

Received 17 June 2017 Accepted 26 June 2017

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: crystal structure; taxodione; *Taxo- dium ascendens*.

CCDC reference: 1551128

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of taxodione isolated from *Taxodium ascendens* (B.)

Rui-Fang Ke,^a Shi-Cheng Xu,^a Ping Song,^b Shi-Hao Deng,^a Xin-Hua Ma^{a*} and Xin-Zhou Yang^{a*}

^aSchool of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China, and ^bCollege of Chemistry and Life Science, Qinghai University for Nationalities, Xining 810007, People's Republic of China. *Correspondence e-mail: maxinhua138@163.com, xzyang@mail.scuec.edu.cn

The title compound [systematic name: (4b*S*)-4-hydroxy-2-isopropyl-4b,8,8trimethyl-4b,5,6,7,8,8a-hexahydrophenanthrene-3,9-dione], $C_{20}H_{26}O_3$, is an abietane-type diterpene, which was isolated from *Taxodium ascendens* (B.). In the crystal, molecules are linked by weak C—H···O hydrogen bonds, forming supramolecular chains propagating along the [001] direction.

1. Chemical context

Taxodium ascendens Brongn belongs to the plant family Taxodiaceae and is native to the south-east of North America and can grow up to 25 m in height. It has yellow or orangeyellow seedballs, which mature in October. The plant is widely spread over southern China (e.g., Zhejiang, Henan, Jiangsu, Hubei and Yunnan Provinces) and because of its tolerance of water and drought, it has been used in the landscape at watersides. Previous chemical investigations of extracts isolated from the seeds of Taxodium ascendens (B.) revealed the presence of diterpenoids with an abietane framework, including as 6,7-dehydroroyleanone, salvinolone and xanthoperol (Kusumoto et al., 2009; González, 2015). Terpenoids, and in particular diterpenoids, are one of the most important classes of secondary metabolites found in the family Taxodiaceae, and have captured much attention in recent years due to their diverse bioactivities (Burmistrova et al., 2013; Iwamoto et al., 2001). In addition, the plant contains lignans and flavonoids (Si et al., 2001; Otto & Wilde, 2001) and antibacterial and inhibitory activity has been reported (Starks et al., 2014; Zhang et al., 2009). A detailed phytochemical investigation of a petroleum extract of the seeds of Taxodium ascendens Brongn has been carried out and a series of diterpenoids have been isolated, including the title compound taxodione, that show many biological properties including antibacterial (Yang et al., 2001), antioxidant (Kolak et al., 2009), antifungal (Topçu & Gören, 2007), and anticholinesterase activities (Topcu et al., 2013). Moreover, cytotoxic and tumor inhibitory properties of taxodione have been investigated by in vivo experiments (Abou Dahab et al., 2007). Herein we present the crystal structure of the title compound in order to establish unambiguously the stereochemical features of this natural product. The compound is soluble in chloroform but has poor solubility in methanol.

2. Structural commentary

The molecular structure of the title abietane diterpene is shown in Fig. 1. The structure contains one hydroxyl group located at atom C11, two ketone groups at C6 and C12 and three double bonds located between atoms C7 and C8, C9 and C11, and C13 and C14. An intramolecular $O2-H2\cdots O3$ hydrogen bond (Fig. 1) stabilizes the molecular structure. The C14-C13-C12-C11 [-175.83 (19)°], C2-C13-C12-C17 [-168.47 (17)°], C3-C2-C1-C10 [178.98 (16)°] and C13-C2-C1-C6 [-169.12 (16)] torsion angles describe the geometry at the junctions of the three rings.

3. Supramolecular features

In the crystal, molecules are linked by weak $C-H\cdots O$ hydrogen bonds, forming chains along [001] (Table 1 and Fig. 2).

4. Database survey

A search of Cambridge Structural Database found no compounds with a similar structure to the title compound but a series of abietane-type diterpenoids has been reported such as horminone (Xiao *et al.*, 2000) and 7α ,12-dihydroxy-8,12-abietadiene-11,14-dione [or (4bS,8aS,10R)-3,10-dihydroxy-2-

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. A packing diagram of the title compound, with hydrogen bonds shown as dashed lines.

Table 1	
Hydrogen-bond geon	netry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O3$	0.82	2.06	2.554 (2)	118
$C11-H11\cdots O3^{i}$	0.93	2.63	3.502 (2)	156

Symmetry code: (i) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$.

isopropyl-4b,8,8-trimethyl-1,4,4b,5,6,7,8,8a,9,10-decahydrophenanthrene-1,4-dione] (Razak *et al.*, 2010).

5. Synthesis and crystallization

Taxodione was isolated from the seeds of Taxodium ascendens collected in Wuhan, China, in December 2015 (SC0725). The air-dried seeds of Taxodium ascendens (4.6 kg) were extracted with 95% EtOH and then treated with petroleum ether, ethyl acetate and *n*-butyl alcohol to give a PE extract (352 g), EtOAc extract (343 g) and n-BuOH extract (372 g). The EtOAc extract (343 g) was subjected to normal-phase silica gel column chromatography (300-400 mesh) with a gradient solvent system of CH₂Cl₂-MeOH (1:0-0:1, v/v, containing 0.1% formic acid) to give fifteen major fractions F1-F15. F5 (13 g) was subjected to sephadex LH-20 CC (CH₂Cl₂-MeOH, 3:1, containing 0.1% formic acid) to afford four fractions F5-1-F5-4. F5-2 was purified by semipreparative HPLC (CNCH₃/ H₂O, 10:90 \rightarrow 100:0, 40 min, containing 0.1% formic acid in both phases) to give a vellow solid, which was recrystallized from CH₂Cl₂:MeOH (7:1) affording yellow prismatic crystals suitable for X-ray diffraction analysis. For the ¹H and ¹³C NMR data of taxodione, see Masahiro et al. (2010).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were positioned with idealized geometry and refined isotropically using a riding model with C–H = 0.97 Å (–CH₃, allowing for rotation), C–H = 0.98 Å (–CH₂), C–H = 0.99 Å, (–CH), C–H = 0.94 Å (–CH₂), and U_{iso} (H) = $1.5U_{eq}$ (CH₃) and U_{iso} (H) =

Figure 2 The packing of the title compound.

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{20}H_{26}O_3$
$M_{ m r}$	314.41
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.5008 (15), 13.220 (2), 13.584 (2)
$V(Å^3)$	1706.1 (5)
Z	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.08
Crystal size (mm)	$0.30 \times 0.20 \times 0.20$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	_
No. of measured, independent and	12903, 3355, 3111
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.046
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.088, 1.05
No. of reflections	3355
No. of parameters	215
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.17, -0.20

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97 and SHELXTL (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

1.2 U_{eq} (CH,CH₂), with the exception of the O–H hydrogen atom, which was refined freely, but with U_{iso} (H) = 1.5 U_{eq} (O).

Funding information

Funding for this research was provided by: Natural Science Foundation of Qinghai Province (grant No. 2016-ZJ-908); National Natural Science Foundation of China grant (grant No. 81573561).

References

Abou Dahab, M. A., El-Bahr, M. K., Taha, H. S., Habib, A. M.,
Bekheet, S. A., Gabr, A. M. M. & Refaat, A. (2007). J. Appl. Sci.
Res. 3, 1987–1996.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison,
Wisconsin, USA.
Burmistrova, O., Simões, M. F., Rijo, P., Quintana, J., Bermejo, J. &
Estévez, F. (2013). J. Nat. Prod. 76, 1413-1423.
González, M. A. (2015). Nat. Prod. Rep. 32, 684-704.
Iwamoto, M., Ohtsu, H., Tokuda, H., Nishino, H., Matsunaga, S. &
Tanaka, R. (2001). Bioorg. Med. Chem. 9, 1911–1921.
Kolak, U., Kabouche, A., Öztürk, M., Kabouche, Z., Topçu, G. &
Ulubelen, A. (2009). Phytochem. Anal. 20, 320-327.
Kusumoto, N., Ashitani, T., Hayasaka, Y., Murayama, T., Ogiyama, K.
& Takahashi, K. (2009). J. Chem. Ecol. 35, 635–642.
Masahiro, T., Jun, K., Takashi, Y., Tomoyuki, O. & Yusuke, M. (2010).
Chem. Pharm. Bull. 58, 818–824.
Otto, A. & Wilde, V. (2001). Bot. Rev. 67, 141-238.
Razak, I. A., Salae, A. W., Chantrapromma, S., Karalai, C. & Fun, H
K. (2010). Acta Cryst. E66, o1566-o1567.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Si, Y., Zhang, CK., Yao, XH. & Tu, ZB. (2001). J. Wuhan Bot. Res,
19 , 517–520.
Starks, C. M., Norman, V. L., Williams, R. B., Goering, M. G., Rice, S.
M., O'Neil-Johnson, M. & Eldridge, G. R. (2014). Nat. Prod.
<i>Commun.</i> 9 , 1129–1130.
Topçu, G. & Gören, A. C. (2007). Rec. Nat. Prod. 1, 1-16.
Topcu, G., Kolak, U., Ozturk, M., Boga, M., Hatipoglu, S. D.,

Bahadori, F., Culhaoglu, B. & Dirmenci, T. (2013). *Nat. Prod. J*, **3**, 3–9.

- Xiao, C., Ren, A.-L., Lin, H.-W., Qing, L.-X. & Feng, J.-D. (2000). Chin. J. Struct. Chem. 19, 122–125.
- Yang, Z., Kitano, Y., Chiba, K., Shibata, N., Kurokawa, H., Doi, Y., Arakawa, Y. & Tada, M. (2001). *Bioorg. Med. Chem.* 9, 347–356.
- Zhang, Y. M., Tan, N. H., Zeng, G. Z., Adebayo, A. H. & Ji, C. J. (2009). *Fitoterapia*, **80**, 361–363.

supporting information

Acta Cryst. (2017). E73, 1102-1104 [https://doi.org/10.1107/S205698901700946X]

Crystal structure of taxodione isolated from Taxodium ascendens (B.)

Rui-Fang Ke, Shi-Cheng Xu, Ping Song, Shi-Hao Deng, Xin-Hua Ma and Xin-Zhou Yang

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(4bS)-4-Hydroxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a-hexahydrophenanthrene-3,9-dione

Crystal data

 $C_{20}H_{26}O_3$ $M_r = 314.41$ Orthorhombic, $P2_12_12_1$ a = 9.5008 (15) Å b = 13.220 (2) Å c = 13.584 (2) Å $V = 1706.1 (5) \text{ Å}^3$ Z = 4F(000) = 680

Data collection

```
Bruker APEXII CCD
diffractometer
\varphi and \omega scans
12903 measured reflections
3355 independent reflections
3111 reflections with I > 2\sigma(I)
```

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.088$ S = 1.053355 reflections 215 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites $D_x = 1.224 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6770 reflections $\theta = 2.6-30.9^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KPrism, yellow $0.30 \times 0.20 \times 0.20 \text{ mm}$

 $R_{int} = 0.046$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -11 \rightarrow 11$ $k = -16 \rightarrow 16$ $l = -16 \rightarrow 16$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0417P)^2 + 0.2288P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.17 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.062 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
03	0.17963 (19)	0.52283 (12)	1.10546 (10)	0.0539 (4)
01	0.2584 (2)	0.83099 (11)	0.64710 (11)	0.0647 (5)
C5	0.2103 (3)	1.03778 (15)	0.89721 (18)	0.0541 (6)
H5A	0.2972	1.0319	0.9343	0.065*
H5B	0.1947	1.1090	0.8841	0.065*
C4	0.0911 (3)	0.99858 (15)	0.95940 (19)	0.0583 (7)
H4A	0.0031	1.0060	0.9238	0.070*
H4B	0.0847	1.0380	1.0194	0.070*
C3	0.1139 (3)	0.88729 (15)	0.98514 (16)	0.0484 (5)
H3A	0.0359	0.8639	1.0252	0.058*
H3B	0.1992	0.8808	1.0238	0.058*
C2	0.12591 (19)	0.81999 (13)	0.89322 (13)	0.0326 (4)
C13	0.1741 (2)	0.71188 (13)	0.91885 (13)	0.0311 (4)
C12	0.2329 (2)	0.65054 (12)	0.83944 (13)	0.0322 (4)
C17	0.2566 (2)	0.54251 (13)	0.85234 (14)	0.0363 (4)
H17	0.2872	0.5051	0.7985	0.044*
C16	0.2365 (2)	0.49443 (13)	0.93772 (13)	0.0349 (4)
C18	0.2533 (2)	0.38153 (13)	0.95424 (15)	0.0409 (5)
H18	0.3060	0.3724	1.0156	0.049*
C19	0.3352 (3)	0.32924 (15)	0.87312 (19)	0.0558 (6)
H19A	0.4261	0.3603	0.8666	0.084*
H19B	0.2848	0.3353	0.8121	0.084*
H19C	0.3465	0.2590	0.8892	0.084*
C20	0.1092 (3)	0.33257 (16)	0.96823 (19)	0.0541 (6)
H20A	0.0561	0.3382	0.9084	0.081*
H20B	0.0599	0.3663	1.0205	0.081*
H20C	0.1210	0.2625	0.9847	0.081*
C14	0.1554 (2)	0.66396 (14)	1.00567 (14)	0.0358 (4)
O2	0.10090 (19)	0.70666 (12)	1.08780 (10)	0.0547 (4)
H2	0.0925	0.6635	1.1307	0.082*
C15	0.1912 (2)	0.55593 (14)	1.02095 (14)	0.0369 (4)
C6	0.2279 (2)	0.98258 (13)	0.79930 (15)	0.0403 (5)
C8	0.1081 (3)	1.01246 (17)	0.72952 (19)	0.0573 (6)
H8A	0.1165	0.9751	0.6692	0.086*
H8B	0.1135	1.0836	0.7158	0.086*
H8C	0.0193	0.9974	0.7599	0.086*
С9	0.3670 (3)	1.01768 (17)	0.7533 (2)	0.0574 (6)
H9A	0.4438	0.9988	0.7954	0.086*
H9B	0.3657	1.0899	0.7456	0.086*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H9C	0.3786	0.9864	0.6900	0.086*	
C1	0.2375 (2)	0.86693 (12)	0.82138 (13)	0.0320 (4)	
H1	0.3273	0.8591	0.8561	0.038*	
C10	0.2524 (2)	0.80036 (13)	0.73123 (13)	0.0387 (4)	
C11	0.2643 (2)	0.69172 (13)	0.75146 (13)	0.0389 (4)	
H11	0.2949	0.6493	0.7012	0.047*	
C7	-0.0201 (2)	0.80774 (16)	0.84503 (18)	0.0471 (5)	
H7A	-0.0805	0.7701	0.8882	0.071*	
H7B	-0.0104	0.7723	0.7837	0.071*	
H7C	-0.0602	0.8733	0.8332	0.071*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
03	0.0756 (11)	0.0484 (8)	0.0378 (8)	-0.0038 (8)	0.0044 (8)	0.0116 (7)
O1	0.1165 (15)	0.0410 (7)	0.0366 (7)	0.0117 (10)	0.0151 (10)	0.0065 (6)
C5	0.0723 (16)	0.0303 (9)	0.0596 (13)	-0.0035 (10)	0.0031 (12)	-0.0107 (9)
C4	0.0842 (18)	0.0339 (11)	0.0567 (13)	0.0080 (11)	0.0172 (13)	-0.0137 (10)
C3	0.0671 (15)	0.0355 (10)	0.0427 (11)	0.0047 (10)	0.0112 (11)	-0.0102 (9)
C2	0.0355 (9)	0.0279 (8)	0.0345 (9)	0.0024 (7)	0.0033 (8)	-0.0043 (7)
C13	0.0319 (9)	0.0296 (8)	0.0319 (9)	0.0002 (7)	0.0010 (7)	-0.0032 (7)
C12	0.0353 (9)	0.0287 (8)	0.0325 (8)	0.0020 (7)	0.0003 (7)	-0.0013 (7)
C17	0.0443 (10)	0.0285 (8)	0.0361 (9)	0.0015 (8)	0.0006 (9)	-0.0037 (7)
C16	0.0360 (10)	0.0288 (8)	0.0398 (9)	-0.0019 (7)	-0.0065 (8)	0.0030 (7)
C18	0.0463 (12)	0.0293 (8)	0.0471 (10)	-0.0021 (9)	-0.0104 (10)	0.0079 (8)
C19	0.0617 (14)	0.0276 (9)	0.0780 (16)	0.0029 (9)	0.0017 (12)	-0.0003 (10)
C20	0.0544 (14)	0.0397 (11)	0.0681 (14)	-0.0118 (10)	-0.0038 (11)	0.0094 (11)
C14	0.0364 (10)	0.0369 (9)	0.0341 (9)	-0.0001 (8)	0.0029 (7)	-0.0025 (7)
O2	0.0766 (12)	0.0513 (9)	0.0364 (8)	0.0070 (8)	0.0202 (8)	0.0013 (7)
C15	0.0382 (10)	0.0385 (9)	0.0340 (10)	-0.0063 (8)	-0.0013 (8)	0.0053 (8)
C6	0.0446 (11)	0.0264 (8)	0.0499 (11)	0.0006 (8)	0.0003 (9)	0.0003 (8)
C8	0.0666 (15)	0.0361 (10)	0.0693 (15)	0.0112 (10)	-0.0097 (12)	0.0083 (10)
С9	0.0596 (15)	0.0385 (11)	0.0740 (15)	-0.0057 (10)	0.0103 (13)	0.0092 (11)
C1	0.0332 (9)	0.0260 (8)	0.0367 (9)	0.0030 (7)	-0.0013 (8)	-0.0014 (7)
C10	0.0497 (11)	0.0314 (8)	0.0349 (9)	0.0050 (9)	0.0069 (9)	0.0023 (7)
C11	0.0549 (12)	0.0294 (8)	0.0325 (8)	0.0058 (8)	0.0059 (9)	-0.0046 (7)
C7	0.0344 (10)	0.0387 (10)	0.0683 (14)	0.0030 (8)	-0.0027 (10)	0.0005 (10)

Geometric parameters (Å, °)

O3—C15	1.233 (2)	C19—H19A	0.9600
O1-C10	1.214 (2)	C19—H19B	0.9600
C5—C4	1.506 (4)	C19—H19C	0.9600
C5—C6	1.526 (3)	C20—H20A	0.9600
C5—H5A	0.9700	C20—H20B	0.9600
C5—H5B	0.9700	C20—H20C	0.9600
C4—C3	1.528 (3)	C14—O2	1.353 (2)
C4—H4A	0.9700	C14—C15	1.483 (3)

C4—H4B	0 9700	O2—H2	0.8200
$C_3 - C_2$	1 538 (2)	C6-C8	1.533(3)
C3—H3A	0.9700	C6—C9	1.535(3) 1.534(3)
C3—H3B	0.9700	C6-C1	1.551(2)
C_2 C_{13}	1 541 (2)	C8—H8A	0.9600
$C_2 C_7$	1.541(2) 1 542(3)	C8 H8B	0.9600
$C_2 - C_1$	1.542 (3)		0.9600
C13 - C14	1.369(3)		0.9600
C13 - C12	1.350(3) 1.461(2)	C9H9B	0.9600
C12 - C11	1.401(2) 1.347(2)	C9H9C	0.9600
C_{12} C_{17}	1.347(2) 1 456(2)	$C_1 = C_1 C_1 0$	1.515(2)
C12 - C17	1.430(2) 1 336(3)	C1C10	0.9800
C17_H17	0.0300	C_{10} C_{11}	1.467(2)
$C_{1} = C_{1}$	1.458 (3)	C11 H11	0.0300
$C_{10} = C_{13}$	1.438(3)		0.9500
C18 C19	1.515(2)	C7 H7B	0.9000
C_{18} C_{20}	1.515(5) 1.527(3)	C7_H7C	0.9000
$C_{10} = C_{20}$	0.0800	C/—II/C	0.9000
010-1110	0.9800		
C4—C5—C6	114 00 (18)	C18—C20—H20B	109 5
C4—C5—H5A	108.8	H20A—C20—H20B	109.5
С6—С5—Н5А	108.8	C18—C20—H20C	109.5
C4—C5—H5B	108.8	H20A—C20—H20C	109.5
С6—С5—Н5В	108.8	H20B—C20—H20C	109.5
H5A—C5—H5B	107.6	C13—C14—O2	125.06 (17)
C5—C4—C3	110.7 (2)	C13—C14—C15	122.97 (17)
C5—C4—H4A	109.5	O2—C14—C15	111.96 (16)
C3—C4—H4A	109.5	C14—O2—H2	109.5
C5—C4—H4B	109.5	O3—C15—C16	123.39 (18)
C3—C4—H4B	109.5	O3—C15—C14	116.86 (18)
H4A—C4—H4B	108.1	C16—C15—C14	119.75 (16)
C4—C3—C2	112.45 (18)	C5—C6—C8	109.54 (18)
С4—С3—НЗА	109.1	C5—C6—C9	107.74 (18)
С2—С3—НЗА	109.1	C8—C6—C9	108.04 (18)
C4—C3—H3B	109.1	C5—C6—C1	107.90 (16)
С2—С3—Н3В	109.1	C8—C6—C1	114.51 (16)
НЗА—СЗ—НЗВ	107.8	C9—C6—C1	108.91 (16)
C3—C2—C13	112.04 (15)	С6—С8—Н8А	109.5
C3—C2—C7	109.80 (17)	C6—C8—H8B	109.5
C13—C2—C7	105.41 (15)	H8A—C8—H8B	109.5
C3—C2—C1	109.04 (15)	C6—C8—H8C	109.5
C13—C2—C1	107.86 (14)	H8A—C8—H8C	109.5
C7—C2—C1	112.67 (15)	H8B—C8—H8C	109.5
C14—C13—C12	115.76 (15)	С6—С9—Н9А	109.5
C14—C13—C2	126.42 (16)	С6—С9—Н9В	109.5
C12—C13—C2	117.50 (15)	Н9А—С9—Н9В	109.5
C11—C12—C17	117.98 (16)	С6—С9—Н9С	109.5
C11—C12—C13	121.04 (15)	Н9А—С9—Н9С	109.5

C17—C12—C13	120.97 (15)	Н9В—С9—Н9С	109.5
C16—C17—C12	123.29 (17)	C10—C1—C6	114.79 (15)
C16—C17—H17	118.4	C10—C1—C2	109.64 (14)
C12—C17—H17	118.4	C6—C1—C2	117.86 (15)
C17—C16—C15	116.75 (16)	C10—C1—H1	104.3
C17—C16—C18	125.52 (17)	C6—C1—H1	104.3
C15—C16—C18	117.70 (16)	C2—C1—H1	104.3
C19—C18—C16	113.28 (17)	O1—C10—C11	119.97 (17)
C19—C18—C20	110.95 (18)	O1—C10—C1	124.87 (17)
C16—C18—C20	109.92 (17)	C11—C10—C1	115.13 (15)
C19—C18—H18	107.5	C12—C11—C10	123.03 (16)
C16—C18—H18	107.5	C12—C11—H11	118.5
C20—C18—H18	107.5	C10—C11—H11	118.5
C18—C19—H19A	109.5	С2—С7—Н7А	109.5
C18—C19—H19B	109.5	C2-C7-H7B	109.5
H19A—C19—H19B	109.5	H7A—C7—H7B	109.5
C18—C19—H19C	109.5	C2-C7-H7C	109.5
H19A—C19—H19C	109.5	H7A - C7 - H7C	109.5
H19B—C19—H19C	109.5	H7B-C7-H7C	109.5
C18—C20—H20A	109.5		109.0
	107.0		
C6—C5—C4—C3	60.6 (3)	C17—C16—C15—C14	6.4 (3)
C5—C4—C3—C2	-58.9 (3)	C18—C16—C15—C14	-172.15 (17)
C4—C3—C2—C13	170.16 (19)	C13—C14—C15—O3	174.55 (19)
C4—C3—C2—C7	-73.1 (2)	O2—C14—C15—O3	-6.4(3)
C4—C3—C2—C1	50.8 (2)	C13—C14—C15—C16	-5.8 (3)
C3—C2—C13—C14	26.0 (3)	O2—C14—C15—C16	173.20 (18)
C7—C2—C13—C14	-93.4 (2)	C4—C5—C6—C8	72.5 (2)
C1—C2—C13—C14	146.02 (18)	C4—C5—C6—C9	-170.2(2)
C3—C2—C13—C12	-160.72 (17)	C4—C5—C6—C1	-52.8 (3)
C7—C2—C13—C12	79.9 (2)	C5-C6-C1-C10	178.84 (18)
C1—C2—C13—C12	-40.7 (2)	C8—C6—C1—C10	56.6 (2)
C14—C13—C12—C11	-175.83 (19)	C9—C6—C1—C10	-64.5 (2)
C2-C13-C12-C11	10.2 (3)	C5—C6—C1—C2	47.3 (2)
C14—C13—C12—C17	5.5 (3)	C8—C6—C1—C2	-74.9 (2)
C2-C13-C12-C17	-168.47 (17)	C9—C6—C1—C2	164.01 (18)
C11—C12—C17—C16	176.3 (2)	C3-C2-C1-C10	178.98 (16)
C13—C12—C17—C16	-5.0 (3)	C13—C2—C1—C10	57.08 (18)
C12-C17-C16-C15	-1.2 (3)	C7—C2—C1—C10	-58.84 (19)
C12-C17-C16-C18	177.20 (19)	C3—C2—C1—C6	-47.2 (2)
C17—C16—C18—C19	16.5 (3)	C13—C2—C1—C6	-169.12 (16)
C15—C16—C18—C19	-165.18 (19)	C7—C2—C1—C6	75.0 (2)
C17—C16—C18—C20	-108.3 (2)	C6-C1-C10-O1	0.8 (3)
C15—C16—C18—C20	70.1 (2)	C2-C1-C10-O1	136.1 (2)
C12—C13—C14—O2	-179.14 (19)	C6-C1-C10-C11	178.87 (18)
C2-C13-C14-O2	-5.7 (3)	C2-C1-C10-C11	-45.8 (2)
C12—C13—C14—C15	-0.3 (3)	C17—C12—C11—C10	-176.54 (19)
C2-C13-C14-C15	173.14 (18)	C13—C12—C11—C10	4.8 (3)

supporting information

C17—C16—C15—O3	-174.0 (2)	O1-C10-C11-C12	-167.3 (2)
C18—C16—C15—O3	7.5 (3)	C1—C10—C11—C12	14.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
O2—H2…O3	0.82	2.06	2.554 (2)	118	
C11—H11…O3 ⁱ	0.93	2.63	3.502 (2)	156	

Symmetry code: (i) -x+1/2, -y+1, z-1/2.