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Whole body energy balance is achieved through the coor-
dinated regulation of energy intake and energy expendi-
ture in various tissues including liver, muscle and adipose 
tissues. A positive energy imbalance by excessive energy 
intake or insufficient energy expenditure results in obesity 
and related metabolic diseases. Although there have been 
many obesity treatment trials aimed at the reduction of 
energy intake, these strategies have achieved only limited 
success because of their associated adverse effects. An 
ancient neurotransmitter, serotonin is among those tradi-
tional pharmacological targets for anti-obesity treatment 
because it exhibits strong anorectic effect in the brain. 
However, recent studies suggest the new functions of pe-
ripheral serotonin in energy homeostasis ranging from the 
endocrine regulation by gut-derived serotonin to the auto-
crine/paracrine regulation by adipocyte-derived serotonin. 
Here, we discuss the role of serotonin in the regulation of 
energy homeostasis and introduce peripheral serotonin as 
a possible target for anti-obesity treatment.  
1 
 
INTRODUCTION  
 
Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter 
that is synthesized from the essential amino acid tryptophan by 
the sequential actions of tryptophan hydroxylase (TPH) and 
aromatic amino acid decarboxylase. Once serotonin is released, 
it exerts its biological action by binding to serotonin receptor 
(HTR). Its action is then terminated by uptake into cells through 
the serotonin transporter (SERT, Slc6a4) (Wade et al., 1996). 
Thus, serotonin is commonly thought to act locally in neural and 
paracrine circuits, and its functions vary depending on the tis-
sues (Gershon and Tack, 2007).  

The hydroxylation of tryptophan is the rate-limiting step in se-
rotonin synthesis. Serotonin production is regulated by the ac-
tivity of TPH and the availability of tryptophan. There are two 
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isoforms of TPH; TPH1 is primarily expressed in peripheral 
tissues, whereas TPH2 is expressed in the central nervous 
system (CNS) (Walther and Bader, 2003; Zhang et al., 2004). 
Because serotonin cannot cross the blood-brain barrier, the 
central and peripheral serotonergic systems are functionally 
separated. In the CNS, serotonin is produced in the raphe nuc-
lei of the brainstem and hypothalamus. By functioning as a 
neurotransmitter in CNS, serotonin regulates mood (Merens et 
al., 2007; Young and Leyton, 2002), sleep-wake behavior 
(Monti, 2011) and food intake (Lam et al., 2010). In the peri-
phery, serotonin is mainly produced in the gut and pineal gland. 
Approximately 90% of serotonin in the body is produced by 
TPH1 in enterochromaffin cells in the gut, where it regulates 
intestinal motility (Keszthelyi et al., 2009). Gut-derived serotonin 
(GDS) is stored in platelets and controls hemodynamics upon 
activation of platelets (Keszthelyi et al., 2009). Serotonin is also 
present in other peripheral tissues (Gershon and Ross, 1966); it 
has been shown to play different roles in the mammary gland 
(Matsuda et al., 2004), liver (Lesurtel et al., 2006), and bone 
(Yadav et al., 2008) as well as in pancreatic β-cells (Kim et al., 
2010; 2015; Ohara-Imaizumi et al., 2013).  

Body energy homeostasis is a primitive and fundamental bio-
logical function that is regulated through complex physiological 
processes. As an ancient neurotransmitter that is conserved 
throughout the animal phyla, serotonin is a good candidate to 
play a fundamental role in the regulation of energy homeostasis. 
At least 14 HTRs, grouped into 7 families according to the sig-
naling mechanisms, are widely expressed in mammalian tis-
sues. This diversity of HTRs can provide diverse effects of sero-
tonin on target cells (Hannon and Hoyer, 2008). Indeed, the 
functions of serotonin in energy homeostasis range from central 
control of food intake to direct regulation of adipose tissue activ-
ity in the periphery. In this review, we discuss the functional role 
of serotonin in systemic energy homeostasis. 
 
CENTRAL REGULATION OF ENERGY HOMEOSTASIS 
BY SEROTONIN  
 
Central serotonin has been considered a target for anti-obesity 
treatment since an inverse relationship between central seroto-
nin level and food intake was established. Fenfluramine, which 
increases serotonin release, is the prototypical agent for sero-
tonergic suppression of feeding (Lam and Heisler, 2007). Inhi-
biting serotonin synthesis in the brain via intraventricular injec-
tion of p-chlorophenylalanine (PCPA), an irreversible TPH inhi-
bitor, induces hyperphagia and weight gain in rats (Breisch et 
al., 1976). Serotonin reuptake inhibitors, such as sibutramine  
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and fluoxetine, and monoamine oxidase inhibitors, such as 
clorgyline and pargyline, reduce food intake (Feldman, 1988; 
Heal et al., 1998; Heisler et al., 1997). Thus, central serotonin 
functions as an anorexigenic neurotransmitter. 

Studies using receptor-specific drugs and knock-out (KO) 
mice have provided insight into the role of specific HTRs in 
regulating appetite. The involvement of HTR2C and HTR1B 
was initially suggested by the anorectic effect of m-
chlorophenylpiperazine (mCPP) (Kennett and Curzon, 1988). 
Anorectic effect of fenfluramine was attenuated by HTR2C 
antagonist (Vickers et al., 1999). HTR2C agonist induced 
hypophagia (Lam et al., 2008) and improved glucose toler-
ance and insulin sensitivity in obese mouse model (Zhou et 
al., 2007). A major contribution of HTR2C to feeding control 
was confirmed by a study of Htr2c KO mice (Tecott et al., 
1995). Htr2c KO mice are hyperphagic and obese, and the 
anorectic effect of mCPP disappears in Htr2c KO mice 
(Nonogaki et al., 1998). However, the anorectic effect of leptin 
is not related to Htr2c KO. In addition, Htr1b KO mice exhi-
bited hyperphagia (Bouwknecht et al., 2001) and a selective 
HTR1B agonist induced hypophagia in mice (Halford and 
Blundell, 1996). Recently, lorcaserin ([1R]-8-Chloro-2,3,4,5-
tetrahydro-1-methyl-1H-3-benzazepine),  a selective HTR2C 
agonist, was approved for obesity treatment (Colman et al., 
2012). Lorcaserin decreased body weight without influencing 
energy expenditure (Martin et al., 2010). 

Appetite is regulated by the hypothalamic feeding circuits 
(Sohn et al., 2013). Briefly, anorexigenic proopiomelanocortin 
(POMC) neurons release α-melanocyte-stimulating hormone 
(α-MSH), the endogenous ligand of the melanocortin 4 receptor 
(MC4R), to reduce appetite and food intake. Orexigenic neuro-
peptide Y/agouti-related peptide (NPY/AgRP) neurons increase 
appetite and food intake by releasing the endogenous MC4R 
antagonist AgRP, and they suppress POMC neurons by releas-
ing GABA. Studies of the effects of serotonin on the hypotha-
lamic feeding circuits revealed that serotonin reciprocally acti-
vates POMC neurons through HTR2C while inhibiting 
NPY/AgRP neurons via HTR1B (Heisler et al., 2002). Taken 
together, central serotonin inhibits food intake by modulating 

hypothalamic feeding circuits (Fig. 1).  
Since TPH2 is responsible for the serotonin production in the 

brain, Tph2 KO mice were expected to be hyperphagic and 
obese. Although central serotonin levels were selectively de-
creased, the body weights of Tph2 KO mice were lower than 
littermate control (Alenina et al., 2009; Gutknecht et al., 2012; 
Savelieva et al., 2008). In addition, Htr1b KO mice did not de-
velop obesity, despite having hyperphagia (Bouwknecht et al., 
2001). These findings suggest that central serotonin may upre-
gulate energy expenditure in the body. Indeed, intra-ventricular 
injection of serotonin increases resting oxygen consumption 
without obvious behavioral effects (Le Feuvre et al., 1991). The 
injection of serotonin into the paraventricular nucleus and ven-
tromedial nucleus of the hypothalamus increases sympathetic 
tone, resulting in the upregulation of the activity of brown adi-
pose tissue (BAT) (Sakaguchi and Bray, 1989). Fenfluramine 
also increases sympathetic tone and activates BAT that is re-
versed by BAT sympathectomy (Arase et al., 1988; Rothwell 
and Stock, 1987). Taken together, these findings indicate that 
central serotonin decreases energy intake by reducing appetite 
and increases energy expenditure by activating BAT through 
the sympathetic nervous system.  
 
PERIPHERAL REGULATION OF ENERGY HOMEOSTASIS 
BY SEROTONIN  
 
In contrast to the anorectic effect of central serotonin, several 
lines of evidences suggest different functions of serotonin in the 
periphery. Slc6a4 (SERT) KO mice were expected to be slim 
due to the increased serotonin activity in the brain; however, 
they exhibited an obese phenotype (Murphy and Lesch, 2008). 
Body weight is reduced in Tph1 and Tph2 double KO mice as 
well as in Tph1 KO mice (Alenina et al., 2009; Gutknecht et al., 
2012; Savelieva et al., 2008). In addition, the enhancement of 
serotonin activity using a selective SERT inhibitor (SSRI) is 
associated with transient weight loss (Serretti and Mandelli, 
2010). These discordant results suggest that peripheral seroto-
nin and central serotonin play opposite roles in the regulation of 
energy homeostasis.  

Fig. 1. Appetite is regulated by central serotonin. 
Serotonin acts via HTR1B and HTR2C on down-
stream melanocortin pathways to suppress appe-
tite in the brain. Serotonin suppresses the produc-
tion and release of AgRP, an endogenous melano-
cortin receptor antagonist, through HTR1B and 
increases the production and release of α-MSH, 
an endogenous melanocortin receptor agonist, 
through HTR2C. Overall, central serotonin sup-
presses food intake. 
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Peripheral serotonin is produced in the gut and stored in 
platelets. There is also a small amount of free serotonin in 
plasma. The level of serotonin in the blood is determined by the 
production of serotonin from enterochromaffin cells in the gut. 
Several studies have reported increased serotonin production 
and blood serotonin levels in various animal models of obesity 
and diabetes. Kim et al. (2011) reported that the serum seroto-
nin level was elevated in C57BL/6 mice fed a high fat diet 
(HFD) compared to mice fed a low fat diet (LFD). Bertrand et al. 
reported that rats fed a Western diet showed increased expres-
sion of Tph1 and increased serotonin secretion from the gut 
(Bertrand et al., 2011). Haub et al. also reported that duodenal 
serotonin content was increased in ob/ob mice, a mouse model 
of obesity (Haub et al., 2011). In contrast, Sumara et al. (2012) 
documented that fasting induced serotonin production in the gut, 
modestly increasing the plasma serotonin level. Difficulties in 
measuring blood serotonin levels are responsible for these 
discrepant blood serotonin levels (Brand and Anderson, 2011). 
Although Kim et al. (2011) identified serotonin as the most high-
ly upregulated metabolite in the serum of mice fed an HFD, this 
data needs to be interpreted carefully. They used an LFD as a 
control instead of a standard chow diet. An LFD contains more 
carbohydrate than an HFD. This difference can substantially 
change the availability of tryptophan and affect serotonin pro-
duction in the periphery and brain. Bertrand et al. (2011) and 
Haub et al. (2011) reported increased serotonin production in 
the gut, but they did not measure blood serotonin levels directly. 
Sumara et al. (2012) reported a modest increase in plasma 
serotonin levels, which reached 24 μM after 48 h of fasting. 
However, 24 μM plasma serotonin is a much higher concentra-
tion than that usually observed. Earlier reports of serotonin 
concentration in platelet-poor plasma have ranged from 0.6 to 
179 nM, with a mean of 31.6 nM and a median of 14.8 nM 
(Brand and Anderson, 2011). Thus, whether feeding or fasting 
changes blood serotonin concentrations remains an open 
question.  

Since the 1960s, the biological functions of peripheral sero-
tonin in the regulation of energy homeostasis have been exten-
sively studied using chemical agonists and antagonists. How-
ever, most of data are controversial because of off-target effects. 
Recently, tissue-specific gene KO technology has allowed us to 
dissect the complex functions of HTRs in different tissues. In 
conjunction with recent studies using tissue-specific gene KO of 
serotonergic systems, reinterpreting the data that have been 
published over the last several decades provides better under-
standing on the functions of peripheral serotonin in the regula-
tion of energy metabolism. 

In the liver, hepatocytes do not produce serotonin. It is re-
leased from platelets upon activation and induces hepatic re-
generation through HTR2B (Lesurtel et al., 2006). Recently, 
using gut-specific Tph1 KO mice, Sumara et al. provided clear 
insight into the important role of GDS in the liver (Sumara et al., 
2012). The gut-specific Tph1 KO mice showed improved glu-
cose disposal and reduced hepatic gluconeogenesis, and these 
effects were diminished by the administration of serotonin. Liv-
er-specific Htr2b KO mice exhibited a similar phenotype 
(Sumara et al., 2012), indicating that GDS regulates hepatic 
glucose metabolism through HTR2B. Similar data have indi-
cated that in fasted mice, plasma glucose concentrations are 
elevated after the injection of serotonin (Watanabe et al., 2010). 
In contrast to the increased hepatic glucose production that is 
triggered by serotonin, plasma triglyceride, cholesterol, and 
nonesterified fatty acid concentrations are decreased after the 
injection of serotonin (Watanabe et al., 2010). Portal infusion of 
serotonin also increases hepatic glucose uptake (Moore et al., 
2004). These data suggest that serotonin may induce lipogene-
sis or triacylglycerol synthesis in the liver and/or white adipose 
tissue (WAT). Indeed, Haub et al. indirectly showed that seroto-
nin increases the fat content in the liver (Haub et al., 2011). 
Duodenal serotonin content was increased in ob/ob mice, and 
HTR3 antagonist treatment reduced the elevated serotonin 
levels and increased SERT in the duodenum. In these mice, 

Fig. 2. Energy homeostasis is 
regulated by peripheral serotonin. 
TPH1 expression and the produc-
tion of serotonin in the periphery 
are increased by an HFD. Adipo-
cyte-derived serotonin may in-
crease energy storage and adipo-
genesis in WAT through HTR2A 
and inhibit adaptive thermogene-
sis in BAT through HTR3. Gut-
derived serotonin promotes gluco-
neogenesis and suppresses he-
patic glucose uptake through 
HTR2B, indicating that GDS regu-
lates hepatic glucose metabolism.
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treatment with an HTR3 antagonist also reduced fat content, 
inflammation, and necrosis in the liver (Haub et al., 2011). Thus, 
GDS seems to induce hepatic steatosis.  

Although Slc6a4 KO mice are obese and the body weights of 
Tph1 KO mice are reduced (Alenina et al., 2009; Gutknecht et 
al., 2012; Murphy and Lesch, 2008; Savelieva et al., 2008), the 
body weights of gut-specific Tph1 KO mice are comparable to 
those of wild type control mice (Sumara et al., 2012). Further-
more, GDS-induced lipolysis through HTR2B was confirmed in 
gut-specific Tph1 KO mice and fat-specific Htr2b KO mice 
(Sumara et al., 2012). These discordant data suggest that sero-
tonin other than GDS may play a different role in the regulation 
of systemic energy homeostasis. Because lipid accumulation in 
adipose tissue is a key feature of obesity, adipose tissue is the 
most likely candidate. Recently, two independent studies have 
highlighted the role of adipocyte-derived serotonin in energy 
storage in WAT and in energy expenditure in BAT (Crane et al., 
2015; Oh et al., 2015). In a diet-induced obesity mouse model, 
Tph1 expression and tissue serotonin concentrations were 
increased in epididymal and subcutaneous WAT (Oh et al., 
2015) as well as in BAT (Crane et al., 2015). Crane et al. (2015) 
showed that Tph1 KO mice were protected from obesity and 
related metabolic dysfunctions. Tph1 KO mice gained signifi-
cantly less weight and had lower adiposity and less hepatic lipid 
accumulation when fed an HFD. Glycemic control was im-
proved in Tph1 KO mice as well, although glucose uptake was 
similar in the muscle, liver and heart, indicating the contribution 
of BAT to the increased basal metabolic rate (Crane et al., 
2015). Indeed, Tph1 KO mice showed similar food intake, but 
their energy expenditure was enhanced. BAT activity increased 
in a UCP1-dependent manner in Tph1 KO mice. The obeso-
genic action of peripheral serotonin was confirmed again using 
a peripheral TPH inhibitor LP-533401 (Crane et al., 2015).  

Oh et al. (2015) independently demonstrated similar func-
tions of peripheral serotonin using the systemic TPH inhibitor 
PCPA and the peripheral TPH inhibitor LP-533401. Intraperito-
neal injection of PCPA resulted in decreased weight gain and 
lower adiposity after an HFD, although intraventricular injection 
of PCPA reduced serotonin production in the brain and induced 
hyperphagia and obesity (Breisch et al., 1976; Oh et al., 2015). 
Systemic PCPA injection reduced lipogenesis in WAT and in-
duced beige adipogenesis in inguinal WAT as well as increased 
BAT activity, thereby decreasing adiposity and improving glu-
cose homeostasis and insulin sensitivity. In particular, both 
PCPA and LP-533401 induced the expression of UCP1 and 
DIO2 in BAT and inguinal WAT (Oh et al., 2015). Furthermore, 
a cell-autonomous effect of serotonin in adipose tissue has 
been shown in adipocyte-specific Tph1 KO mice (Oh et al., 
2015). In BAT, β-adrenergic signaling turns on the thermogenic 
gene program through an intracellular increase in cyclic AMP 
(cAMP). cAMP then activates protein kinase A (PKA) and 
downstream targets of PKA, thereby inducing UCP1 expression 
(Collins et al., 2010). Adipocyte-specific Tph1 KO induced 
UCP1 and DIO2 expression in BAT (Oh et al., 2015). Basal 
cAMP levels and PKA activity were higher in the BAT of the 
adipocyte-specific Tph1 KO mice, and serotonin attenuated the 
isoproterenol-mediated increase in intracellular cAMP in BAT 
(Crane et al., 2015). In addition, HFD robustly induced beige 
adipogenesis in inguinal WAT of the adipocyte-specific Tph1 
KO mice (Oh et al., 2015). Taken together, these recent studies 
suggest that serotonin negatively regulates the sensitivity of 
adipose tissues to β-adrenergic stimulation. 

HTR2A and HTR3 have been identified as receptors mediat-
ing the obesogenic effects of serotonin in adipose tissues. Diet-
induced thermogenesis was robustly increased in the BAT of 

Htr3a KO mice (Oh et al., 2015). In immortalized brown adipo-
cytes, HTR3 antagonist activated the PKA pathway by increas-
ing cAMP production and increased mitochondrial respiration 
(Oh et al., 2015). Thus, Htr3a KO mice were resistant to HFD-
induced obesity and showed the improved insulin sensitivity 
upon an HFD. In contrast to Tph1 KO mice, Htr3a KO mice 
maintained WAT mass and did not show histological differences 
compared with littermate control mice, suggesting that another 
HTR plays a different role in WAT (Oh et al., 2015). In vitro 
experiments using 3T3-L1 adipocytes have provided a hint of 
the role of serotonin in adipogenesis (Kinoshita et al., 2010; Oh 
et al., 2015). Serotonin is produced in mature adipocytes and 
TPH1 expression is required for the differentiation of 3T3-L1 
preadipocytes (Kinoshita et al., 2010). Treatment with a TPH 
inhibitor or disruption of Tph1 gene in 3T3-L1 preadipocytes 
resulted in reduced adipogenesis (Kinoshita et al., 2010), and 
serotonin increased lipid accumulation in human and mouse fat 
cells (Gres et al., 2013). HTR2A expression increased in the 
hypertrophied 3T3-L1 adipocytes and WAT of db/db mice, and 
HTR2A activation reduced adiponectin expression in hypertro-
phied 3T3-L1 adipocytes (Uchida-Kitajima et al., 2008). HTR2A 
antagonist inhibited adipogenesis (Kinoshita et al., 2010), and 
HTR2A agonist increased lipid accumulation (Oh et al., 2015). 
HTR2A antagonists increased circulating adiponectin levels in 
diabetic patients (Nomura et al., 2005; Yamakawa et al., 2003). 
Thus, serotonin increases energy storage in WAT through 
HTR2A and inhibits energy expenditure in BAT through HTR3.  
 
CONCLUSION 
 
Based on the newly identified roles of peripheral serotonin in 
energy homeostasis, serotonin can be considered as an ener-
gy-saving hormone. Modulating the peripheral serotonergic 
system may be a good strategy for anti-obesity treatment be-
cause it can decrease obesity and increase insulin sensitivity. In 
general, receptor-specific activation or inhibition is thought to be 
a better strategy for drug development. However, serotonin 
plays different roles in different tissues by acting through differ-
ent receptors. Thus, inhibition of serotonin synthesis in adipose 
tissue is a potentially beneficial strategy for anti-obesity treat-
ment. This strategy increases insulin sensitivity by simulta-
neously decreasing lipogenesis and increasing adaptive ther-
mogenesis. 

There are still several questions remained to be solved. Mito-
chondrial biogenesis was enhanced in BAT by Htr3 or Tph1 KO, 
but the mechanism how serotonin regulates mitochondrial bio-
genesis and function is largely unknown. How the inhibition of 
serotonin synthesis induces beige adipogenesis and which 
HTR is responsible for the beige adipogenesis are also un-
known, as is the mechanism that underlies GDS-mediated 
regulation of hepatic steatosis. It is also of interest to know how 
serotonin plays opposite functions in WAT by acting through 
HTR2A and HTR2B, which increases lipogenesis and lipolysis, 
respectively.  

The evidences in support of serotonin as a metabolic regula-
tor in the development of obesity are increasing. Nonetheless, 
the majority of the data are derived from animal studies, and 
the clinical relevance of serotonin in humans remains undeter-
mined. More accurate information regarding blood serotonin 
levels in different clinical settings also needs to be obtained. 
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