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Abstract

Motivation: The interpretation of transcriptional dynamics in single-cell data, especially pseudotime

estimation, could help understand the transition of gene expression profiles. The recovery of pseudo-

time increases the temporal resolution of single-cell transcriptional data, but is challenging due to the

high variability in gene expression between individual cells. Here, we introduce HopLand, a pseudo-

time recovery method using continuous Hopfield network to map cells to a Waddington’s epigenetic

landscape. It reveals from the single-cell data the combinatorial regulatory interactions among genes

that control the dynamic progression through successive cell states.

Results: We applied HopLand to different types of single-cell transcriptomic data. It achieved high

accuracies of pseudotime prediction compared with existing methods. Moreover, a kinetic model

can be extracted from each dataset. Through the analysis of such a model, we identified key genes

and regulatory interactions driving the transition of cell states. Therefore, our method has the po-

tential to generate fundamental insights into cell fate regulation.

Availability and implementation: The MATLAB implementation of HopLand is available at https://

github.com/NetLand-NTU/HopLand.

Contact: zhengjie@ntu.edu.sg

1 Introduction

The traditional time-series gene expression data analyses of a large

population of cells, e.g. microarray data, overlook the high variabil-

ity among individual cells. However, the heterogeneity among single

cells contributes to the transcriptional dynamics of a temporal pro-

cess such as cell differentiation. From the bulk data, it is difficult to

separate cells from different developmental stages or identify rare

sub-populations of cells. On the contrary, high-throughput single-

cell technologies are new and promising to give insights into the het-

erogeneous distribution and dynamics of individual cells (Buganim

et al., 2012).

The ‘pseudotime’ is a quantitative measure of progress through a

biological process along which cells are arranged based on their ex-

pression profiles. The recovery of pseudotime is made possible by

taking advantage of single-cell technologies which provide unprece-

dented access to the underlying processes and intrinsic functional re-

lationships among cells, and thereby reveals the mechanisms of

complex biological systems. For example, using the estimated pseu-

dotimes of single cells from cell differentiation in embryonic devel-

opment, crucial regulators can be identified by comparing the

expression profiles around the branching time points. The recovery

of pseudotime can also facilitate cancer studies, such as revealing the

progression from normal tissues to malignant lesions.

The intrinsic signals of cell-to-cell variability in the extracted

gene expression profiles are often corrupted with technical noises

(Stegle et al., 2015), such as distortion caused by overdispersion,

outliers and dropout events, which makes the interpretation of bio-

logical meaning highly challenging. Although several methods have

been developed to recover pseudotimes from single-cell data, there is

still room for improvement in the analysis. In these methods, indi-

vidual cells are projected onto the constructed trajectories or land-

scape estimated from the transcriptional data. The pseudotime of a

cell in the differentiation process is measured by the distance from

its projected position on the time line to the given starting point,
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based on the assumption that cells with similar expression profiles

should be gathered together.

Given the prior knowledge of marker genes, the Wanderlust

method (Bendall et al., 2014) uses a graph-based trajectory detection

algorithm that maps cells onto a 1D developmental trajectory

assuming that there is no branch. The pseudotime of a cell is defined

by its coordinate on the path. However, Wanderlust fails to report

the divergent time points when there are branching processes, and it

relies on the prior knowledge of marker genes. Wishbone (Setty

et al., 2016) overcomes the defects of Wanderlust by aligning single

cells into bifurcating branches. It identifies the bifurcation points

and recovers the pseudo-temporal ordering of cells. SCUBA (Marco

et al., 2014) uses the temporal information to perform bifurcation

analysis of single-cell data to recover the cell lineages. In applica-

tions where the time information is not available, it fits a smooth

curve passing through the reduced data using the principal curve

analysis. The pseudotime of each cell is determined by its mapped

position along the principal curve.

Several other methods, e.g. diffusion map (Haghverdi et al.,

2015), Monocle (Trapnell et al., 2014) and Topslam (Zwiessele and

Lawrence, 2016), which do not require the prior knowledge of

marker genes or temporal information, are capable of simulating

differentiation processes with multiple lineages. The differentiation

path or landscape is visualized by mapping from the high-

dimensional space of single-cell gene expression profiles to a lower

dimensional space using linear or non-linear dimensionality reduc-

tion techniques, such as diffusion map (Coifman et al., 2005), inde-

pendent component analysis (ICA) (Hyv€arinen and Oja, 2000) and

Bayesian Gaussian process latent variable model (Bayesian GP-

LVM) (Lawrence, 2003; Titsias and Lawrence, 2010).

The diffusion map for single-cell analysis uses diffusion distances

to simulate cell differentiation and order cells along the differenti-

ation path while preserving the non-linear structure of data.

Monocle builds a minimum spanning tree (MST) to connect cells

and the longest path in the MST serves as the main pseudotime axis.

One pitfall of Monocle is the use of ICA, a linear dimensionality re-

duction method, which may not be able to accurately capture the

nonlinearity in the biological system. Topslam estimates the pseudo-

time by mapping the individual cells to the surface of a

Waddington’s epigenetic landscape (Waddington, 1957) using the

probabilistic dimensionality reduction technique of Bayesian GP-

LVM. Following the topography of the probabilistic landscape, the

locations of cells reflect their degrees of maturity during the

differentiation.

Although the above state-of-the-art methods show promising

performance for pseudotime estimation, there are a few concerns.

For example, most of the current methods project the high-

dimensional data into two or three latent components, and the dis-

tances in the latent space are interpreted as biological cell-to-cell

variability. This assumption might cause misleading results as the

dimensionality reduction methods could be sensitive to noise in gene

expression data. Instead of using the distance in the 2D latent space,

Topslam has used the topography of the landscape to refine the dis-

tance, but the definition of the landscape therein lacks biological

meaning. Furthermore, although some of the existing data-driven

methods could reveal the dynamics of a specific process, they are

confined to the identification of key regulators without the involve-

ment of the system dynamics driven by molecular interactions, e.g.

reactions among transcription factors, genes and epigenetic

modifiers.

To address these issues, we propose HopLand, a method for

pseudotime recovery from single-cell gene expression data by

mapping cells to the Waddington’s epigenetic landscape. By infer-

ring the gene–gene interactions from single-cell transcriptional data,

we construct a kinetic model, using the continuous Hopfield net-

work (CHN) which is a type of recurrent neural network proposed

by John Hopfield in 1984 (Hopfield, 1984). Waddington’s epigen-

etic landscape can be seen as a non-linear map which visualizes the

branching process driven by the interactions among genes in the

cells. The performance of HopLand running on single-cell qPCR

and RNA-seq datasets was superior to most of the existing methods

in most cases. Moreover, a list of key regulators and interactions

were identified. This method can be applied broadly to understand-

ing various cellular processes, including embryonic development,

stem cell reprogramming and cancer cell proliferation.

2 Materials and methods

We adopted the concept of Waddington’s epigenetic landscape to

analyze and visualize the dynamics of the biological processes from

a global point of view. The virtual individual cells modeled based on

the single-cell gene expression data are to be placed on the surface

regions corresponding to their developmental stages. To plot such a

landscape, we constructed a kinetic model from transcriptional

data, using the CHN to describe the transcriptional regulation. For

each target gene, the model associates its change rate with the adap-

tation of the neurons. Then, the pseudotime can be estimated by cal-

culating the geodesic distance between every two cells in the

landscape. Based on the above framework, the HopLand algorithm

is designed as follows:

Step 1. Normalize the gene expression data and select differen-

tially expressed genes (by filtering out genes with low variances).

Step 2. Construct the kinetic model by neural network inference

from data.

Step 3. Construct the Waddington’s epigenetic landscape based

on the kinetic model.

Step 4. Calculate geodesic distances to estimate the pseudotimes

of the input single cells.

Algorithm 1 illustrates the steps of HopLand which are further

elaborated in the following subsections.

Algorithm 1. HopLand algorithm

INPUT: Single-cell gene expression data D 2 RS�N where S is

the number of cells and N is the number of genes, and tem-

poral information cellStages (which is not compulsory)

OUTPUT: Kinetic model of Waddington’s epigenetic land-

scape landModel, and pseudotimes of cells PT

1: if cellStages is available then

2: Set startPoints as the earliest samples in cellStages;

3: randomInitials¼ generateRandomInitialStates(startPoints);

4: realTraj¼ generateTrajectory(D, cellStages);

5: gmmModels¼fitMixtureGaussian(D);

6: h¼ParameterOptimization(D, cellStages, randomInitials,

realTraj, gmmModels); // Algorithm 2

7: else

8: h¼ initializeParam(D);

9: end if

10: landModel¼LandscapeConstruct(D, h); // Algorithm 3

11: PT¼PseudotimeRecovery(landModel); // Algorithm 4

12: return landModel, PT.

HopLand: single-cell pseudotime recovery i103

Deleted Text: one-dimensional
Deleted Text: <xref ref-type=
Deleted Text: -


2.1 Data-driven kinetic modeling
2.1.1 Network formulation

CHN consists of a set of N interconnected neurons which update

their activation values synchronously or asynchronously. Compared

with the original two-state HN proposed by Hopfield himself in

1982 (Hopfield, 1982), CHN uses continuous variables and predicts

continuous responses. The discrete Hopfield network has been used

to study biological systems with each neuron representing a gene

(Lang et al., 2014; Maetschke and Ragan, 2014; Taherian Fard

et al., 2016). Gene expression values tend to have continuous input–

output relations which cannot be fully characterized by the simpli-

fied discrete states of neurons in the two-state HN. Thus we adopted

the framework of CHN to model the system dynamics with each

neuron corresponding to an individual gene whose adaptation indi-

cates the change of gene expression value.

In the framework of CHN, the gene expression of a cell is char-

acterized by the outputs of the neurons V ¼ fVi; i ¼ 1; 2; . . . ;Ng,
where N is the number of genes. The inputs to each neuron come

from two sources, i.e. the background noise and signals from other

neurons. The time evolution of the system is represented by ordinary

differential equations (ODEs). The change rate of neuron i is mod-

eled by

dVi

dt
¼ Ci

XN
j¼1

WijUj � diVi þ Ii; (1)

Uj ¼ gjðVjÞ; (2)

where Wij is an entry of the weight matrix of CHN representing the

interconnection weight coefficient from neuron j to neuron i, and Ci

is an amplifier on the synaptic connections. The external input Ii

represents a combination of propagation delays, regulations by

other genes not in our model, and noise in transcriptional regula-

tion. di denotes the degradation rate of gene i. The activation func-

tion gjðVjÞ represents the input–output relationship of a nonlinear

amplifier with negligible response time. The activation function is

required to be a monotonically increasing function to make the sys-

tem stable (Zhang et al., 2014). In our model, a sigmoid activation

function is used (Equation (3)) which has been used in (Ay and

Arnosti, 2011; Chen et al., 2005) to describe the regulatory function

of a gene:

gjðVjÞ ¼ 1=ð1þ e�ðVj�ljÞ=rj Þ: (3)

In Equation (3), lj and rj are the mean and standard deviation of

the expression levels of the jth gene in all cells, respectively.

2.1.2 Parameter estimation

There are several parameters in the ODE model of kinetics in

Equation (1). To infer these parameters h ¼ fdi; Ii;Ci;Wij; i; j ¼ 1;2;

. . . ;Ng from the data, we propose an optimization method

(Algorithm 2), which fits the simulated and observed single-cell

data, based on the premise that a realistic model should be able to

generate simulated data consistent with the real data.

The consistency between experimental data and simulated data is

measured in two aspects. First, the gene expression values Di ¼ fDit;

t ¼ t1; t2; . . . ; tTg where T is the number of time points (or cell stages)

in the single-cell data should follow a similar distribution. Normally,

it is believed to follow the Gaussian mixture distribution with the

mean values of components as the representative gene expression val-

ues in different lineages (Kalmar et al., 2009; Rais et al., 2013). The

second aspect of consistency lies in the change of a single gene, e.g.

down-regulated or up-regulated, along the time evolution of cell

states. Thus the objective functions are defined as follows:

OBJ1 ¼
XN
i¼1

ðDFi
data �DFi

simulateðhÞÞ; (4)

OBJ2 ¼
1

mN

Xtm

t¼t1

XN
i¼1

ritðDit � SitðhÞÞ2; (5)

where DFi
data and DFi

simulate are the density functions for the observed

and simulated expression levels of the ith gene, respectively. rit is the

standard deviation of the expression values of gene i at the time point

(or cell developmental stage) t. Si ¼ ðSit1
; Sit2

; . . . ; Sitm
Þ is an average

trajectory derived from the simulated trajectories with m time points by

simulating the CHN of Equation (1) using the generated initial states.

The gradient descent learning algorithm (Baldi, 1995) is used to

optimize the parameters in the CHN. The update of a parameter

value at the kth iteration is defined as

DhðkÞ ¼ �g
@OBJ2

@hðkÞ

� �
; (6)

hðkþ1Þ ¼ hðkÞ þ DhðkÞ; (7)

where g is the learning rate between 0 and 1, which controls the rate of

parameter adjustment. We also iteratively adapt the learning rate according

to the Bold Driver technique (Ruder, 2016). The weight matrix is initial-

ized as the Pearson correlation coefficients between samples. To simulate

the dynamic trajectories, we use the Euler’s method (the first-order Runge–

Kutta) to solve the ODEs with the initial states generated near the given

starting points. In each iteration of the gradient descent learning, we calcu-

late the value of the objective function in Equation (4) using the current

parameters. At the end, the optimized parameters are selected with the

minimum sum of the two objective functions in Equations (4) and (5).

2.2 Construction of Waddington’s epigenetic landscape
2.2.1 Energy function

Under certain conditions, the activation values of the units in a

CHN undergo a relaxation process such that the network will

Algorithm 2. Parameter optimization

INPUT: Single-cell gene expression data D, temporal informa-

tion cellStages, observed trajectories realTraj, coefficient ma-

trix r, and Gaussian mixture models gmmModels

OUTPUT: Optimized parameters h ¼ fdi; Ii;Ci;Wij; i; j ¼ 1;2;

. . . ;Ng
Initialization: Set di ¼ 1, Ii¼0, Ci¼1, Wij ¼ corrðDÞ; g ¼ 0:3,

maxIts¼2000.

1: for k ¼ 1;2; . . . ;maxIts do

2: DhðkÞ ¼ �g @OBJ2ðhðkÞÞ
@hðkÞ

� �
;

3: hðkþ1Þ ¼ hðkÞ þ DhðkÞ;
4: if OBJ2ðhðkÞÞ > OBJ2ðhðkþ1ÞÞ then

5: g ¼ g � 1:2;

6: else

7: g ¼ g � 0:5;

8: end if

9: end for

10: k� ¼ argmink ðOBJ1ðhðkÞÞ þOBJ2ðhðkÞÞÞ;
11: return h ¼ hðk

�Þ.
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converge to a stable state in which these activation values will not

change anymore. These conditions include that the weight matrix

W ¼ ðWijÞ;where i; j ¼ 1; 2; . . . ;N; has to be symmetric, and the ac-

tivation functions must be continuous, bounded, and strictly mono-

tonically increasing, such as a sigmoid function (Equation (3)). The

behavior of a CHN system can be described with an energy function

(Equation (8)) which is a Lyapunov function:

E ¼ �1

2

XN
i¼1

XN
j¼1

WijUiUj þ
XN
i¼1

IiUi þ
XN
i¼1

di

ðUi

0

g�1
i ðuÞdu: (8)

Based on the essential idea of Waddington’s epigenetic landscape, the dif-

ferentiation processes follow the paths of losing potential energy deter-

mined by the topography of the landscape. Compared with the entry

point, the valleys possess relatively lower potentials representing states

that are more stable. Here we use the network energy in Equation (8) to

quantify the altitude of the landscape, similar to previous works (Lang

et al., 2014; Maetschke and Ragan, 2014; Taherian Fard et al., 2016).

2.2.2 Visualizing the landscape

To visualize the cellular dynamics in a landscape whose shape is

determined by the energy function in Equation (8), we project the

high-dimensional data to a 2D latent space as the xy-plane in the

landscape. The non-linear dimensionality reduction method, named

Gaussian process latent variable model (GP-LVM), is used to gener-

ate the mapping between the original space and the latent space

(Lawrence, 2003; Wang et al., 2008). GP-LVM is a probabilistic ap-

proach to modeling high-dimensional data in a low-dimensional la-

tent space with a probabilistic model. It has been used for computer

vision, biological data analysis, etc. We have recently used this

method to process simulated gene expression time-series data in the

visualization of landscape (Guo et al., 2017).

Using GP-LVM to reduce the dimensions of the observed data to

two dimensions, we create a mapping from the original space to the

latent space. Then we generate a 2D grid in the reduced space cover-

ing all the cells in order to plot a continuous surface. Since the en-

ergy is calculated in the high-dimensional space, we project the grid

points back into their original space. The landscape is plotted on the

grid data. The pseudocode of the landscape construction method is

shown in Algorithm 3.

2.3 Pseudotime estimation. In Waddington’s epigenetic landscape,

a single cell with specific gene expression pattern is simplified as a point,

hence the time evolution of cell states is defined as the state-transition

movement on the landscape which is determined by the topography of

the landscape surface. Thus the geodesic distance between two cells can

be calculated from the coordinates of the cells on the landscape.

We used the fast marching algorithm (Sethian, 1999) to perform geo-

desic extraction on a triangulated mesh generated from the single-cell

data. Then, using the extracted geodesic distances as the weights of edges

connecting the cells, an MST is constructed with the given starting point

as the root. The geodesic distances to the starting point are considered pro-

portional to the pseudotimes, setting the pseudotime of the starting point

to zero. As such, the pseudotime of the ith cell is estimated as the length of

path from the corresponding tree node to the starting point in the MST.

The pseudocode of the pseudotime estimation is shown in

Algorithm 4.

3 Results

In this section, we evaluate the performance of HopLand by com-

paring it with 6 state-of-the-art methods, i.e. Monocle, Topslam,

Wanderlust, Wishbone, SCUBA and Diffusion map, on 11 testing

datasets including a qPCR dataset GUO2010 (Guo et al., 2010), 5

synthetic datasets and 5 scRNA-seq datasets, i.e. DENG2014 using

Smart-seq2 (Deng et al., 2014), YAN2013 (Yan et al., 2013) using

scRNA-seq method demonstrated in (Tang et al., 2009), ES_MEF

using STRT (Islam et al., 2011), LPS (Amit et al., 2009) and HSMM

(Trapnell et al., 2014).

3.1 Pseudotimes inferred from synthetic data
We tested HopLand on five synthetic datasets generated by simulat-

ing the early development of mouse embryos. Each dataset contains

a randomly generated differentiation pattern by angled linear splits

in two dimensions (Zwiessele and Lawrence, 2016). We extracted

the pseudotimes of the cells using the HopLand algorithm and com-

pared it with other methods (Table 1). An example of synthetic data

is shown in a contour plot (Fig. 1), which contains two diverging

events splitting cells into four lineages. We mapped the cells onto

the landscape surface according to the extracted pseudotimes. The

cells at early developmental stages (dark red dots) are located in the

bottom middle region of the landscape with high energy, while

the four lineages (white or light red dots) rest in valleys. The move-

ment directions of the cells following the shape of the landscape can

reflect the irreversible transitions of cell states during the differenti-

ation in the embryonic development.

3.2 Single-cell pseudotimes in mouse embryonic

development
The single-cell dataset of mouse pre-implantation development con-

tains the expression profiles of 438 cells with 48 genes per cell

Algorithm 3. Landscape construction

INPUT: Single-cell gene expression data D with S samples

and N genes, parameter vector h from Algorithm 2

OUTPUT: A landscape model landModel

1: Generate mapping X ¼ GPLVMðDÞ, where latent variables

are encoded in matrix X 2 RS�2;

2: Define a 2D grid Grid ¼ ½minðX1:Þ � e;maxðX1:Þ þ e�0

�½minðX2:Þ � e;maxðX2:Þ þ e�, where X1: and X2: are the

first and second components of samples, and e is a small

positive constant which determines the size of margins

around the observed data in the latent space;

3: Perform inverse dimensionality reduction

Y ¼ GPLVM�1ðGridÞ, where Y 2 RSGrid�N, and SGrid is the

number of points in Grid;

4: Calculate the energy according to Equation (8);

5: landModel ¼ fX;Grid; energyg;
6: return landModel.

Algorithm 4. Pseudotime recovery

INPUT: landModel, StartPoint

OUTPUT: pseudotimes of cells PT

1: manifold ¼ NormalizeðlandModelÞ;
2: ½Vertices; Faces� ¼ delaunayTriangulationðmanifoldÞ;
3: distMatrix ¼ fast marchingðVertices; FacesÞ;
4: T ¼ minimumSpanningTreeðdistMatrix; StartPointÞ;
5: PT ¼ calculateDistanceðT; StartPointÞ;
6: return PT.
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covering the developmental stage from the 1-cell to 64-cell stages

(Guo et al., 2010). Two distinct cell lineages, i.e. trophectoderm

(TE) and inner cell mass (ICM), emerge from the 16- to 32-cell

stages. During the transitions from the 32- to 64-cell stages, another

two cell lineages, i.e. primitive endoderm (PE) and epiblast (EPI),

are split from ICM. We applied the HopLand algorithm on this

dataset and recovered the pseudotimes of the cells.

Analyzing the expression profiles of individual genes, we found

that the expression of marker genes follows a mixture of Gaussian

distributions (data not shown). The mean values in different compo-

nents indicate differential expression in separate lineages. We

inferred the moments of the Gaussian distributions from the data.

The cells from the 1-cell stage were used to generate the training

data as the initial states for the simulation of Hopfield network in

order to calibrate the model. Then we learned a dynamical model to

capture the kinetics in the cell differentiation process of early mouse

embryonic development.

After projecting the high-dimensional data into a 2D latent

space using GP-LVM, we calculated the energy values according

to Equation (8) which are used for the z-axis of the landscape

(Fig. 2a). In the contour plot of the landscape (Fig. 2b), two bi-

furcations are shown corresponding to the cell fate decisions

made at the 16- to 32-cell stages (cyan dots to light blue dots)

and the 32- to 64-cell stages (light blue dots to dark blue dots).

Then, we mapped the expression values of marker genes into the

landscape to trace the differentiation process (Fig. 3). The expres-

sion profiles of the cells in different branches are separated using

the marker genes for different cell lineages (e.g. ICM, TE, PE,

and EPI). The result shows that cells belonging to the same stage

are located together in the landscape and they follow the develop-

mental orders. In the landscape, the change of the network energy

shows a decreasing trend along the differentiation process which

confirms our premise that cell differentiation is a process with

decreasing energy.

Using the topography of Waddington’s epigenetic landscape

as a correction, we extracted the pseudotime information. The

cells were connected in an MST (or a forest of multiple trees)

which contains the estimated pseudotimes revealing the transi-

tions of cell states (Fig. 4). We identified a small group of cells

(in dark red) isolated from others. It contains cells from the

1-cell stage due to the sparsity of data during the early mouse

embryonic development. We also compared HopLand with other

methods. The accuracies of pseudotime recovery measured by

correlation coefficient between the predicted and observed pseu-

dotimes are listed in Table 1. For each method, we calculated the

average and standard deviation of scores in the 11 testing data-

sets. It shows that HopLand achieves the best performance among

all the methods.

The weight matrix in the CHN inferred from the dataset of

GUO2010 (Fig. 5) contains information about the interactions be-

tween genes which can help us find the key regulatory relations

and reveal the dynamics of gene expression during cell differenti-

ation. The top 10 significant interactions in the learned weight

matrix of the mouse pre-implantation data are listed in Table 2.

Seven of the top 10 gene pairs are confirmed. Some of them have

direct interactions, e.g. transcriptional regulation. Although we

have not yet found evidence for the rest of interactions, some

genes from these interactions, e.g. DPPA1, HAND1, are known to

be involved in mouse embryonic development. For example,

HAND1 is a transcription factor expressed in extra-embryonic

mesoderm and trophoblast, and DPPA1 is associated with devel-

opmental pluripotency.

Table 1. Accuracies of pseudotime recovery on 5 synthetic datasets and 6 experimental datasets using different pseudotime recovery meth-

ods. Pearson correlation coefficient between the predicted and observed times is used to evaluate the result. We compared HopLand with 6

other methods, i.e. Monocle, Wanderlust, Topslam, SCUBA, Wishbone and Diffusion map

Method Dataset HopLand Wanderlust Monocle Topslam SCUBA Wishbone Diffusion map

Synthetic data

(Zwiessele and

Lawrence, 2016)

Synthetic data 1 0.8997 0.9224 0.8158 0.8872 0.9069 0.2534 0.8441

Synthetic data 2 0.9578 0.9627 0.8202 0.9693 0.9396 0.5089 0.9420

Synthetic data 3 0.9159 0.7527 0.8322 0.8840 0.7947 0.4704 0.8365

Synthetic data 4 0.9111 0.8988 0.9095 0.9236 0.8772 0.2249 0.7849

Synthetic data 5 0.9261 0.9100 0.8988 0.9488 0.9205 0.4498 0.9390

qPCR GUO2010 (Guo et al., 2010) 0.9230 0.8121 0.5796 0.9297 0.9401 0.5476 0.4949

scRNA-Seq DENG2014 (Deng et al., 2014) 0.8198 0.8879 0.9177 0.9269 0.9655 0.5115 0.8395

YAN2013 (Yan et al., 2013) 0.9129 0.8426 0.9421 0.9380 0.9776 0.2876 0.8893

LPS (Amit et al., 2009) 0.6712 0.7902 0.8899 0.7117 0.5307 0.6064 0.5783

HSMM (Trapnell et al., 2014) 0.5716 0.2810 0.4560 0.1890 0.0397 0.4850 0.1386

ES_MEF (Islam et al., 2011) 0.8712 0.8919 0.5166 0.9035 0.8518 0.3952 0.8343

Average of scores 0.8527 0.8138 0.7799 0.8374 0.7885 0.4310 0.7383

SD of scores 0.1216 0.1874 0.1756 0.2256 0.2990 0.1256 0.2432

Note: The top three scores in each dataset are in bold.

Fig. 1. The contour plot of the constructed Waddington’s epigenetic landscape

using the third synthetic dataset. The contour lines represent heights in the land-

scape. The dark areas indicate low energy, and the light regions have high energy.

The cells from early stages to late stages are colored from dark red to white
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From the weight matrix, we also ranked genes by the sum of

weights of incident edges and identified a few essential regulators,

e.g. FGF4, OCT4, GATA4 and ESRRB, which have been experi-

mentally tested to be essential for early embryonic development

(Guo et al., 2010; Li et al., 2005; Martello et al., 2012; Kehat et al.,

2001; Sozen et al., 2014). These key factors play important roles in

the regulation of embryonic development, cell proliferation, and cell

differentiation.

3.3 Testing results on single-cell RNA-seq data of

mouse embryonic development
We also compared the HopLand algorithm with other methods on

monoallelic mouse pre-implantation embryo RNA-Seq data (Deng

et al., 2014). This single-cell RNA-seq dataset comprises transcrip-

tome profiles of 317 cells from zygote to blastocyst and two mature

cell types including 11 stages. The constructed landscape is shown in

Figure 6. Splitting occurs in both 8- and 16-cell stages. The two de-

veloped cell types, fibroblast and adult liver, are separated from the

early embryonic developmental lineages. The blastocyst cells (col-

ored in green, cyan and light blue) are clustered together with lower

energy than cells of the early lineages. Early blastocyst cells (colored

in green) and middle blastocyst cells (colored in cyan) are mixed to-

gether but separated from the late-stage cells (colored in light blue)

indicating a closer developmental relations. The mature cells (col-

ored in dark blue) located in a valley have low-energy values.

The result of comparing the accuracies of different methods in

estimating pseudotimes are shown in Table 1. HopLand is not as

good as most other methods for this dataset, partly due to the dearth

of time information from the early blastocyst stage to the late blasto-

cyst stage. In addition, due to the lack of specific temporal informa-

tion between the late blastocyst samples and mature cells, HopLand

Fig. 3. Mapping gene expression values to Waddington’s epigenetic land-

scape using (a) FGF4, (b) GATA4, (c) CDX2 and (d) SOX2. The value decreases

from dark red to white

Fig. 2. (a) Waddington’s epigenetic landscape recovered using HopLand. (b) The contour plot of the constructed Waddington’s epigenetic landscape. The dots

are colored according to the developmental stages of the represented cells

Fig. 4. The minimum spanning tree constructed from Waddington’s epigen-

etic landscape. The dots are colored according to the developmental stages

of the cells in the dataset of GUO2010
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cannot accurately recover the trajectories from the pre-implantation

development to the mature cells. Nevertheless, HopLand can suc-

cessfully reconstruct the progress from zygote to blastocyst (Fig. 6)

achieving a correlation coefficient of 0.91 with real data.

4 Discussion

In this paper, we proposed a novel method, named HopLand, to re-

cover the pseudotimes from single-cell data using CHN-based mod-

eling of Waddington’s epigenetic landscape. The order of cells is

determined by the geodesic distances in the landscape.

Waddington’s epigenetic landscape constructed from the neural net-

work model serves as a stage on which the progression of cell fate

decision is simulated. In addition, our method models the dynamics

of gene regulation using the framework of CHN which generates

simulation results consistent with the observed data. The con-

structed model has allowed us to make novel, experimentally

testable hypotheses about transcriptional mechanisms that control

the cell fate conversions.

Applied to real single-cell gene expression data from different

types of biological experiments and compared against other meth-

ods, HopLand outperformed most of the other methods in most

cases. In addition, our method could also be used to identify key

regulators and interactions, which is helpful for the understanding

of underlying mechanisms.

The simulation and analysis results have shown that HopLand

has some advantages, whereas the other methods fail in certain cir-

cumstances. First, our method does not rely on any priori knowledge

of key marker genes. Secondly, the non-linear dimensionality reduc-

tion method used in HopLand generates a non-linear mapping

between the landscape and the phenotype space respecting the non-

linear structures of biological systems. Thirdly, HopLand constructs

the landscape based on biological interactions between genes that

allows to simulate real biological processes.

HopLand is a pseudotime estimation algorithm using dynamical

systems modeling. It still needs to address several issues. First, the

mathematical modeling approach makes use of several types of in-

formation, e.g. the physical time points within the single-cell data,

which is not required by some other methods. Nevertheless, our

method tries to recover the underlying regulatory mechanisms from

the data using the extracted information. The physical time points

provide the consecutive updates during the process that is useful for

the modeling, but for a dataset without temporal information,

HopLand can skip the training process and directly predict the pseu-

dotimes based on a landscape constructed using an initial settings of

parameters. Secondly, HopLand is computationally costly compared

with other methods. The parameter learning process is time-

consuming partially due to the repeated numerical solution of

ODEs. Moreover, our method was implemented in MATLAB which

is not suitable for intensive computation. In the future, we will im-

plement our method in C/Cþþ to speed it up. Thirdly, our algo-

rithm was proposed under the premise that the single-cell

transcriptional data cover the critical stages along a biological pro-

cess. If that is not the case, however, the predicted model might give

misleading results. Fourthly, HopLand makes use of GP-LVM to ex-

tract a 2D latent space from a high-dimensional space which may

suffer from the high technical noise in the single-cell data. Although

the recovery of pseudotime relies on not only the reduced compo-

nents, but also a third value, i.e. network energy, which can alleviate

the influence from the noise, we still recommend users to preprocess

their data using some single-cell analysis techniques, e.g. PAGODA

(Fan et al., 2016), scLVM (Buettner et al., 2015).

The result of HopLand on the qPCR dataset is better than those

on the scRNA-seq data. It is probably because the protocols of

Table 2 Top 10 key interactions identified from the weight matrix

ranked by the absolute value of the weight in CHN

Rank Gene 1 Gene 2 References (PMID)

1 GATA4 LCP1 18555785, 22083510, 16153702, 14990861

2 GATA4 GATA4 15987774

3 ATP12A DPPA1 –

4 ESRRB ESRRB 16767105, 19136965

5 AQP3 DPPA1 –

6 AQP3 LCP1 18700969, 19884255

7 HNF4A LCP1 21852396, 15159395

8 GRHL1 HAND1 –

9 ESRRB FGF4 26206133

10 KLF4 KLF4 18264089, 18358816, 19030024, 18555785

Fig. 5. The weight matrix contains N�N interactions of CHN learned from the

mouse embryonic early development dataset. N is the number of genes

Fig. 6. The contour plot of the landscape constructed from the dataset of

DENG2014. The cells are connected in a minimum spanning tree

i108 J.Guo and J.Zheng

Deleted Text: <?A3B2 show [AuthorQuery id=
Deleted Text: continuous Hopfield network (
Deleted Text: ) 
Deleted Text: which 


qPCR make data less prone to the dropout effect (Kalisky and

Quake, 2011). Among the 5 RNA-seq datasets, HopLand has un-

stable performances, which may be partly caused by the different

scRNA-seq protocols used in generating the data (Ziegenhain et al.,

2016). In the future, We will try to analyze HopLand in different

sequencing datasets and make it satisfy specific needs of different

types of sequencing technologies.
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