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Abstract
Premise: Plant trait data are essential for quantifying biodiversity and function across
Earth, but these data are challenging to acquire for large studies. Diverse strategies are
needed, including the liberation of heritage data locked within specialist literature
such as floras and taxonomic monographs. Here we report FloraTraiter, a novel
approach using rule‐based natural language processing (NLP) to parse computable
trait data from biodiversity literature.
Methods: FloraTraiter was implemented through collaborative work between
programmers and botanical experts and customized for both online floras and
scanned literature. We report a strategy spanning optical character recognition,
recognition of taxa, iterative building of traits, and establishing linkages among all of
these, as well as curational tools and code for turning these results into standard
morphological matrices.
Results: Over 95% of treatment content was successfully parsed for traits with <1%
error. Data for more than 700 taxa are reported, including a demonstration of
common downstream uses.
Conclusions: We identify strategies, applications, tips, and challenges that we hope
will facilitate future similar efforts to produce large open‐source trait data sets for
broad community reuse. Largely automated tools like FloraTraiter will be an
important addition to the toolkit for assembling trait data at scale.
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Botanists have been gathering information on plant traits,
which comprise the entirety of measurable aspects of plant
phenotypes, since the dawn of scientific pursuit (Figure 1A).
With traits scored for many species, biologists can ask
questions about phenotypic and functional differences
spanning the plant tree of life, and within and across
ecological communities. These questions are fundamental
because traits underlie how species interact with and adapt
to their surroundings and how we as humans interact with
them (Freudenstein et al., 2016). Despite the long history of
studying plant traits, however, this information remains
mostly unavailable in a form that is usable for quantitative
analysis (Hortal et al., 2015). A shortage of “computable”
trait data has a very real effect on our view of global plant

diversity (Pakeman and Quested, 2007; Pakeman, 2014;
Sandel et al., 2015; Cornwell et al., 2019) and tends to be
more pronounced in quantitative terms than other plant
data and information domains such as DNA and geographic
data (Sandel et al., 2015; Folk et al., 2018). This lack is
distributed along biogeographic, socioeconomic, political,
and other axes that impact the science performed in regions
of the world where this same information is urgently needed
(Meyer et al., 2015; Daru et al., 2018; Cornwell et al., 2019).

If plant traits are needed and missing, which traits
should we measure and how do we best measure them? As
argued by Violle et al. (2014) and Hortal et al. (2015), “the
traits that are generally measured are often the most simple,
rather than the most functional” (Hortal et al., 2015, p. 529),
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whereas many ecologists might prefer the traits most
strongly linked to ecosystem function be measured first.
Rather than ask which traits are best measured anew,
however, it is equally important to assure that we best

leverage the vast information we already have. Information
about many traits measured across the entire plant body for
many species has long been disseminated by specialists, but
these data are locked up in the inaccessible form of

F IGURE 1 Anatomy of a piece of biodiversity literature. (A) The collection of plant trait information, while a modern challenge, has a long history. The
Vienna Dioscorides, a manuscript from the early sixth century, represents some of the earliest direct and relatively complete survival of scientific botanical
descriptions in the Western tradition and illustrates the long history of study that underlies our current understanding of plant traits. The structure of the
entry for Inula helenium L. follows many aspects of a modern description and therefore illustrates concepts, with its taxon names marked in Greek (έλενίου,
marked in red, upper left) and Arabic ( نسِارَ , marked in red, right), as well as the original description (marked in red, lower left) including distribution,
morphology, habitat, and medical uses, in that order. Our purpose here is to break down the latter (the description) to basic traits and link these to the
former (the taxon). (B) Entry for Heuchera parviflora Bartl. from Flora of North America, an example of a modern online flora, where the text is already
machine‐readable and relevant portions of the description structure can be fetched by following links and cleaning up HTML tags. (C) A more difficult use
case from a monographic work treating Calliandra; while also a recent treatment, this is a scanned text that had to be subjected to optical character
recognition (OCR) according to the segmentation strategy reported in the Methods section to generate machine‐readable text. Structural features like page
breaks and page headers are not description or taxon text and therefore should be removed from OCR. This was done a priori here, with the boxes marking
the start of the first full treatment on the page; the blue box continues this treatment, and the green box indicates a second treatment (this is a screenshot of
one of the processing tools presented here; see Methods). All of these text boxes had to be annealed correctly before further processing. Also illustrated here
are various formatting peculiarities (capitalization, italicization, font size, indentation, unusual abbreviations, multilingual material, some of which parallel
[A]) that vary by work and can be variously complex or inconsistent; including or discarding these is the subject of optimizing particular sources.
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biodiversity literature (Rinaldo, 2009; Thessen et al., 2012;
Folk et al., 2018; Penev et al., 2019; Folk and Siniscalchi,
2021; Shirey et al., 2022). For our purposes, “biodiversity
literature” refers to all forms of scientific and para-
professional output that contains summary statements
regarding taxa and their traits. This includes species
descriptions, floras, field guides, monographic revisions,
and similar works (examples in Figure 1). Such biodiversity
literature is unique in that, rather than representing a
directly verifiable measurement on a single organism, these
resources provide measurements that represent an expert's
judgment regarding a set of observations contingent on a
taxon hypothesis. A literature‐derived trait therefore has the
downside that it is only as good as the taxonomic
delimitation that underlies it. This same property is a key
strength: unlike other sources of data, biodiversity literature
represents the assessment of a domain expert, such as a
botanist specializing in a family of plants, and is therefore
likely to represent the state of the art at that time regarding
taxon boundaries and attributes. An expert is able to
identify and exclude diseased and underdeveloped plant
organs, can interpret the sometimes‐complex structural
homology between plant species, and characteristically will
focus on the structures most variable among closely related
organisms. Biodiversity literature extraction therefore holds
promise as a major source of plant trait information and a
complement to other sources, but despite several previous
proof‐of‐concept reports (Cui et al., 2016; Endara et al.,
2018), the botanical community still lacks a general‐purpose
approach that can generate high‐quality data for many
species.

In this paper, we report on work that far extends
pipelines originally designed for vertebrate measurements
(dubbed Traiter in Guralnick et al., 2016) to extract
morphological data from floristic publications. Traiter
originally used regular expressions (referred to as “regex”)
to process text data about body length and mass from
vertebrate specimen records and produce harmonized,
standardized quantitative measurements. However, a regex
approach has some important downsides when applied to
unstructured publication text. First, it relies on text data
sources that are already highly structured, such as specimen
labels with free text entry for body size, embryo counts, and
similar content. While there are structured reports of traits
in floras or other resources, much of the data is presented in
prose rather than presorted into trait categories, which often
requires extensive human effort to curate the resulting
parses. Second, regexes rely on patterns of characters,
making it difficult to use other information not contained in
the characters themselves, such as that implied by parts of
speech or sentence structure. For instance, consider the
description of Comptonia peregrina (L.) J. M. Coult. from
Flora of North America (Bornstein, 1997), according to
which the leaves are “3–15.5 × 0.3–2.9 cm, lobes alternate to
nearly opposite, base truncate, cuneate to attenuate, or
oblique, apex acute; surfaces abaxially pale gray‐green,
densely pilose to puberulent, adaxially dark green, densely

pilose to glabrate, gland‐dotted, especially adaxially.”
Correctly understanding the information in this description
requires recognizing several things: (1) that every structure
mentioned is a subpart of a leaf (our data set must therefore
represent or at least be cognizant of hierarchical structure);
and (2) that the given measurements apply to the entire leaf
but all other descriptors belong to subparts (we cannot rely
on word order even though the adjectives follow the nouns
here, according to a typical regex strategy; this varies
between publications or even between sentences). In both
cases, we must use context to understand that the first
reported numbers represent length and the second are
width, and we must navigate qualifiers (“especially”,
“nearly”), positional information (“adaxially”), and multiple
measurements with complex relational prepositions and
conjunctions (“cuneate to attenuate, or oblique”). In short, a
flexible method to extract data from text like this must be
able to understand the structure of a typical sentence from a
taxon description.

Here we report a new approach called FloraTraiter that
shifts to using a natural language processing (NLP)
approach to more flexibly extract traits. The specific form
of NLP used here, rule‐based parsing, leverages preexisting
language models to break down biodiversity descriptions
into parts of speech, with an extended vocabulary to handle
technical botanical descriptions. Then, a series of newly
implemented steps further process structural elements that
pertain specifically to a biodiversity description, beginning
with recognizing a taxon and then using an interactive
process to identify partial traits and map them to taxa. We
test the new approach on descriptions of the plant order
Fagales as reported in online treatments on the eFloras
website (http://www.efloras.org) and implement code to
translate parsed descriptions into a recognizable morpho-
logical matrix format. We then score trait extractions
against human observers examining the same source
references to count false negatives and false positives, giving
us a quantification of traits that are missed or incorrectly
scored, respectively. Finally, we demonstrate some standard
downstream uses for the trait extractions.

METHODS

Parsing raw data

Parsing begins with literature that has either already been
entered digitally or is an image file that must be subjected to
optical character recognition (OCR). OCR is the most
complex task and so this will be described first and at
length. Commercial solutions for PDF OCR are available,
such as ABBYY FineReader (ABBYY, Milpitas, California,
USA), but a custom approach was used because standard
OCR packages were found unsuitable after extensive testing.
Problems with standard OCR include (1) OCR text, while
appropriately placed on the page, is commonly not in
reading order when extracted; (2) sometimes text on the
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page is missing; (3) characters are frequently substituted for
other similar‐looking characters (such as exchanges involv-
ing u, n, m); and, most importantly, (4) many aspects of
page structure are a nuisance irrelevant to the data
contained in a page; these aspects increase the challenge
of parsing traits, and especially linking them back to taxa
when descriptions span pages. Points 3 and 4 will be
discussed further below.

The first step is to convert the PDF into images, one
image per page. This function is captured in “pdf_to_ima-
ges.py” (hereafter all quoted scripts are found at: https://
github.com/rafelafrance/FloraTraiter unless otherwise speci-
fied; see Data Availability Statement), which is a wrapper
around the pdftpcairo program, a module in poppler‐utils
(pre‐compiled command‐line programs from the Poppler
library; https://poppler.freedesktop.org/) to be installed
separately. Second, the PDF images are manually segmented
by drawing bounding boxes around text in reading order and
marking which ones denote the start of a treatment; these
bounding boxes indicate where each treatment starts and
ends while marking the order of the treatment text. This is
done in a Python script called “slice.py”. The colors indicate
the order in which a page is read, with red always denoting
the first box, blue the second, etc.; the dashed box outlines
indicate a treatment start (Figure 1C shows an actual session
using this program). Only treatment text is outlined, whereas
figures, captions, headers, and similar materials are left out.
This is essential because large amounts of structural
information in text is a nuisance and must be discarded,
and the flow of text on the page is not always easily
determined programmatically. Nuisance text includes page
breaks and number breaks, as well as material that does not
contain formal descriptions, such as literature surveys and
indices. Handling this cleanly is important because success-
fully identifying breaks in descriptions is essential for
discovering links between traits and the taxa they belong to.

Once the PDF images are segmented, OCR is conducted
on the text in each bounding box; boxes of text are then
stitched together with markers in the text to indicate the
start of treatments. This script is called “stitch.py”. Finally,
common OCR errors are corrected and the text is
normalized with “clean_text.py”. As a corollary, a limited
number of typographical errors can be corrected, but in
general high‐quality and well‐aligned scans are needed to
produce good OCR content.

Parsing the raw data for HTML sources is much simpler
and involves “spidering” (i.e., iteratively traversing the
structure of) a base webpage for a taxon and pulling
taxonomic treatments guided by HTML markup. Code for
this purpose is also available at https://github.com/
rafelafrance/FloraTraiter.

Controlled vocabulary

The approach described in the following section relies on pre‐
built language models, but these are generally trained on text

intended for a wide audience and lack vocabulary on specialist
topics. Conversations between botanists and programmers on
this project led to us identifying a basic botanical trait
vocabulary to add to the model; early drafts were distributed
to organismal specialists for comment, which led to identifica-
tion of missing technical words (the final vocabulary developed
is integrated throughout the GitHub repository in relevant
processing steps). Fortunately, differing sources on similar
plants tend to differ little in vocabulary, with the main need
being to identify several commonly used synonyms and closely
related terms that reflect differing authorial habits and editorial
policies (pod = legume, androecium ~ stamens). The greater
effort in adapting code to new projects has been in shifting taxa,
as highly specialized plant families will have numerous trait
terms that are not of broad application or may have restricted
meanings in context.

We also built a custom vocabulary for identifying scientific
names within text. This comprises a combination of four
sources of known binomials and monomials assembled from
these sources: the Integrated Taxonomic Information System
(ITIS) (SQLite version at https://www.itis.gov/downloads/index.
html), the World Flora Online (WFO) Plant List (https://
wfoplantlist.org/plant-list/classifications), Plants of the World
Online (http://sftp.kew.org/pub/data-repositories/WCVP/), and
further miscellaneous taxa not found in the other sources
(available in the “flora” subfolder, file “other_taxa.csv”, in the
Zenodo repository: https://doi.org/10.5281/zenodo.8336468;
LaFrance, 2023).

Parsing strategy

The next major step is to parse each treatment in the resulting
text. This uses a wrapper script called “extract_traits.py” to
call code from the general Traiter repository (https://github.
com/rafelafrance/traiter). These two repositories use a
combination of rules and statistical methods to parse traits
in the treatments. The basic parsing approach is a hybrid
statistical and rule‐based approach relying heavily on the
spaCy NLP Python library (Honnibal and Montani, 2017).

spaCy is used for NLP because of its prebuilt statistical
models and its flexible framework for custom‐building parsing
rules. First, spaCy's statistical models are used for determining
the parts of speech (POS) to which each word belongs. POS is
used when building rules for parsing. For instance, parsing a
full taxon can be approached by looking for a binomial
(species) notation followed by a proper noun or a set of proper
nouns (like: John Smythe and Jane Jones) separated by
conjunctions to find candidate taxon authorities. We also take
advantage of customizability in spaCy; for instance, its default
tokenizer (breaking text into meaningful words or word parts)
is intended for general‐use text such as Wikipedia but tends to
fail in tokenizing the formalized and idiosyncratic text of
taxonomic treatments. The addition of custom vocabularies
greatly improves performance in this respect.

A full outline of the parsing pipeline (summarized and
simplified in Figure 2) proceeds as follows: (1) Use a

4 of 12 | FLORATRAITER FOR TRAIT PARSING FROM BIODIVERSITY LITERATURE

https://github.com/rafelafrance/FloraTraiter
https://github.com/rafelafrance/FloraTraiter
https://poppler.freedesktop.org/
https://github.com/rafelafrance/FloraTraiter
https://github.com/rafelafrance/FloraTraiter
https://www.itis.gov/downloads/index.html
https://www.itis.gov/downloads/index.html
https://wfoplantlist.org/plant-list/classifications
https://wfoplantlist.org/plant-list/classifications
http://sftp.kew.org/pub/data-repositories/WCVP/
https://doi.org/10.5281/zenodo.8336468
https://github.com/rafelafrance/traiter
https://github.com/rafelafrance/traiter


customized tokenizer to break treatment text into tokens.
(2) Allow a spaCy model to identify what POS each token
belongs to, as well as other attributes like its lemma (the
“normalized” version of a token that reduces it to its root
meaning; e.g., “good” would be the lemma of “better”). (3)
Parse traits using rules and phrases. Most traits have a
predefined vocabulary of words and phrases (noted above)
that anchor rules for further parsing. These terms are obtained
from organismal experts and other authoritative sources; as
described above, the approach used for this study consisted of
iterative improvements of drafts that were submitted to expert
botanists for comment. The initial product of parsing is
termed a “partial trait.” (4) Use the anchor phrases in rules that
build up full traits from partial traits. This involves finding
patterns of words and symbols around previously identified
anchors to build up the traits themselves. Sometimes these
phrases are the final trait, but more often this step is repeated
to build up increasingly larger traits; in such cases, the order of
steps affects the outcome and is controlled in repeated
iterations to build traits into their final form. (5) Clean up

any leftover phrases and partially applied rules so the words/
tokens can be used in other traits. For instance, in Figure 2,
information about leaf scent (grayed out) splices a statement
about leaf length and width, but this discarded information
can be used to populate a trait about general leaf properties. (6)
Link traits after they are parsed. All built‐up traits are linked
to the taxon in the treatment title, and other traits like plant or
flower parts get linked based on proximity and other trait‐
specific considerations (i.e., rules about whether links across
sentences are allowed). Rules are also applied based on the
permissible structure of linkages considering the nature of the
trait. For example, a plant part may have several colors but
typically only has one size, barring sexual dimorphism;
multiple entries are forbidden in certain contexts.

In general, the overall process follows this outline, but
special strategies were also used. Some traits can be
ambiguous because their meaning depends on context; for
instance, “green” can be a last name, a color, or an
administrative unit, so context is used extensively in parsing
to distinguish among related meanings.

F IGURE 2 Workflow summary of FloraTraiter. Taking the example from the introduction (top left), in bold is the taxon and the first part of the leaf
description of Comptonia peregrina in Flora of North America. The first step is to identify a “taxon anchor” (center), which involves finding binomials or
monomials in the text and searching the vicinity for additional material representing authors and subspecific names and ranks. Once this taxon anchor has
been identified, plant parts are identified and linked to the taxon (bottom; shown is a measurement example, where the process begins with a similar
anchoring process around units and similar symbology) and finally attributes such as measurements are linked to them to yield “partial traits.” The given
example demonstrates the frequent use of context clues such as implied length and width, as well as the common need to link text material that is
non‐adjacent.
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Curation

An important component of achieving high‐quality extrac-
tions was a series of structured conversations between
botanists and programmers as the project developed. This
was facilitated by the preparation of interactive visuals that
enable non‐specialists to understand how the NLP method
reads meaning into and pulls information out of text. An
example of marked‐up HTML output may be seen in the
output folder of the Zenodo repository (https://doi.org/10.
5281/zenodo.8336468; LaFrance, 2023). Each color corre-
sponds to a trait, with trait labels corresponding to CSV
outputs (see below). Common colors between highlighted
sections of the treatment and extracted trait data speed up
the process of comparing the two, as do different options for
color‐coding traits. To assist with accessibility, a mouseover
action also provides the full trait label. Special data models
for reported traits apply to complex numerical data as
reported in standard botanical descriptions. For instance,
“(1–)2–4(–5) cm” is separately parsed into measurements
labeled “min”, “low”, “high”, and “max”, as well as a field
representing measurement units. HTML outputs were
distributed and marked up by participating botanists for
correction in the form of prose commentary or marked‐up
CSV outputs in several iterations.

Post‐processing

The output of FloraTraiter, even after extensive curation,
looks very different from a standard morphological matrix
(Figure 3A). Because NLP aims to capture as much text as
possible, (1) numerous fields are returned because species
descriptions discuss numerous structures. Parts of the internal
data structure also lead to this, as “flattened” CSV outputs use
separate fields for measurement ranges and multiple values.
Additionally, (2) while basic botanical vocabularies are
integrated, the philosophy employed here was conservative
in the matter of trait synonymy and, generally, measurements
and descriptions were kept separate that could conceivably be
different (e.g., seed width and height are separate even if only
one is mentioned, fruiting and flowering pedicel measure-
ments are not combined, stamen and androecium length were
not considered identical). Finally, (3) integrating a large
taxonomic and literature scope leads to large, sparse matrices
because different groups have some commonalities but
numerous differences that reflect specialized morphology.
Because a typical downstream user will likely have a biologist's
training, we felt it was important to simulate a data structure
closer to a morphological matrix.

The approach implemented is a generalization of
the morphological matrix harmonization reported in

F IGURE 3 Examples of trait extractions from FloraTraiter. (A) Raw FloraTraiter output, demonstrating the very long field format due to the detailed
method of parsing traits. (B) A result of “column‐smashing,” where quantitative data were reported as the midpoint excluding extreme measurements,
and qualitative data were reported as a list.
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Folk et al. (2019), deposited on GitHub at https://github.com/
ryanafolk/fagales_traits/. First, a controlled vocabulary for
fields is specified by a simple spreadsheet format. This is
easily edited by a non‐specialist to map field definitions that
can be combined. Fields are specified by three separate CSVs
to represent (1) categorical data that should be represented as
a list, termed “concatenate_terms.csv”; (2) count data that
should be summarized in ways appropriate for cardinal
numbers such as the mode, termed “range_terms_count.csv”;
and (3) quantitative measurements that can be summarized
by the mean or other methods appropriate for continuous
data, termed “range_terms_quantitative.csv”. Additional
controlled vocabularies specify (4) equivalency among sex
terms (e.g., male and staminate flowers are the same) in
“sexes.csv”, (5) terms to be excluded in “discard_terms.csv”,
and (6) measurement unit data in “unit_columns.csv”.
Second, a synonymy among data in the fields is established
in “synonyms.csv”. This data file represents some of the most
“opinionated” decisions as it includes judgements about term
usage: terms that certainly mean the same thing, such as
“flabellate = flabelliform”; terms that are likely to mean the
same thing, such as “orbicular = round”; fine but unneeded
distinctions like “pentagonal = polygonal”; and removal of
subjective qualifiers (“sub‐”, “usually”, “quite”). All of these
behaviors are completely customizable.

Reading in the field‐controlled vocabularies leads to
what is referred to here as “column‐smashing” (Figure 3B),
where fields judged combinable are summarized according
to their data type. At this stage, an additional spreadsheet
representing taxa extracted by hand can be included, e.g.,
for data taken from direct measurements or small works
such as single species descriptions that do not lend
themselves to automated methods. Two types of output
are produced: one with all of the data, and one with
summarized single data points per cell. By default, the
summaries are means for quantitative data, midpoints for
count data, and random selections for categorical data.
Finally, output can be filtered by missing data proportions,
which functions primarily to exclude special descriptive
material not shared among species. As well as outputting a
raw harmonization of the data, the last function provided by
the codes is a distance matrix that can be used to easily
perform trait ordinations such as multidimensional scaling
(MDS). The distance metric as described by Folk et al.
(2019) is a hybrid metric comparable to Gower's distance,
partitioning categorical and quantitative data separately but
with the ability to specify arbitrary weights to each.

Ground‐truthing

To capture Type I (false positive) and Type II (false negative)
errors, which measure incorrectly captured and missed trait
variation, respectively, we manually scored the extracted trait
data using interactive HTML outputs. The two measures were
calculated slightly differently: Type I error was calculated with
the denominator as the complete count of partial traits because

these are reported exhaustively by FloraTraiter and could be
individually checked. Type II error was instead calculated with
the denominator defined as the count of full traits (i.e., counting
whether content was captured for each basic trait topic, while
not scoring how verbal details were parsed out) because it was
not possible to manually duplicate the tokenization process. As
a manageable use case involving diverse plants with many
specialized structures, we focused on all available species‐level
treatments for Betulaceae in Flora of North America and Flora
of China as represented on eFloras.org, comprising 125 species
(Figure 4).

Worked example

Fagales treatments as a whole were used, again sourcing from
Flora of North America and Flora of China, to demonstrate one
typical downstream use focused on quantifying trait spaces.
Using the MDS procedure noted above, which is well‐adapted
to sparse matrices, we quantified trait spaces across Fagales
using all morphological features populated with at least 5% of
species. This analysis also demonstrates the reconciliation of
automated and user‐coded features, which are demonstrated in
the empirical GitHub repository (https://github.com/ryanafolk/
fagales_traits) and were scored from additional online sources
including the Flora of Australia (https://profiles.ala.org.au/
opus/foa) and Flora Malesiana (https://portal.cybertaxonomy.
org/flora-malesiana/). This repository demonstrates the origi-
nal extraction and conversion to controlled fields.

RESULTS

Parsing success

FloraTraiter was implemented on the complete Fagales
treatments on eFloras.org as represented in Flora of North
America (212 taxa successfully extracted) and Flora of China
(518 taxa extracted). On average, 55 traits per species were
captured. The most densely populated traits included leaf
shape (83.0%), leaf size (79.6%), leaf margin (61.0%), and
leaf surface (54.5%).

Ground‐truthing

Type I (false positive) error rates were less than 1% (0.98%;
Figure 5A and 5C break this down by source and genus).
Many errors tend to be removed when filtering on missing
data because they often involve uncommon or very detailed
traits. This was because Type I errors were generally of the
linkage type; a measurement was captured and parsed
correctly but associated with a wrong, spatially adjacent
trait. Most often, such association issues happen for less
common traits such as vein numbers (accounting for almost
all errors; this is reflected in the higher error in Flora of
China; Figure 5A) that were unparsed as such; during the
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iterative process summarized in Figure 2, unused tokens
were then likely reused and misassigned. This example is
illustrative of the most straightforward way to address Type
I error: maximizing the text content that is parsed and
explicitly assigned to traits. Rare traits are also where we see
the most Type II errors, which was about 4.7% (i.e., the
average treatment captured 95.3% of traits). Some of
these errors involved phenological traits (e.g., flowering
before leaf‐out), scent and taste descriptors, and other
aspects that we decided not to capture because they are not
basic morphology; however, these more frequently com-
prised detailed treatments of taxon‐specific topics like
extensive prose on bark structure, winter buds, and
elaborations of fruit and seeds that did not contain
straightforward scorings. This last point is likely responsible
for the higher Type II error in Flora of North America
(Figure 5B); there is a greater proportion of less structured,
informal discussion of traits in this source. Connected to
this, invariant “nuisance” traits were sometimes captured
because the original description mentioned structures
without providing relevant details. These were not counted

F IGURE 4 Demonstration of the HTML outputs. Two screenshots are shown for Corylus from Flora of North America: (A) shows the unexpanded view
(the “+” symbol on the HTML will expand the view and show the atomized traits as shown in [B]), with every highlighted portion corresponding to trait
content that was extracted; (B) shows an expanded view of one species with the actual scores for each trait. This view allows organismal experts to evaluate
the operation of FloraTraiter's natural language processing approach. Example output with an accessible color palette is available in the output folder
of the Zenodo repository (https://doi.org/10.5281/zenodo.8336468).
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as errors because they are uninteresting rather than incorrect
and can easily be removed. For instance, lateral veins were
captured as present with no detail because they were mentioned
in relation to pubescence or other features. The capture was
also sometimes incomplete because minor details were not
included; however, this was generally not recorded as Type II
error because partial traits were not counted. Examples of this
include color change over time or extensive prose describing
hair or ridge distributions. Excluding these from consideration
is reasonable because these are unlikely to be useful in a
morphological analysis without further standardization.

Worked example

The MDS analysis (Figure 6A; each dot represents a taxon)
demonstrated differences in morphological variability
among families, with Fagaceae (the most species‐rich
family) showing a widespread and Betulaceae showing the
smallest morphospace as quantified by between‐species
morphological distances. The within‐family results show
differing levels of morphospace occupancy per family, with
Fagaceae showing the strongest variability; it alone occupies
more than half of MDS axis 1 (Figure 6A), which largely
captures variation in vegetative and reproductive size

(below) and therefore reflects morphological diversification
in this family. Between‐family comparisons likely under-
estimate morphospace divergence due to lack of homology;
Casuarinaceae in particular possesses numerous fields not
shared with close relatives relating to its specialized morphol-
ogy. We note in this connection that this challenge is not
unique to automated analysis; manual extractions possessed
similar patterns of unshared fields between divergent taxa.

Following Folk et al. (2019), “loadings” in the MDS analysis
were evaluated by univariate R2, which quantifies variance
explained by each ordinated axis. In the first axis, the most
important traits were leaf width (R2 = 0.85), nut width (0.74),
leaf length (0.72), and nut length (0.54); hence, overall, axis 1
captures size. The most important traits in the second axis were
leaf duration (0.81), branch shape (0.28; this trait mostly
captured information related to position such as “ascending”),
peduncle shape (0.23), and inflorescence shape (0.20); hence,
overall, axis 2 represents shape and other categorical descriptors.
Finally, Figure 6B demonstrates an individual trait, showing tree
height (the typical quantification of body size in plant ecology)
against genera with sufficient subspecific sampling.

DISCUSSION

A lack of trait data is a major obstacle in plant science
because traits underlie how organisms interact with their
environment and other organisms. However, researchers
are met with the enormous challenge of collecting many
traits from many taxa. The effort needed, for example, at the
familial or ordinal level for many speciose clades is
immense, especially if starting from scratch. For many of
the most basic traits, the problem is not that the data do not
exist but that researchers cannot easily assemble them. With
resources like the Biodiversity Heritage Library (https://
www.biodiversitylibrary.org/) and the Botanicus project
(http://www.botanicus.org/), large troves of trait data are
available but disseminated in such a way that they are
currently available only to specific subfields and applica-
tions. As we have argued, unlocking the potential of
biodiversity literature will be a key component of over-
coming the lack of trait data, when used in a complemen-
tary role with other approaches such as generating new in‐
situ field‐based measurements. However, this heritage data
is vast in scope and can be dissimilar in content, which
highlights the need for automated and semi‐automated
approaches, especially as these data are not limited to a
single application or purpose, but can be re‐used by others
in new applications as befits their value. Such FAIR data
re‐use approaches (Wilkinson et al., 2016) have not been
particularly well‐facilitated by traditional scientific literature
dissemination modalities.

Here, we developed and demonstrated the application of
FloraTraiter, a fully open‐source NLP approach to extracting
computable trait data from taxon descriptions in floras,
monographs, and similar biodiversity literature. FloraTraiter
is close to full automation, but contains human input at
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several points that adds customizability as well as quality
control. Some human roles are specific to particular projects,
such as overcoming challenges in digitizing treatments and in
controlling and interpreting output structures. Most cen-
trally, however, expert botanist perspectives are built into the
NLP model; this is particularly important for specialized
contents where applying previously developed approaches
“out of the box” may result in limited parsing (Endara et al.,
2018). We identify a number of challenges related to the
structure (or lack thereof) of the data that will inform future
efforts (see also Appendix S1), but also demonstrate a level of
accuracy already sufficient for re‐use in diverse applications
and in a form that will facilitate further curation.

FloraTraiter fits into recent efforts unlocking similar
literature data in other organisms, such as lepidopterans
(Shirey et al., 2022) and vertebrates (Guralnick et al., 2016).
The present effort differs from Shirey et al. (2022) in that
much of that work relied on human effort to assemble and
parse text blocks, with automation for only the simplest
continuous traits (e.g., wing length). Unlike Guralnick et al.
(2016), FloraTraiter interrogates much more complicated
written text blocks and assembles a much more complicated
set of both continuous and categorical traits. Our work not
only demonstrates the power of semi‐automation to scale
up trait assembly, but also illustrates the critical importance
of a more explicit model for collaboration between botanists
and programmers to structure improving language proces-
sing models. Similar efforts have previously been recorded
in plants (e.g., Endara et al., 2018 report an NLP approach),
but here we have moved beyond proof‐of‐concept in a
large‐scale study using a data set comprising hundreds of
taxa ready for reuse.

Challenges encountered

Challenges and recommendations in the effort overall are
summarized in Appendix S1. In this section, we will focus
on empirical properties of the output. Type I error rates are
low (<1%) and similar to those reported in previous NLP
efforts (Endara et al., 2018). The specific Type I errors found
were attributed to the completeness of parsing, with
information involving unparsed traits most prone to
incorrect trait linkage. This suggests a straightforward
strategy in addressing Type I error focused on maximizing
the vocabulary that would enable tokenization in the first
steps of FloraTraiter. Type II error was also fairly low
(<5%); this is more difficult to control as it was found to be
highly dependent on authorial style among sources, as
standard taxonomic styling lends itself to NLP but more
prolix approaches to the discussion of traits tend not to be
parsed. However, excluded trait information tends to be
highly detailed and may not be specifically of interest for
many projects. In Betulaceae, this often involved relative
flower and leaf phenologies (not included by decision) and
extensive bark descriptions (which could be challenging to
score even for a human observer).

As noted by Endara et al. (2018), matrices created by
automated trait extraction tend to be sparse, with basic
leaf and other traits well filled‐in, but other traits less so.
This is a feature rather than a bug; it reflects the higher
thoroughness of an automated approach as opposed to the
more selective strategy a human observer would likely take.
Trait presence is primarily a function of both morphological
specialization and editorial differences among sources. At a
large taxonomic scope, fields must be invoked to cover all
extracted traits, but within subtaxa taxonomists generally
will focus only on those traits that differ between species.
Some traits are also difficult to homologize because features
are not shared across taxa in a straightforward way (for
instance, when comparing details of berries to samaras, or
when comparing Casuarinaceae overall to other families). In
the Betulaceae application used for error analysis, there
were fewer problems because Betulaceae trees are fairly
similar; however, their diverse inflorescence structure
requires enforcing controlled fields and synonymies when
comparing individuals across genera.

A further challenge concerns the nature of expert
literature rather than methodological approaches. Many
taxa and geographic regions are understudied due to a
shortage of taxonomists (Bebber et al., 2014), so many
taxonomic works will be out of date to varying degrees. For
relatively similar species, applying synonymy tools such as
Plants of the World Online (http://sftp.kew.org/pub/data-
repositories/WCVP/) can identify and often reduce the
scope of the problem, but the changes in plant taxonomy
have been more extreme at the levels of genus, family, and
above, rendering some familiar taxa unrecognizable (e.g.,
Scrophulariaceae; Olmstead et al., 2001). Higher‐level taxon
treatments also differ in their scope and selection of
morphological traits from the more basic unit of species.
While FloraTraiter reports data at all ranks identified in its
inputs, higher‐level trait reports are certainly suspect in
older treatments that antedate molecular phylogenetic work,
and trait reports for such taxa may best be generated from
aggregating species‐ or subspecific‐level data. For instance,
genus‐level length measurements could be generated from
the range of variation in all species successfully captured
and reconciled to currently recognized generic boundaries.
In summary, beyond the more difficult problem of
promoting the basic taxonomic work that would best
address outdated taxonomic treatments (Stuessy, 1993),
the careful selection of recent authoritative sources and a
focus on data from species and varieties or subspecies
represents a compromise that best summarizes current
expert knowledge.

CONCLUSIONS

Among the extracted traits that are broadly scored across
species are body size, measurements and shape descriptors
of leaves and flowering and fruiting structures, scorings of
plant sex, and other attributes that have broad use potential.
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For instance, these traits capture aspects of plant and leaf
size that have recently seen global‐scale studies in a
phylogenetic (Testo and Sundue, 2018) or spatial framework
(Baird et al., 2021). Aside from investigations of targeted
questions, traits could be used to capture regional or site‐
level morphospaces, e.g., via calculation of convex hulls
(Cornwell et al., 2006) or other methods; ordinations of
morphospaces could also be used in a phylogenetic context
to investigate trait evolution (Folk et al., 2019). These
examples underline the value of making biodiversity
literature more available and computable (Thessen et al.,
2012; Folk and Siniscalchi, 2021) to broad audiences beyond
the traditional readership of such literature, including
scientists who will be able to identify important, unusual,
and creative applications. Most centrally, FloraTraiter
demonstrates the major promise of combining expert
perspectives with guided automated approaches, as well as
the promise of tools designed to facilitate curation for non‐
specialists. Future challenges will include data curation and
reconciliation challenges, and assuring that outputs are
broadly usable for the long term and conform to
community definitions. We also foresee that large language
models and model‐based parsing may rapidly improve and
provide an alternative to the rule‐based parsing shown here;
still, those models are likely to require the same set of
lexicons that are specific to botany and therefore to benefit
from collaboration with domain experts. Here, we show a
pathway to making data and methods available that can
serve as an important first step toward broadly available
plant trait data for the community.
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