable reduction in adult female

worms (93.4%) and remarkable reduction in tissue egg load

(89.9%). Of note, a considerable decrease in schistosome

egg excretion in feces of vaccinated baboons, combined

with more than 80% reduction in egg maturation and via-

bility documented the parasite transmission-blocking

potential of the vaccine (Zhang et al. 2018b). Immunization

with Smp80 ? CpG-oligodeoxynucleotide (CpG-ODN)

adjuvant reduced liver egg burdens by 38.0% and egg load

in small and large gut by 72.2% and 49.4%, respectively, in

baboons. Furthermore, significant production of Sm-p80-

specific antibodies was detected in immunized baboons

(Siddiqui et al. 2018). These promising results supported

Sm-p80 vaccine has now been approved for Phase 1 clin-

ical trials to begin in early-mid 2021 (Molehin 2020; Tsuji

2020).

Sm-p80 protection was attributed to ADCC, which is

impossible as the molecule is not located on the apical lipid

layer of the worm surface membrane, and even so, would

not be accessible by antibodies (Zhang et al. 2001; Ohta

et al. 2004; Ahmad et al. 2009a, b, c; Zhang et al. 2010;

Siddiqui and Siddiqui 2011; Torben et al. 2012; Karmaker

et al. 2014a). The Sm-p80 immunogen may interact with

vaccine-induced specific antibodies, leading to activation

of effector cells and release of inflammatory mediators.

Calpain was recently found to be enriched in EV (Kifle

et al. 2020a), and when it interacts with antibodies, calpain/

antibody complexes can be internalized by the host and

may enhance the production of arachidonic acid, and

immune cells activation and trafficking (Kifle et al. 2020b).
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Vaccine candidates in experimental trials

Surface membrane candidate vaccines

Sm23

Surface membrane 23 kDa (Sm23), an integral membrane

protein (Rogers et al. 1988), was first identified by Harn

and his colleagues as the target of a protective monoclonal

antibody. It has been shown to confer protection in naive

mice (Harn et al. 1985), and classified as a member of the

‘tetraspanin’ trans-membrane protein family (Wright et al.

1990; Lebel-Binay et al. 1995). Sm23 is exposed on the

apical membrane of parasite (Wright et al. 1991); however,

in low quantity (Braschi and Wilson 2006), and expressed

in the adult tegument (Harn et al. 1985; Oligino et al.

1988).

Efforts have been made to develop an effective vaccine

using Sm23 in plasmid DNA (pcDNA), multiple antigenic

peptides (MAPs), and recombinant (r) vaccines constructs.

High levels of protection were achieved upon Sm23 use in

MAP form, based on B and T cell epitopes (Reynolds et al.

1992; Harn et al. 1995). Priming and boosting of C57BL/6

mice with Sm23-pcDNA elicited production of IgG2a and

IgG1 antibodies showed statistically significant reduction

of 21–44% in worm and egg burdens (Da’Dara et al. 2001);

the number of eggs recovered per worm pair did not differ

significantly, showing that the Sm23-pcDNA vaccine has

no additional anti-fecundity effect. Sm23-pcDNA immu-

nization of C57BL/6 mice followed by boosting with

rSm23 formulated with alum did not result in significant

reduction in worm burdens, despite it induced higher anti-

Sm23 antibodies (IgG1) level than Sm23-pcDNA alone. In

addition, mice primed and boosted with rSm23 formulated

in alum were also not protected from challenge infection,

likely because the protective vaccination using Sm23 is

associated with a Th1 immune response (Da’Dara et al.

2003). In a subsequent study, immunization of C57BL/6

mice with Sm23 DNA elicited only 34% protection despite

induction of pecific antibody responses that were pre-

dominately of the IgG2a and IgG2b isotypes (Ganley-leal

et al. 2005).

A more recent study revealed a limited number of

conformational epitopes on Sm23 and other tegmental

proteins have the ability to elicit mouse, rat and human

production of serum antibodies against S. mansoni infec-

tion, but they never influenced schistosomula or adult

worm survival suggesting that there is a need to re-evaluate

host immune responses to many schistosome antigens

(Krautz-Peterson et al. 2017). El Ridi and Tallima (2013a;

b) explained that surface membrane antigens may be

immunogenic, inducing T and B cell responses, but

antibodies are unable to get access to surface membrane

antigens and activate antibody-dependent complement or

cell-mediated (ADCC) cytotoxicity. It is remarkable that

vaccination with a protein at the host-parasite interface

induced only limited reduction in challenge infection

parameters. It is because surface membrane antigens are

hindered by a sphingomyelin (SM)-based hydrogen-bond

network protecting the larval, developing, and adult worms

from the host immune effectors (El Ridi and Tallima

2006; Keating et al. 2006; Tallima and El Ridi 2008;

Migliardo et al. 2014; El Ridi et al. 2017). Then molecules

at the apical surface are not accessible to antibody binding

in healthy worms.

The mechanism behind Sm-23-mediated protection may

be explained by their presence as ESP or in EVs, exosome-

like, 120 k pellet vesicles and microvesicle-like, 15 k

pellet vesicles, found to be a reservoir of different vaccine

candidates such as, TSPs Sm23, Sm-TSP-1, and Sm-TSP-2

(Kifle et al. 2020a). Recombimamt Sm23 and other TSPs

extracted from adult S. haematobium worms were shown to

induce significant protection characterized by reduction in

liver (47%, 38% and 41%) and intestinal (47%, 45% and

41%) egg burdens against challenge infection with S.

mansoni. These results reflect that EVs surface proteins can

be used as anti-schistosome vaccine candidates (Mekonnen

et al. 2020), provided they evoke critical responses needed

for optimal vaccine efficacy (Ganley-leal et al. 2005).

Glucose transporter proteins

Adult schistosomes obtain their glucose from the host

blood. Two glucose transporter proteins (GTPs) have been

identified in the tegument of S. mansoni, SGTP 1 and 4

antigens (Krautz-Peterson et al. 2010; You et al. 2014).

SGTP1 is expressed in the tegmental basal membrane and

other tissues of different life stages of the schistosome,

whilst SGTP4 is present in the host interactive, apical

tegmental membranes (Swain et al. 2011; You et al. 2014).

SGTP4 facilitates the import of glucose from the host

bloodstream into the tegument. SGTP1 and SGTP4-sup-

pressed parasites are unable to import glucose, providing

evidence for the importance of these SGTPs in importing

exogenous glucose, and then affecting parasite develop-

ment in the mammalian host (Krautz-Peterson et al. 2010;

Swain et al. 2011; You et al. 2014). Peptide or recombinant

form of SGTP4 conjugated with complete (CFA) or

incomplete (IFA) Freund’s adjuvant showed no protection

against challenge infection with S. mansoni in outbred CD-

1 mice despite specific cellular and humoral immune

responses (Mahana 2007). The reason is due to the expla-

nation mentioned above, namely that no apical membrane

antigen is accessible to host antibodies. Limited SM

hydrolysis allows nutrient\ 400 kDa entry but not host
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immune effectors. Another reason lies in GTPs molecule

structure (Fig. 1), and poor immunogenicity (Tucker et al.

2018). Such 12 transmembrane domain, hydrophobic

molecules, even within EV, are immediately endocytosed

by antigen presenting cell (APC), and their conformational

epitopes poorly recognized by B cells. Nevertheless, due to

its critical importance for schistosomes’ survival, SGTP4 is

now considered a major target for schistosomiasis

chemotherapy (Adekiya et al. 2020).

Glyceraldehyde 3-phosphate dehydrogenase

Glyceraldehyde 3-phosphate dehydrogenase (G3PDH) is a

cytosolic antigen. Yet, it was readily detected on the sur-

face of S. mansoni 3 h in vitro schistosomula (Goudot-

Crozel et al. 1989), lung-stage schistosomula (Tallima and

El Ridi 2008; Pirovich et al. 2019, 2020), among adult

worms surface membrane-associated molecules, and in

larval and adult worms excretory-secretory products (ESP)

(Braschi and Wilson 2006; Sotillo et al. 2015). Indeed,

schistosome G3PDH (SG3PDH) is considered a prominent

moonlighting protein. Moonlighting proteins comprise a

subset of multifunctional proteins in which one protein

exhibits more than one physiologically critical function

(Huberts and Van der klei 2010).

Excretory secretory SG3PDH is considered as one of the

major vaccine candidates against schistosomiasis (McMa-

nus and Loukas 2008), and plays a role in the prevention of

reinfection (El Ridi et al. 2001a, 2004; b). However, due to

its high homology (72.5%) to human G3PDH the whole

parasite proteins may not be used as a vaccine for fear of

inducing autoimmune responses. Therefore, it is better to

select SG3PDH derived-peptides sharing the lowest

homology to those of human, and the peptides were

selected for devising a safe synthetic peptide-based vaccine

(El Ridi et al. 2001a). These peptides were examined using

serum and lymphocytes from humans resistant to reinfec-

tion with S. mansoni or S. haematobium after treatment

with PZQ of previous infection and from BALB/c and

C57BL/6 mice immunized with recombinant rSG3PDH

(rSG3PDH). The results revealed that SG3PDH-derived

peptides possess human and murine T- and B-cell deter-

minants and immune responses to the peptides correlate

with resistance to schistosomiasis infection (EL Ridi et al.

2001a).

Linear peptides in MAP or dipeptidic-MAP (D-MAP)

constructs induced Th1 and Th2 immune responses in mice

but with different protective levels (Tallima et al. 2003; El

Ridi et al. 2004; Veprek et al. 2004), supporting the evi-

dence that both Th1 and Th2 immune responses are

required for protective immunity against schistosomiasis

(McManus 1999; El Ridi 2002; Al-Sherbiny et al. 2003).

The failure in developing the SG3PDH vaccine was cor-

rected when SG3PDH was combined with type 2 cytokines

or type 2 immunity-inducing cysteine peptidases. The

results showed highly significant (P\ 0.0001) reduction

(62–78%) in worm burden, and copious production of IgM,

IgG1, and IgA specific antibodies, and IL-4 and IL-5

cytokines in outbred CD-1 mice (El Ridi and Tallima

2013a, b).

Tegument candidate vaccines

Superoxide dismutase

Superoxide dismutase (SOD) antioxidant enzyme is a

candidate vaccine against schistosome infection, as it has

an important role in schistosome immune evasion (Shalaby

et al. 2003). It has a defensive role against tegument attack

(lipid peroxidation) in adult worms that result from the

release of reactive oxygen species (ROS) by host cells

(LoVerde 2004; Chiumiento and Bruschi 2009). Yet, it is

expressed with high levels in the adult worms (the least

susceptible to immune elimination) and low levels in the

larval stages (the most susceptible to immune elimination)

(LoVerde et al. 2004). There are two SOD in S. mansoni,

Fig. 1 Schistosome glucose transporter protein 4 structure (Skelly et al. 1998)
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one cytosolic Cu/Zn dependent (CT-SOD) and the second

extracellular or membrane-associated which contains one

peptide signal (SP-SOD) (Mkojii et al. 1988; Nare et al.

1990). Both forms are present in the tegument and the

intestinal epithelium of the adult stage, whereas the

extracellular form is localized also in the membranes of

parenchymatous cells and cellular organelles (Hong et al.

1992; Mei and LoVerde 1997).

Immunization of BALB/c mice with pcCT-SOD led to

significantly decreased worm burden (42.8, 35.9 and

38.0%) in three independent experiments, and indicated

that pcCT-SOD activates Th1 rather than Th2 immune

responses (Cook et al. 2004). Immunization of BALB/c and

C57BL/6 mice with DNA based SmCT-SOD and S. man-

soni glutathione peroxidase (SmGPX) then challenged with

S. mansoni cercariae resulted in significant reduction in

worm burden (44–60% and 23–55%, respectively) in six

independent experiments. Additionally, SmCT-SOD and

SmGPX DNA-based vaccine was consistently conferring

greater than 40% protection, which is the World Health

Organization minimum requirement (Shalaby et al. 2003;

LoVerde et al. 2004; Tebeje et al. 2016). Similarly, a

protective effect of SOD against schistosomiasis in olive

baboons was revealed by Carvalho-Queiroz et al. (2015),

whereby animals primed with naked DNA of SOD forms

and GPX and boosted with the respective recombinant

antioxidant proteins encapsulated in polylactic acid (PLA)

microspheres, were able to stimulate both humoral and

cellular responses (including cytokines and chemokines).

This resulted in a reduction in worm numbers, and a pro-

nounced anti-pathology effect compared to control animals

(Carvalho-Queiroz et al. 2015; Tebeje et al. 2016).

S. mansoni 29 kDa protein

Sm29 is a glycosylphosphatidylinositol (GPI) integral

protein localized in the tegument of mammalian adults and

lung-stage schistosomula and absent in cercariae indicating

that this antigen plays a role in helping the parasite to adapt

to the new environment in mammalian hosts (Braschi et al.

2006; Cardoso et al. 2006a, 2008; Castro-Borges et al.

2011; Sotillo et al. 2015). Sm29 was suggested to play a

role in parasite evasion of immune response by interaction

with human protein CD59, which inhibits membrane attack

complex (MAC) and would help the schistosome to disable

immune responses (Bear et al. 2018). As well, it is con-

sidered as an immunoregulatory molecule, which regulates

inflammatory mucosal diseases (leishmaniasis and asthma)

(Oliveira et al. 2016). It was recently identified in 120 k

and 15 k EVs of the tegument (Kifle et al. 2020a). Since

Coulson and Wilson (1997) have suggested regarding

vaccination with irradiated cercariae that the lung is the

main site of parasite elimination. Sm29 localization on

schistosomula tegument suggests it as a good target for

vaccine development against schistosomiasis. Moreover,

Sm29 ortholog is present in ESP of S. japonicum with more

than 50% homology, suggesting that Sm29 might also be

effective against S. japonicum (Cardoso et al. 2006b).

Immunization of C57BL/6 and TLR4 KO mice with rSm29

induced Th1-Th2 type of immune responses characterized

by high levels of IgG1 and IgG2a antibodies and IFN-c,

tumor necrosis factor (TNF)-a, and IL-12 cytokines asso-

ciated with significant reduction in parasite burden (51%)

and pathology (Cardoso et al. 2008). More importantly,

rSm29 has shown significant protection (26–48%) in pre-

viously S. mansoni infected BALB/c mice, treated with

PZQ. Protection was characterized by elevated levels of

IgG, IgG1, IgG2a, and IgE antibodies, IL-2, IFN-c, IL-17,
IL-4, and CD4 ? central memory T cells (Alves et al.

2015). Of note, individuals living in areas endemic for

schistosomiasis, the resistance to S. mansoni infection and

reinfection is associated with the production of IgG1 and

IgG3 specific to Sm29 (Cardoso et al. 2006a). Differences

observed in antibody titers between the rSm29-immunized

group, that did not develop protective immunity and S.

mansoni infected and PZQ-treated/rSm29 group, which

developed a protective immunity, resided in an increased

titer of IgG and decreased titer of IgG1. These results

suggest that other IgG isotypes may be associated with the

protection induced by this vaccine formulation (Alves et al.

2015). Alongside, to improve immunogenicity and safety,

rSm29 was linked to gold nanorods carrier directly or by

cysteamine functionalization and examined against S.

mansoni challenge infection in C57BL/6 mice. The results

showed a remarkable protection level (34%) characterized

by Th1 immune response parameters (Assis et al. 2018). In

another study, Sm29 was formulated with alum or mono-

phosphoryl lipid A adjuvant (MPLA) then administered to

BALB/c mice reinfected with S. mansoni. Sm29-alum

induced partial protection against reinfection, reduced

worm burden by 29–37% while Sm29-MPLA failed to

reduce worm burden, indicating that Sm29-alum can

effectively protect against S. mansoni reinfection in mice

(Alves et al. 2018).

The fusion of Sm29 with Sm14, designated as Sm14/29

alone or combined with polyinosinic-poly cytidylic acid

[poly (I:C)] adjuvant elicited significant reduction of adult

worm burden by 48.4% and 44.7%, liver egg burden by

82.8% and 73.5, intestinal egg count by 72.8% and 76.6%,

respectively, in Swiss albino mice (Mossallam et al. 2015;

Eyayu et al. 2020). Similarly, Sm29 fused with Sm-TSP-2

resulted in reduction (22–35%) of worm burden, with an

elevated level of IgG1 and IgG2 antibodies, IFN-c and

TNF-a in C57BL/6 mice (Pinheiro et al. 2014). These

results suggest the multi-antigens fusion proteins might be

potential vaccine candidates. More recently, a multi
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epitope-based vaccine containing predicted epitopes from

Sm14, Sm21.7, Sm23, Sm29, Smp80, Sm-CB, and SM-

TSP-2 antigens was developed. Immunoinformatic analysis

demonstrated that the vaccine has a high potential to

stimulate T and B-cell mediated immune responses, and

indicated that a multi epitope-based vaccine can be utilized

for prophylactic or therapeutic aims in response to the

infection caused by S. mansoni (Rahmani et al. 2019).

Insulin receptors

Schistosomes are unable to synthesize insulin (Affholter

et al. 1988); instead, they depend on host insulin for

fecundity and growth. Insulin (5808 Da) regulates glucose

uptake, improves the viability of schistosomes, and pro-

motes the metabolism and development of adult worms

(Vicogne et al. 2004; Saule et al. 2005; Ahier et al. 2008;

You et al. 2009). Two types of insulin receptors (IRs) have

been isolated from S. mansoni (SmIR1 and SmIR2)

(Khayath et al. 2007), and S. japonicum (SjIR1 and SjIR2)

(You et al. 2010). IR-1 is located on the tegument basal

membrane and the internal epithelium of adult worms and

plays a role in utilizing host insulin, while SjIR-2 is located

in the parenchyma of males and the vitelline tissue of

females and has a role in controlling worm growth and

development (Khayath et al. 2007; You et al. 2010).

Insulin receptors are suggested as transmission blocking

vaccine candidates. Administration of mice with anti-SjIRs

antibodies or SjIRs knocking down evoked reduction in

glucose uptake, starvation and stunting of adult worms, and

reduction in egg output (You et al. 2010, 2015). The

development of a vaccine based on the ligand domains of

SjIR1 and 2 using peptides derived from their primary

sequences, may be feasible due to their low homology to

human IR (HIR) and are highly antigenic with the ability to

bind human insulin (You et al. 2014). Thus, immunization

of CBA mice with the L1 subdomain of the SjIR2 (SjLD2)

fusion protein expressed in Escherichia coli resulted in

highly significant reductions in numbers of adult worms

(40–50%), mature intestinal eggs (75%), fecal eggs

(56–67%), and hepatic granuloma density (45–55%).

However, due to the poor immune response generated, it

was hard to obtain consistent results using rSjLD2 protein,

which had a tendency to degrade during the processes of

expression and purification. Nevertheless, further work

improving the expression/purification of rSjLD2 is cur-

rently underway in order to prevent its degradation (You

et al. 2012). Additionally, peptide analogues derived from

SjIR1 and SjIR2 have shown high binding affinities to host

insulin. These peptide analogues were shown to have more

than 10 times higher binding affinity for human insulin

than peptides derived from the human IR in the same

sequence positions (Stephenson et al. 2016).

Cytosolic vaccines

Paramyosin

Paramyosin, a 97-kDa myofibrillar protein with a coiled-

coil structure, was exclusively found in invertebrates. It is

expressed in the penetration glands of cercariae, the tegu-

ment of schistosomula, and the contents of membrane-

bound elongate bodies within the tegument and sub

tegmental cell bodies of adult worms. It protects worms

from complement-mediated damage by binding human C8

and C9 proteins, preventing complement activation at the

terminal stage, in vitro and in vivo. Paramyosin protein

either native or in a recombinant form was considered a

vaccine candidate for protection against schistosomiasis

(Gobert and McManus 2005; Deng et al. 2007; McManus

and Loukas 2008; Jiz et al. 2015; Eyayu et al. 2020).

Additionally, paramyosin peptides were recognized by T

cells of humans resistant to schistosomiasis infection and

reinfection (Fonseca et al. 2005; Eyayu et al. 2020).

Due to its location, paramyosin is presumably unavail-

able for interaction with the immune response (youPearce

et al. 1986). Yet, C57BL/6 mice vaccination with native or

partial recombinant paramyosin fragment with BCG con-

ferred protection (26–39%) by stimulating T cells to pro-

duce IFN-c that induces macrophages to kill

schistosomula. However, specific epitopes in the

immunogen are required because a heterologous para-

myosin and myosin from a different invertebrate genus was

not protective. These data suggested that paramyosin pro-

tective action is cell-mediated and not antibody-dependent

(Pearce et al. 1988; McManus and Loukas 2008). On the

other hand, mice vaccinated intradermally with S. mansoni

or schistosomula extracts with Mycobacterium Bovis BCG

adjuvant were significantly protected against subsequent

infection, and antibodies predominantly recognized para-

myosin (Lanar et al. 1986; Sher et al. 1986). In addition, a

BALB c/C3H HFl mouse monoclonal IgE antibody rec-

ognized S. japonicum paramyosin (Nara et al. 1997), and

showed protection (19–58%) against cercarial infection

following passive transfer (Kojima et al. 1987a; b). Con-

versely, paramyosin immunogen failed to confer the same

level of protection in multi-antigen DNA-based form (Tang

et al. 2008). Furthermore, immunization of Swiss albino

mice three times with purified Sm97 induced 44.1%,

59.1%, and 61% reduction in worm burden, intestinal egg

loads, and granuloma size, respectively. The protective

immunity was associated with high levels of specific anti-

Sm97 IgG1 and IgG2 antibodies (Diab and Aly 2011;

Eyayu et al. 2020).

Immunization of C57BL/6 mice with Sm14 peptides

alone or mixed with paramyosin peptides reduced worm

burden (26–36.7% or 28–29.2%), intestinal eggs (67% or
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46%), and also liver pathology (54–61% or 43–52%),

respectively. Protection was related to a Th1 type immune

response provoked by Sm14 peptide immunization. Thus,

vaccination with paramyosin peptide did not mediate pro-

tective immunity or reduce pathology and immunization

was associated with a Th2 immune response (Garcia et al.

2008).

In contrast, in a large-scale treatment-reinfection study,

Th2 cytokine response and IgE antibody to Sj97 were

shown to be highly associated with resistance to reinfection

with S. japonicum (Leenstra et al. 2006; Jiz et al. 2009; Wu

et al. 2017). In rodents, its protective potential without

adjuvant against S. mansoni was 24–53% and 62–86%

against S. japonicum (Jiz et al. 2015; El Ridi and Tallima

2013a). Due to its high immunogenicity against S. japon-

icum, plans are made to move it toward phase I clinical

trials.

Thus, the 97 kDa protein is recommended as a

promising vaccine candidate for S. japonicum (McManus

and Loukas 2008; Kurtis et al. 2015; Luna and Campos

2020), principally in sheep, pigs, and water buffaloes.

Chinese Sj-97 has shown significant partial protection

(32–45%) in sheep (Taylor et al. 1998), pigs (Chen et al.

2000) and water buffaloes (McManus et al. 2001). More-

over, rSj-97 vaccine formulated with Montanide ISA 206

was strongly immunogenic among water buffaloes resident

in an area endemic for schistosomiasis japonicum (Jiz et al.

2016; You et al. 2018). In addition, three independent

studies (in 2008, 2013, and 2016) with full-length rSj-97

vaccine formulated with Montanide ISA 206 showed

reduction (51.5–60.9%) in worm burden, and elevated

levels of IgG1 and IgG2 antibodies after challenge infec-

tion with S. japonicum (Wu et al. 2017; You et al. 2018).

Gastrointestinal tract vaccine candidates

One of the most important requirements for S. mansoni

survival is the processing of ingested blood in the gut by

different peptidases, and nutrients uptake. Impairment of

these processes represents an important strategy for vac-

cine development because the worms will not survive

inside the host and will die from starvation. Many digestive

tract proteins, which are not recognized by host immune

responses during normal infection and are essential for

parasite survival, have been tested (Figueiredo et al. 2015).

Schistosoma mansoni lysosome-associated membrane

protein (Sm-LAMP) is highly enriched in the digestive

tract of S. mansoni, located in the gastrodermis. Sm-LAMP

in soluble and insoluble form was shown to provide limited

protection against S. mansoni infection in CBA mice but

might be used in combination with other vaccine candi-

dates to provide more protection (Nawaratna et al. 2015).

Another protein possesses a dynein light chain family

(DLC/LC8) domain, which is evolutionarily conserved in

schistosome and different organisms, and is located in

distal gut and in the tegument of schistosomes (Diniz et al.

2014). Recombinant S. mansoni DLC12 and DLC13

combined with alhydrogel adjuvant induced high antibody

titers (IgG) and decreased worm burden of 43% and 51%,

respectively, and decrease in granuloma size of 70% in

BALB/c mice, reflecting the protein Immunoprotection

potential (Diniz et al. 2014).

Sm10 protein (also called micro exon gene-4.1) is

located on the surface and lumen of the esophageal and

intestinal tract of adult worms and lung-stage schistoso-

mula. It was shown to induce a mixed Th1/Th2-type

response with reduction in the worm (25–32%) and liver

egg (43.6%) burden as well as a reduction in the number of

granulomas (23.8%) in C57BL/6 mice, suggesting Sm10.3

as a potential vaccine candidate (Martins et al. 2014).

Sm32 is an asparaginyl peptidase (SmAE) member of

the legumain family; it is released as an ESP that hydro-

lyzes pro-enzymes involved in the degradation of hemo-

globin (Dalton and Brindley 1996; Chlichlia et al. 2002). It

was shown to induce humoral response against the native

protein and S. mansoni homogenate when used in DNA

formulation but it failed to reduce the challenge worm

burden (Chlichlia et al. 2002). Additionally, hydrophilic

regions of the molecule with Freund’s adjuvant showed

limited immunogenicity in rabbits and mice (Noya et al.

2003a; Chacon et al. 2003).

A PDZ (PSD-95/Dlg/ZO-1) domain-containing schisto-

some protein, syntenin (SmSynt), is localized in the gas-

trodermis of S. mansoni, in spite of none of the proteomic

and transcriptional studies identified this protein at this

location (Figueiredo et al. 2014). C57BL/6 mice vaccinated

with the rSmSynt showed reduction (30–37%) in worm

burden and production of IgG antibodies and Th1-cytoki-

nes (Figueiredo et al. 2014).

Four proteins possessing the characteristic saposin

domain were identified in schistosome vomit (Hall et al.

2011). A gut saposin-like protein (SmSLP-1) binds sphin-

golipids, facilitating their degradation by ceramidases and

also binds other lipids, sequestering them in the gut lumen

for transport and uptake into the cells (Don et al. 2008; Hall

et al. 2011). SmSLP-1 has proven to be immunogenic when

recombinant form of this protein elicited high antibody

titer, but the number of adult worms and eggs recovered

from vaccinated CBA/CaH mice did not decrease (Don

et al. 2008), suggesting that not all gut proteins tested as

vaccine were protective.

Indeed, the efficacy of these vaccines remains dependent

on the ability of antibodies to bind to these enzymes and

inhibit their function. The reason why not all of digestive

tract antigens induced protection is because the parasite gut
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pH is low and seems to be an unsuitable environment for

antibodies. Despite that, many digestive tract antigens

elicited some protection (Figueiredo et al. 2014).

Additionally, many other antigens like Sm22.6 (Pacifico

et al. 2006a; b), ECL or Sm200 (Nascimento et al. 2007;

Martins et al. 2012), and Sm21.7 (Ahmed and Romeih

2001; Ahmed et al. 2006) and others also showed ability to

provoke significant immune responses, but were not pro-

gressed further.

Excretory/secretory proteins

It was recently documented that actually all S. mansoni and

S. haematobium surface membrane, tegumental and

digestive tract candidate vaccine antigens are ESPs, readily

detectable in worm derived 15 k (286 proteins) and 120 k

(716 proteins) EVs. Sm23, SG3PDH, calpain, Sm-TSP-2,

saponin B domain-containing proteins, GST, Sm29,

cathepsin domain-containing proteins namely cathepsin B

and cathepsin L, proteases, oxidants were identified

(Sotillo et al. 2016; Samoil et al. 2018; Kifle et al. 2020a;

Mekonnen et al. 2020). El Ridi and Tallima (2009, 2013a)

and El Ridi et al. (2015) were the first to advocate that

vaccine candidates should only be sought among the

developing and migrating larvae ESPs because ESPs are

able to induce innate and adaptive immunity and are

accessible targets to host immune elements.

Different ESPs molecules have been derived from cer-

cariae, lung-stage schistosomula, and adult worms of sev-

eral schistosome species (Harrop et al. 1999; Knudsen et al.

2005; Curwen et al. 2006; El Ridi and Tallima 2009; Liao

et al. 2011; Young et al. 2012). Most of the schistosome

antigens candidates induced type 1 response, except radi-

ation-attenuated cercariae induced Th1-/Th2-immune

responses. So, type 1 and 2 immune responses have an

essential role in significant parasite elimination and more

associated with resistance to reinfection (He and Geha

2010; Price et al. 2010; Siracusa et al. 2011; Badr et al.

2015; El Ridi et al. 2015; Tallima et al. 2015).

Recombinant antigens

Since ESP such as calpain, SG3PDH, 14–3-3-like protein,

thioredoxin peroxidase (TPX) etc. in a recombinant form,

predominantly elicit poorly protective type 1 immune

responses, it was necessary to direct the immune response

toward the type 2 arm. Cysteine peptidases derived from

such diverse sources as papaya (papain; Sokol et al. 2008),

house dust mite, Derp1 (Roche et al. 1997; Kikuchi et al.

2006), Leishmania mexicana (Pollock et al. 2003), and

many fungal allergens (Shen et al. 1998; Kheradmand et al.

2002) were used (El Ridi and Tallima 2013a). Furthermore,

they have the ability to act as adjuvants in the absence of

other adjuvants (Chapman et al. 2007; Cunningham et al.

2012). CD-1 mice vaccinated with a combination of the

larval ESP, rSG3PDH, and TPX peptide, in conjunction

with papain or cytokines, i.e., TSLP (thymic stromal

lymphopoietin), IL-25 or IL-33, exhibited predominant

Th2 responses, which correlated with highly significant

(P\ 0.0001) reduction of 62–78% in challenge worm

burden (El Ridi and Tallima 2013a).

Since papain, IL-25, IL-33, or TSLP may not be used for

human vaccination, they were replaced by a parasite-

derived cysteine peptidase (El Ridi et al. 2015; Tallima

et al. 2015). One of the major worm extract proteins and

ESPs is S. mansoni cathepsin B1 (SmCB1), a novel critical

anti-schistosome vaccine candidate with a capacity to ini-

tiate Th17 besides Th1 and Th2 responses (El Ridi et al.

2014a; Ricciardi et al. 2016; Soloviova et al. 2019).

SmCB1 and S. mansoni cathepsin L1 (SmCL1, CL) are

major hemoglobin-digesting enzymes (Day et al. 1995;

Brady et al. 1999a, 1999b, 2000; Bogitsh et al. 2001;

Caffrey et al. 2018; Wendt et al. 2020). SmCB1 is

expressed at high levels on the caecum and protonephridia

of cercariae while SmCL1 is localized to the gastrodermis

and the tegument of adult worms (El Ridi et al. 2014b).

Both are prominent ESPs, particularly enriched in EVs

(Kifle et al. 2020a; b). Recent studies revealed that vinyl

sulfone inhibitors of the SmCB1 target will impact the

parasite’s ability to grow (Jı́lková et al. 2011, 2020); as

well, RNA interference of SmCB1 slowed the growth of

the parasite both in culture and in an animal model of

infection (Correnti et al. 2005).

Adjuvant-free, enzymatically active SmCB1 or FhCL1

in recombinant form alone or in combination with another

vaccine candidate SG3PDH/PRX-MAP were shown to

induce high levels of protection with an increase in IgG1

isotype titers (no IgE was detected), and Th2 cytokines

against S. mansoni and S. haematobium infection, in CD-1

mice and Syrian hamsters, respectively. It was suggested

that peptidases can boost early adaptive immune responses,

and have in-built immune enhancing properties that are

protective on their own, besides having the ability to

enhance the protective responses to other molecules (El

Ridi et al. 2014a, b; Tallima et al. 2015, 2017a, b).

Schistosoma mansoni cathepsin L3 (SmCL3) is another

cysteine peptidase that is also expressed in digestive tract

of S. mansoni worm (Dvořák et al. 2009). CD-1 mice and

Syrian hamsters immunized with enzymatically active

rSmCB1 and SmCL3 alone or combined with rSG3PDH

induced a significant (P\ 0.002) protection of (up to 60

and 70%, respectively) against S. mansoni and S. hemato-

bium challenge infection. This indicated that the effica-

cious trivalent vaccine should now be used as trials in non-

human primates for assessment as a potential vaccine to

control human schistosomiasis (Tallima et al. 2017a; b).
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Adjuvants were shown to enhance the immunogenicity

and protective efficacy of S. mansoni cathepsin B (SmCB,

CB) formulated with CpG elicited significant protection in

C57BL/6 mice characterized by elevated levels of Th1

cytokines (IFN-c and TNF-a). SmCB formulated with

Montanide ISA 720 VG induced significant protection with

elevation of both Th1 and Th2 cytokine immune responses

(Ricciardi et al. 2015, 2016). A two-dose, starting with oral

gavage of attenuated Salmonella enterica Typhimurium

strain (YS1646) bearing the nirB_SspH1_CB plasmid fol-

lowed by intramuscular recombinant enzyme (rCB), or

immunization with rCB combined with sulfated lactosyl

archaeol archaeosomes or addavaxTM was able to reduce

both worm and tissue egg burdens by 80–90%, which is the

best result recorded among S. mansoni vaccine candidates

in murine model (Hassan et al. 2019; Perera et al. 2020).

Of note, enzymatically inactive SmCB1, Fasciola hep-

atica cathepsin L1 (FhCL1) (El Ridi et al. 2014a; b), S.

haematobium cathepsin L (Abdel Aziz et al. 2019), and

papain (Tallima et al. 2019) displayed reduced, yet sig-

nificant, protective capacity against S. mansoni and/or S.

haematobium challenge infection independently of their

proteolytic activity. Furthermore, Tallima and colleagues

have found that active and chemically-inactivated non

helminth cysteine peptidase, papain induced highly sig-

nificant reduction ([ 65 and 40%, respectively) in worm

burden associated with 85% decrease in intestinal egg

viability in mice. These results suggested that one or more

papain structural motifs might be responsible for induction

of the significant protection (Tallima et al. 2019).

All vaccine candidates are now known to be via their

transport in EVs available to both elicit immune responses

and be accessed by immune effectors, namely antibodies

able to hunt and chase the developing schistosomula,

forcing their extravasation especially at the lung and liver

stage (El Ridi et al. 2017; Sotillo et al. 2016; Samoil et al.

2018; Kifle et al. 2020a; Mekonnen et al. 2020). The

reproducible and highly significant reduction in worm

burden and worm egg attrition elicited by cysteine pepti-

dases was recently explained. These molecules do not only

induce type 2 antibodies, they also result in accumulation

of uric acid and arachidonic acid (ARA). It was recently

proposed that specific antibodies and the schistosomicide

ARA combine towards parasite worm and egg attrition.

(Tallima et al. 2019, 2020a; b). Curiously, EV derived from

adult S. mansoni were found to be internalized by vascular

endothelial cells and monocytes and to powerfully up

regulate ARA metabolism (Kifle et al. 2020b).

The cysteine peptidase vaccine protection was recently

found to be associated with high levels of serum antibodies

and an increase in the levels of uric acid and ARA in blood

and tissues around 17 days post infection (Tallima et al.

2019, 2020a). Uric acid directed the immune responses

towards the type 2 axis, increased the antibody response,

and elicited an increase in free ARA, responsible for worm

and egg attrition. The powerful oxidant stress-inducing

properties of ARA are responsible for its schistosomicidal

action, but are counteracted by the anti-oxidant properties

of uric acid. It was thus sought to avoid the uric acid-

inducing capacity of ARA, via use of an enzyme-inactive

peptide construct (Tallima et al. 2019, 2020a; b).

Antigenic peptides

Peptide vaccine might be more useful than whole protein

and live-attenuated formulations, because peptide vaccine

decreases the possibility of using immunosuppressive epi-

topes and epitopes that elicit an autoimmune response.

However, peptide vaccine presents limitations in terms of

obtaining an effective immune response in a population

with high genetic variability. The choice of epitopes to

form a peptide vaccine depends on their ability to elicit the

desirable immune response and to be presented by a wide

range of HLA molecules (Purcell et al. 2007). Neverthe-

less, the efficacy of synthetic peptide vaccine has been

evaluated against many microorganisms, and has shown to

confer a partial protection in vivo against parasite diseases

(Patarroyo et al. 1987; de Oliveira et al. 1994; Noya et al.

2003b). Additionally, synthetic peptides that contain epi-

topes of infectious agents’ protein have been used in the

diagnosis of various human diseases (Gómara and Haro

2007).

Regarding schistosomiasis, different vaccine candidates

in a peptide construct have been tested. One of those

candidates was a peptide containing B and T cell epitopes

derived from protease inhibitor, kunitz protein of S. man-

soni, resulted in significant reduction (89–91%) in female

worm burden in BALB/c mice (Hernández-Goenaga et al.

2019). In addition, peptides derived from Sm14, para-

myosin, and Sj28GST antigens have shown that Sm14 and

Sj28GST induced Th1 immune response against S. man-

soni and S. japonicum infection in C57BL/6 mice (Li et al.

2005; Garcia et al. 2008). Another two peptides derived

from SmA263K protein were synthesized as lipid core

peptides (LCPs), with or without adjuvant. Antibodies

released against LCPs recognized native enzyme in the

esophagus and anterior regions of the gastrodermis of adult

worms (Dougall et al. 2014).

Actually, most peptides are not immunogenic and they

can be easily removed by the body, and hence, must be

conjugated to a carrier protein to elicit the required

immune responses. The chemical composition of the car-

rier drawbacks, notably its immune dominancy and low

ratio of an antigen to a carrier, limit their use (Tam 1995).

Instead peptides were conjugated to protein (bovine serum

albumin (BSA), keyhole limpet hemocyanine) or artificial
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carriers (MAPs, sequential oligopeptide carriers, etc.) (Tam

1988; Tsikaris et al. 1996a, b; Mezo et al. 1997).

The MAP formulation allows many peptides to be

associated in a single construct, and it can be immunogenic

with or without inbuilt adjuvant. It was first developed by

Tam (1988), when he replaced the protein carrier with a

small score matrix comprising oligomeric lysine, providing

a very high density of peptide epitopes at the surface of the

construct with a small non-protein core matrix as a scaffold

(Fig. 2) (Tam 1988). Synthesizing peptides as MAP and

peptide dendrimers can induce higher immune response

and recently were used as a vaccine model against Plas-

modium falciparum (Mahajan et al. 2010), Yersinia pestis

(Shreewastav et al. 2012), filarial nematodes (Immanuel

et al. 2017), and human immunodeficiency viruses (HIV)

(Sahay et al. 2019). Besides, all required protective B and

T cell epitopes can be included in one single MAP mole-

cule (Fig. 2) (Joshi et al. 2013). Additionally, MAP vaccine

systems have been developed to avoid the adverse effects

associated with conventional vaccines (i.e., live-attenuated,

killed, or inactivated pathogens), carrier proteins, and

cytotoxic adjuvants (Fujita and Taguchi 2011).

Schistosoma mansoni SG3PDH mono-epitopic and bis-

diepitopic MAP immunogens elicited in C57BL/6 mice

considerable cellular and humoral immune responses

(Veprek et al. 2004). Thus, six peptides bearing B and T

cell epitopes derived from the primary sequence of S.

mansoni SG3PDH and synthesized in a dipeptide MAP

induced both Th 1 (IgG2a and IgG2b isotypes) and Th2

(IgG1 isotype) immune responses, and elicited the release

of IL-2, IL-4, and IFN-c (El Ridi et al. 2004), while the

whole molecule containing these peptides could not elicit

the release of IL 4 in BALB/c mice and human (El Ridi

et al. 1998, 2001a; Tallima et al. 2003). SG3PDH derived

MAP construct administered to BALB/c mice appeared to

induce both Th1 (IgG2a and IgG2b) and Th2 (IgG1 or IgE)

immune responses. This is in line with protective immunity

in schistosomiasis requiring both Th1 and Th2 immune

responses (Butterworth 1994; Coulson 1997; McManus

1999; Dunne and Mountford 2001; El Ridi 2002; Al-

Sherbiny et al. 2003).

On the other hand, vaccination of C57BL/6 mice with

single-epitope-peptide-DNA dual vaccines (PDDV) eli-

cited either T cytotoxic, T helper, or B cell responses. The

multicomponents (3 PDDV components) formulation could

trigger different immune responses in immunized mice,

yet, was less immunoprotective than a single-epitope

PDDV formulation. Results suggested that combination of

many antigens did not increase the protective potential of

the vaccine when compared to the protection of each

antigen separately mediated (Wang et al. 2010). However,

a bivalent MAP construct containing peptide sequences

containing B and T cells determinants derived from

Sm28GST and SmTPI proteins was shown to induce B-

Fig. 2 Multiple antigenic peptide structure
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and T-cell responses and the antibodies were mainly

directed not only against the peptide derived from the

Sm28GST but also against the whole Sm28GST protein

when administered to BALB/c, CBA/N, and C57BL/6 mice

(Ferru et al. 1997). MAP construct containing B- and T-cell

epitopes derived from SmTPI was used to prime human

and murine spleen cells in vitro driving Th1 immune

response, and stimulating the release of IFN-c- which play

an important role in both S. mansoni protective immunity

and pathology (La Flamme et al. 2001; Henri et al. 2002;

Reis et al. 2008).

Similarly, Sm28GST derived peptides synthesized in

two tetravalent mono-epitopic MAPs displayed high anti-

genicity, indicating that MAPs were stronger agents than

monomeric peptides in both specificity and immunogenic

activity against schistosome infection in patients and rab-

bits (Huang et al. 2005).

Otherwise, MAP constructs have elicted significant

protection against other parasites, Toxoplasma gondii

(Darcy et al. 1992), Fasciola gigantica, (Jezek et al. 2007),

Trichinella spiralis (Gu et al. 2020), and microorganisms,

Streptococcus mutans OMZ 175 and a mannan from Sac-

charomyces cerevisiae (Lett et al. 1995).

Concluding remarks

Schistosomiasis is one of the important helminthic diseases

closely linked to poverty and affecting the health. S.

mansoni infection causes intestinal diseases and affects the

liver and spleen. Several countries including Egypt depend

on PZQ as chemotherapy against schistosomiasis; how-

ever, the appearance of drug resistant strains limits its use.

Additionally, mass drug administration alone will not

eliminate schistosomiasis. The need for developing vaccine

is of great important for public health. Proteins that are

specific to schistosomes and show limited similarity with

any other proteins are considered as effective and protec-

tive vaccine antigens. One of the main clinical endpoints

for vaccine efficacy is reduction of schistosomiasis mor-

bidity. Therapeutic potential of vaccine should be tested

first in rodents, non-human primates and bovines before

using in human clinical trials. Several vaccine candidates

have been discovered and showed different protection

levels. Protective capacity of vaccines was achieved by

induction of either Th1 or Th2 or both responses. Also,

protection levels of candidate vaccines are improved after

antigen formulation or combining of either different genes

or antigens. However, most reseach groups had no financial

and logistic abiliy to access trials in baboons or pre-clin-

incal human trials, resulting in neglect of vaccines that

potentially might save millions of lives.
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