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Improving recombinant protein production by yeast
through genome-scale modeling using proteome
constraints
Feiran Li 1, Yu Chen 1,6, Qi Qi 1,6, Yanyan Wang1,6, Le Yuan 1,2, Mingtao Huang1,4,

Ibrahim E. Elsemman1,5, Amir Feizi 1✉, Eduard J. Kerkhoven 1,2 & Jens Nielsen 1,3✉

Eukaryotic cells are used as cell factories to produce and secrete multitudes of recombinant

pharmaceutical proteins, including several of the current top-selling drugs. Due to the

essential role and complexity of the secretory pathway, improvement for recombinant protein

production through metabolic engineering has traditionally been relatively ad-hoc; and a

more systematic approach is required to generate novel design principles. Here, we present

the proteome-constrained genome-scale protein secretory model of yeast Saccharomyces

cerevisiae (pcSecYeast), which enables us to simulate and explain phenotypes caused by

limited secretory capacity. We further apply the pcSecYeast model to predict overexpression

targets for the production of several recombinant proteins. We experimentally validate many

of the predicted targets for α-amylase production to demonstrate pcSecYeast application as a

computational tool in guiding yeast engineering and improving recombinant protein

production.
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The protein secretory pathway is an important pathway for
eukaryotic cells. Numerous native proteins are processed
by the secretory pathway in eukaryotes; around 10–20% in

fungal species1,2 and 30–40% in mammals3. The secretory path-
way spans several different organelles carrying out peptide
translocation, folding, Endoplasmic reticulum (ER)-associated
protein degradation (ERAD), sorting processes as well as different
post-translational modifications (PTMs), ensuring proper protein
functionality4. There are around 200 proteins engaged in the
protein secretory pathway in yeast Saccharomyces cerevisiae,
hence responsible for these functions. The specific PTM profile of
each secretory protein dictates which specific combination of
multiple processes is required for its production and secretion.
This makes the secretory pathway a complicated production line
and therefore complex to describe. It is therefore desirable to
unravel the energetic costs for processing proteins passing
through the secretory pathway, and how the cell distributes
energy and enzymes to process these proteins, as this would
facilitate a better understanding of protein secretion.

S. cerevisiae is used as expression system for roughly 15% of all
protein-based biopharmaceuticals for human use on the market5.
It has also been used as an important model organism for
studying this important pathway, and many discoveries made in
yeast translate directly to other eukaryotes, such as Chinese
Hamster Ovary (CHO) cells that are also widely used for the
production of protein-based biopharmaceuticals6,7. Since the
early days of recombinant protein production in the 1980s,
there have been many attempts to improve the protein expression
and secretion levels by removing bottlenecks in the protein
modification and secretion pathway8. However, most of these
attempts were evaluated for one recombinant protein only, and
often identified targets do not translate into the improved
expression of another protein. Furthermore, the protein yield has
typically been much lower than the theoretically estimated range9.
There is therefore much interest in developing a rational design
tool for optimization of the secretory pathway for any recombi-
nant protein, in line with what has been developed for metabo-
lism in many cell factories10.

There are several published frameworks or models for
describing protein secretion in yeast and other eukaryotes, but
they are either not able to perform simulations or contain only a
partial description of the protein secretory pathway4,11–14. Even
for a recently published secretory model for mammalian cells13,
the model is solely a basic extension of a genome-scale metabolic
model (GEM), which is not able to simulate how native secretory
proteins compete with recombinant proteins targeted to pass
through this pathway. Besides that, even though engineering
targets have been predicted using basic GEMs for recombinant
protein overproduction14–16, those targets are related to meta-
bolism without the investigation of the protein secretory pathway
due to the nature of basic GEMs.

In this work, we reconstruct a detailed proteome-constrained
genome-scale protein secretory model for S. cerevisiae (pcSe-
cYeast). This model contains a description of the complete pro-
tein secretory pathway and can perform multiple types of
simulations including the competition between recombinant and
native secretory proteins. The model also enables calculation of
the energetic cost for native secretory proteins and hereby enables
investigation on how misfolded proteins cause growth reduction.
We use the model to evaluate the secretion of various recombi-
nant proteins and predict engineering targets for improving their
production. The model represents a significant advancement in
terms of enabling more rational design of yeast cells to be used for
recombinant protein production, while furthermore providing a
scaffold for building similar models for other eukaryotic cells, e.g.,
CHO cells.

Results
Construction of pcSecYeast. We first updated the latest yeast
GEM Yeast817 by adding 92 metabolic reactions to enable the
synthesis of precursors required in the secretory pathway such as
glycosylphosphatidylinositol (GPI) anchor and glycans (Supple-
mentary Data 1). Similar to the metabolic-expression (ME) model
for Escherichia coli18 and S. cerevisiae19, protein expression,
translation, folding, and degradation were subsequentially added
for all proteins in the model. Additionally, for proteins processed
in the secretory pathway, we added reactions that comprehen-
sively describe protein processing, including translocation, post-
translational modification, folding, misfolding, complex formation
and degradation (Fig. 1a). Hereby the model describes all detailed
processes from nascent peptide in the cytosol to the final mature
form in their destination compartment for each protein in the
model. Therefore, pcSecYeast adds a much more comprehensive
description of protein translocation and processing compared with
earlier ME models. A comparison of pcSecYeast with relevant
models for S. cerevisiae19–21 and other secretory models13,14 is
available in Table 1 (detailed information in Supplementary
Method 1). To our knowledge, pcSecYeast represents the model to
describe close links between metabolism, protein translation, post-
translational protein processing, protein degradation, and protein
secretion in yeast and can be easily adapted to other cell types. The
components that participate in the protein secretory pathway are
involved in 12 subsystems (Fig. 1b). Overall, pcSecYeast accounts
for 1639 protein-coding genes (1156 metabolic genes and 483
protein synthesis- and secretion-related genes) and approximately
70% of the total proteome mass (45.7% from metabolic proteins,
20.6% related to ribosome, proteosome and secretory machinery
proteins and 4.6% from unmodeled secretory proteins) according
to PaxDb22 (Supplementary Data 2). Details of the reconstruction
process and parameter collection can be found in the Supple-
mentary Method 2–6. All reactions and metabolites of pcSecYeast
can be found in the Supplementary Data 3-4.

As an extension of Yeast8, pcSecYeast includes default
constraints such as mass conservation and flux bounds on
metabolic reactions. In addition, we introduced coupling
constraints to relate protein synthesis with metabolism (Supple-
mentary Method 6). The metabolic part in the model supplies the
substrate and energy for the protein-related part, such as
ribosome and enzyme synthesis, while the metabolite conversion
processes in the metabolic part are catalyzed by enzyme
complexes synthesized in the protein-related part (Fig. 1c).
Protein synthesis is constrained by the synthesis of ribosome and
other machineries, such as secretory machinery complexes
(Fig. 1c). Each metabolic flux in the model is constrained by
the maximal capacity of the associated enzyme, which is a
function of turnover rate (kcat) and the enzyme concentration.
Thus, we can simulate the minimum protein levels which sustain
the metabolic state, i.e., the proteome-constrained metabolic state.
This means that the proteome composition in pcSecYeast is not a
fixed amount of average amino acid compositions as in the basic
GEMs, but a dynamically changing composition of enzymes,
which reflects the cell state at a certain condition. Thus, the model
enables simulating cellular resource allocation under different
conditions, such as how the cell would balance recombinant
protein with native secretory proteins in the recombinant protein
production and how the cell would optimize its enzyme profile
among various environmental conditions.

Secretory cost correlates with the switch of hexose transporters.
Transporters are one important group of proteins that pass
through the secretory pathway. Yeast has multiple hexose trans-
porters with diverse kinetics, which are expressed at different
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levels under different extracellular glucose concentrations23. The
benefit of utilizing high-affinity transporters during nutrient
depletion or limited conditions seems evident, but questions
remain on why the cell would switch to low-affinity transporters24.
To investigate the switch, we utilized pcSecYeast to simulate yeast
growth under different glucose concentrations. As a result, the
model captured the metabolic shift referred to as the Crabtree
effect, i.e., the production of ethanol at high specific growth rates
(Fig. 2a). Furthermore, the model correctly predicted a switch
from the predominant use of the high-affinity glucose transporter
(Hxt7) to low-affinity glucose transporters (Hxt3 and Hxt1) at
high glucose concentrations (Fig. 2b), which is consistent with the
experimental observation that HXT3 and HXT1 genes are only
expressed at high specific growth rates23. Using the model, we can
calculate the secretory cost of utilizing sole specific glucose

transporter at corresponding conditions. The calculation is illu-
strated by Eq. (1). The secretory cost can be calculated as the
required abundance of the transporter multiplied by the unit
secretory cost. The protein abundance of the transporter Ei

� �
is

determined by the total glucose uptake rate Vglc, KM and extra-
cellular glucose concentration ½S� according to the Michaelis-
Menten equation. The unit secretory cost is defined as the cost
required for translation, modification, and secretion of one mol
specific protein, which can be predicted by pcSecYeast (Methods).
We predicted the unit secretory costs for all native secretory
proteins in S. cerevisiae (Supplementary Data 5) and found that
Hxt1 has a relatively lower unit secretory cost compared to Hxt7,
suggesting that synthesizing one mol Hxt1 would pose less
energy burden on the cell. This is partly because Hxt1 has fewer
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Fig. 1 Overview of components in pcSecYeast. a Simplified schematic processes involved in the protein secretory pathway. The process includes protein
translation, translocation, glycosylate, GPI transfer, ERAD and sorting process. The detailed description of all components and reactions can be found in
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N-glycosylation modification sites than Hxt7 (Supplementary
Data 6). Combining the unit secretory cost with the total glucose
uptake rate, extracellular glucose concertation, kcat, and KM, we
can calculate the secretory cost for utilizing each glucose trans-
porter at different specific growth rates using Eq. (1) (Fig. 2c). The
calculated secretory cost suggests that utilization of Hxt1 and Hxt3
would gradually gain the advantage over Hxt7 with increasing
glucose concentrations (Fig. 2c). The switch of cost perfectly aligns
with the experimentally observed switch of glucose transporters,
which serves as an explanation for the transporter switch. We also
performed sensitivity analysis on the kcat for Hxt1 and found that
even if we set the kcat for Hxt1 at the same value as Hxt7, Hxt1
would still be favorable for glucose uptake in the model simulation
at the maximum specific growth rate (Supplementary Fig. 1). This
suggests that the slightly lower unit secretory cost of Hxt1 may
contribute to the transporter switch, particularly at the proteome-
constrained conditions at high specific growth rates. Our model
hereby predicts that the switch of different affinity glucose
transporters may be explained by the resource optimization
strategy of the cell to adapt to limited resources.

Yeast suppresses expression of high-cost secretory proteins
under secretion pressure. The protein secretory pathway is
concurrently processing hundreds of proteins that compete for
limited resources such as energy, precursors, and components of
the secretory machinery. It has been reported that recombinant
mammalian cells repress the expression of native energetically
expensive secretory proteins to save limited resources for growth
and recombinant protein production13. With our proteome
allocation model of the secretory pathway, we can perform not
only the same calculation of the costs of all 497 native secretory
and cell membrane proteins in yeast as done for mammalian
cells13 (denoted as direct cost in the Supplementary Fig. 2a) but
also a more accurate analysis of the costs including the additional
costs for corresponding shares of catalyzing enzymes and secre-
tory machineries required for processing the protein besides the
cost for itself (unit secretory cost in Supplementary Fig. 2a). By
correlating unit secretory cost with direct cost, we found that the
unit secretory cost calculated in pcSecYeast is overall 3.5-fold
higher than the direct cost (Supplementary Fig. 2a). Outliers in
the correlation of these two types of cost calculation are mainly
caused by unusual protein features such as the 52 N-glycosylation
sites annotated for the protein Rax2 or long amino acid sequences
for large proteins Tor1 and Tor2 (Supplementary Fig. 2a). To
evaluate whether there is reduced expression of proteins that are
costly to process by the secretory pathway, as observed in
mammalian cells, we correlated the calculated unit secretory costs
with the mRNA levels of 497 native secretory proteins for three
strains with different levels of recombinant α-amylase production
that were characterized in a recent study25. We observed a sig-
nificant negative correlation (Pearson correlation coefficient <
−0.27, P value < 1e-8) between unit secretory cost and mRNA
level of native secretory proteins for α-amylase production strains
(Supplementary Fig. 2b for MH34 and Supplementary Fig. 2c for
all three strains), suggesting that the cells suppress the expression
of proteins that are expensive to secrete when the secretory
pathway is under pressure to process a recombinant protein.
Moreover, we found that the negative correlations are stronger in
the strains with higher α-amylase production levels (MH34 and
B184) compared with that in a strain with a lower α-amylase
production level (AAC) (Supplementary Fig. 2c, P value= 0.004).
Therefore, the suppression level for costly native secretory pro-
teins depends on the recombinant protein production levels,
suggesting that the yeast cells respond accordingly to the level of
secretion stress.T
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Misfolded protein slows maximum growth. Protein synthesis
and secretion is an error-prone process. Mutation in the
sequence, errors during the synthesis or environmental stress
cause the newly synthesized protein to misfold26. Misfolded
proteins are prioritized to be rapidly eliminated by the ERAD
pathway, but may be retained and accumulated in the ER,
potentially triggering cell stress (Fig. 3a)27–30. Here, we used our
model to simulate the ER tolerance to misfolded proteins. We
expanded pcSecYeast to include the production of vacuolar car-
boxypeptidase Y (YMR297W, CPY), since CPY and its derived
misfolded form CPY* are processed in the secretory pathway, and
widely used in the elucidation of the mechanisms of ER quality
control and ERAD of misfolded proteins31. By modifying the
misfolding-ratio parameter in the model, we can simulate various

levels of CPY misfolding. A misfolding ratio of 100% means that
all the CPY protein molecules are misfolded and cannot be tar-
geted to the Golgi for further processing, representing the mis-
folded form CPY* as reported in literature32.

Here, we used the maximum growth rate reduction to indicate
the fitness cost of CPY going through different routes: 1) all
correctly folded and targeted to the vacuole without misfolding;
2) misfolded in different ratios and some targeted for ERAD (here
we use 45% misfolding ratio to represent the native degradation
ratio33 and 100% misfolding ratio for fully misfolded form
CPY*); 3) all misfolded and retained in the ER for different times.
Our simulations showed that misfolding imposes more fitness
cost compared with correct folding; that retention imposes more
fitness cost compared with ERAD; and that retention in the ER
for a longer time would also impose more fitness cost (Fig. 3b).
The model predicted that a lower level of misfolded CPY (native
level CPY expression, 100% misfolded) has a smaller impact on
cell growth. However, when misfolded CPY is expressed in larger
amounts (25-fold CPY expression, 100% misfolded), there is a
higher fitness cost. The simulation is consistent with experimental
observations32.

If the misfolded proteins are degraded by ERAD and the
proteasome, then amino acids and modification precursors such
as glycans can be recycled. However, if misfolded proteins are
retained in the ER, they would compete with unfolded proteins
for limited ER quality control machineries especially Kar2 and
Pdi132, which would lower the processing rate of correctly folded
proteins and increase the ER burden. We investigated the
simulated various protein levels and found that the levels of
Kar2 and Pdi1 increase significantly when CPY is retained
(Supplementary Fig. 3), which suggests that the retained protein
would drain Kar2 and Pdi1 and therefore compete with native
proteins processed in the secretory pathway. In addition, we
evaluated the ER redox stress by comparing the transport of
glutathione (GSH) and glutathione disulfide (GSSG) and found
that the flux of GSSG export from the ER is significantly higher
when misfolded protein is retained in the ER (Supplementary
Fig. 4), suggesting the higher redox unbalance in the ER at this
state. The simulated transport increase is also in line with
experimental observations34.

Furthermore, we performed analyses to identify parameters
leading to misfolded protein accumulation in the ER (Supple-
mentary Fig. 5a–d, Fig. 3c). When retro-translocation enzymes
(Doa10 and Hrd1 complexes) were constrained, the excessive
misfolded CPY would be retained and accumulated in the ER
when CPY was expressed at high levels, causing a steeper decrease
in the specific growth rate (Fig. 3c). Other parameters such as
ERAD capacity, ER volume, ER membrane space, and secretory
machinery capacity were not able to show the retention and
accumulation phenotype when constrained in the model
(Supplementary Fig. 5a–d). We found that the retention of the
misfolded protein phenotype is alleviated when removing the
constraint of retro-translocation enzymes, suggesting the impor-
tance of retro-translocation toward handling of misfolded
proteins (Supplementary Fig. 5e). Therefore, we can use
pcSecYeast with the extra constraint on retro-translocation
enzymes to mimic various states of misfolded protein accumula-
tion in the ER (Fig. 3c). The plateau in the CPY degradation
rate demonstrates that there is a maximum capacity of the
retro-translocation and therefore also a tolerance limit for
misfolded CPY.

Protein features impact recombinant protein production.
Different secretory proteins are processed by different compo-
nents of the secretory pathway based on their amino acid
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composition and PTMs. To identify the factors that influence
secreted protein levels, we expanded pcSecYeast to describe the
production of eight different recombinant proteins by adding the
corresponding recombinant protein production and secretion
reactions, respectively. These eight recombinant proteins differ in
protein size and PTMs (Fig. 4a, detailed information in Supple-
mentary Data 7). Note that hemoglobin folds with heme as a
prosthetic group, which requires balancing of heme biosynthesis
and its recombinant protein production (Fig. 4a)35. We generated
eight specific models to simulate the maximum recombinant
protein secretion under various growth rates. We observed that
the maximum production rates were achieved at low specific
growth rates for all the studied recombinant proteins (Fig. 4b),
consistent with previous reports of bell shape kinetics for
recombinant protein production in S. cerevisiae and Pichia
pastoris36–40. Insulin precursor (IP) and α-amylase production
were reported as growth-dependent41, but only for the investi-
gation of a more narrow interval of specific growth rates (0.05-
0.2 h−1), which is consistent with the model simulations. At high
specific growth rates, there is a clear drop of production rate for
all recombinant proteins (Fig. 4b), which clearly shows that at
high specific growth rates the cell prioritizes its limited capacity of
the secretory pathway to native proteins. It is important to note
that a basic GEM can only describe a linear negative correlation
of recombinant protein production with increasing specific
growth rates (Supplementary Fig. 6). Moreover, the fact that the
simulated α-amylase production by the basic GEM is around 30
times higher than experimental values42, even with the measured
glucose uptake rate as a constraint, highlights that basic GEMs are
unfit for recombinant protein simulation (Supplementary Fig. 6).

We additionally investigated which protein feature influences
recombinant protein production the most through a parameter

importance analysis by machine learning. We found that PTMs
on average have a higher impact on recombinant protein
production compared with amino acid composition (Fig. 4c,
Supplementary Fig. 7 for fivefold cross validation). Among all
simulated features, O-glycosylation and N-glycosylation have
larger negative impacts on recombinant protein production,
which suggests that having more glycosylation sites would cause
more burden for the cell (Fig. 4c).

FSEOF identifies overexpression targets for recombinant pro-
tein overproduction. Identifying engineering targets is crucial to
improve the specific recombinant protein production rate. Pre-
dicting gene overexpression targets is more difficult and complex
than predicting gene deletion targets since amplification of gene
expression does not always increase the metabolic fluxes43. To
fully validate the predictive power of pcSecYeast, we used the
generated recombinant protein-specific models to predict over-
expression targets for increasing recombinant protein production.
Target prediction was performed using adapted Flux Scanning
based on Enforced Objective Function (FSEOF)43, where the
model was constrained with a stepwise decrease in the specific
growth rate, and recombinant protein production was max-
imized. The original FSEOF method selects fluxes that increase
with the enforcement of recombinant protein production in the
GEM simulations and identifies those reactions and associated
genes as overexpression targets. Since we can compute the protein
levels from the pcSecYeast simulations, we can directly select
proteins, as overexpression targets, whose increased levels would
result in increased recombinant protein production (Fig. 5a and
Supplementary Data 8–15 for prediction results of these eight
recombinant proteins). The predicted overexpression targets were
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ranked with priority scores and compared among the eight
recombinant proteins (Fig. 5b, c). We predicted average 117
overexpression targets for each of the eight recombinant proteins
with the majority of them (80%) being in the secretory pathway
and 20% in the metabolic part of the model (Fig. 5b, c). The
identified targets were more likely shared by recombinant pro-
teins when they have the same PTMs. For example, targets in the
O-glycosylation pathway were shared by O-glycosylated human-
transferrin (HTF) and human granulocyte colony-stimulating
factor (hGCSF) (Fig. 5c). Surprisingly, even though insulin pre-
cursor (IP) contains no N-glycosylation site, some predicted
overexpression targets are related to N-glycosylation. This is
explained by the fact that N-glycosylation is required for some
secretory machinery proteins such as Pdi1 which catalyzes dis-
ulfide bond formation in IP production. By removing the dis-
ulfide bonds in IP, we found that those N-glycosylation-related
genes were no longer predicted as targets (Supplementary
Data 16). There are 41 predicted targets shared by all eight
proteins, which are mainly involved in sorting, ER-Golgi trans-
port and translocation from cytosol to the ER, suggesting the
general importance of these processes in protein secretion
(Fig. 5c). We also showed that hemoglobin is the recombinant
protein with multiple unique targets in metabolism, especially for
heme production, which demonstrates that metabolism is equally
important along with the secretory pathway for improving
hemoglobin production. For all other recombinant proteins, the
secretory pathway is more limiting according to the prediction.

Experimental validation for predicted α-amylase targets. We
next validated the predicted overexpression targets for improved
α-amylase production. The 116 predicted overexpression targets
for α-amylase overproduction were grouped by their function, of

which 28 were from metabolism and 88 were from the secretory
pathway (Supplementary Fig. 8a). We selected 18 targets with
different functions for further validation, most of them are with
high priority scores (Supplementary Fig. 8a, b). There were 14
targets in the secretory pathway spanning translocation, folding,
protein quality control, and sorting subsystems, and four targets
in the metabolic part of the model, which are related to N-glycan
synthesis and amino acid synthesis (Fig. 6a).

We next sought to test if individual overexpression of the
predicted secretory targets could improve the α-amylase produc-
tion rate. Among them, the glucosidase Cwh4125, COPII-coated
vesicles proteins Erv2944, Sec1645 and protein disulfide isomerase
Pdi144,46 have already been validated, i.e., overexpression of these
proteins can improve α-amylase production and secretion.

As for the remaining ten secretory targets, we performed
individual gene overexpression experiments for validation, and
found that individual overexpression of SEC65, MNS1, SWA2,
ERV2, and ERO1 significantly increase the α-amylase production
rates by different levels (1.32 to 2.2-fold) (Fig. 6b, Supplementary
Data 17). Sec65 is one out of six subunits of the signal recognition
particle (SRP), which is involved in protein targeting to the ER47.
Overexpression of SEC65 would be anticipated to increase the
SRP-dependent co-translational translocation, which would
benefit protein translocation from cytosol to ER. Mns1 is
involved in folding and ERAD, which is responsible for the
removal of one mannose residue from a glycosylated protein. α-
amylase contains multiple N-glycosylation sites, and therefore
would be benefited from MNS1 overexpression from facilitated
proper folding. ERO1 encodes a thiol oxidase required for
oxidative protein folding in the ER and provides Pdi1 with
oxidizing equivalents for disulfide bond formation2. We observed
that overexpression of ERO1 has a positive effect on α-amylase
production (2-fold). Overexpression of ERO1 has also been
shown to enhance disulfide-bonded human serum albumin
(HSA) secretion in Kluyveromyces lactis48 and single-chain T-
cell receptors (scTCR) and single-chain antibodies (scFv)
secretion in S. cerevisiae49. To be noted here, ERO1 has also
been predicted as the overexpression target for recombinant
protein overproduction from a simple yeast oxidative model50.
Therefore, ERO1 might be considered as a generic target for
secretory protein production. SWA2 is important for vacuole
sorting, here we also show that by overexpressing this gene, there
is increased α-amylase production (Fig. 6b).

From four metabolic gene targets, only overexpression of CYS4
led to a significant increase (2.14-fold) of α-amylase productivity
(Fig. 6c). Cys4 (Cystathionine beta-synthase) is involved in
cysteine synthesis. Comparing the amino acid composition of α-
amylase with the average amino acid composition of S. cerevisiae,
we identified that there is a 9-fold enrichment for cysteine in α-
amylase compared with the general yeast proteome (Supplemen-
tary Table 1), which explains why overexpression of CYS4
drastically increases the α-amylase production rate. Crs1(Cystei-
nyl-tRNA synthetase), which is responsible for cysteinyl-tRNA
aminoacylation by coupling cysteine to cysteinyl-tRNA, was also
predicted as an overexpression target. However, overexpressing
this gene did not significantly increase the α-amylase production
rate. The other two metabolic targets are Gna1 (Glucosamine-6-
phosphate acetyltransferase) and Pcm1 (Phosphoacetylglucosa-
mine mutase), which are related to the synthesis of the N-
glycosylation-precursor N-linked oligosaccharides. Overexpres-
sion of the corresponding genes did not significantly increase α-
amylase production rates, suggesting that N-glycosylation pre-
cursor synthesis may not be the bottleneck for α-amylase
production.

In total, for all chosen targets in the secretory pathway, 9/14
were validated as positive targets, while for identified metabolic

0 0.1 0.2 0.3 0.4
0

1

2

3

4
10-3

Protein abbr. DSB

Negative impact
Positive impact

NG OG GPI Length

Insulin precursor
Human granulocyte

colony stimulating factor
Hemoglobin
β-glucosidase
α-amylase

Acid phosphatase
Human serum albumin

Human transferin

IP

hGCSF

Hemoglobin
BGL

α-amylase
PHO
HSA
HTF

Specific growth rate [h-1]

P
ro

te
in

pr
od

uc
tio

n
ra

te
[m

m
ol

gC
D

W
-1

h-1
]

3 0 0 0 53

2 0 1 0 174

0 0 0 0 299
0 0 0 0 421
4 1 0 0 478
8 9 0 0 435

17 1 0 0 585
19 0 1 0 679

a

b
S

H
A

P
V

al
ue

0

2

4

6

8

1e−5c

T
ra

nsYEPQVNGDTLHRASIFWKMC
D

S
B

N
G

O
G

Fig. 4 Simulation of recombinant protein production. a Overview of
protein features for eight recombinant proteins produced by S. cerevisiae.
See Supplementary Data 7 for detailed information. Abbr. abbreviation.
b Simulation of maximum specific recombinant protein production rate as a
function of specific growth rate. c Feature importance analysis towards
recombinant protein production. NG N-glycosylation site, OG O-
glycosylation site, DSB disulfide bond number, Trans transmembrane
domain, single letters stand for specific amino acids, SHAP value SHapley
Additive exPlanations value. Fivefold cross validation was performed to
validate the result (Supplementary Fig. 7). Source data are provided as a
Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30689-7 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2969 | https://doi.org/10.1038/s41467-022-30689-7 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


targets, the accuracy was 1/4. Besides the higher accuracy in the
secretory targets compared with metabolic targets, FSEOF gives
more targets in the secretory pathway even though the fraction of
metabolic enzymes in the model is much higher. This may give us
a hint that for recombinant protein secretion, the secretory
pathway is more likely to be the bottleneck, and these results also
demonstrate the value of the presented mathematical model for
dissecting and systematic analysis of the role of complex protein
secretory pathway in recombinant protein production and strain
development.

Discussion
In this study, we presented a genome-scale model of yeast that
integrates metabolism, protein translation, protein post-transla-
tional-modification, ERAD and sorting processes. The model
enables the calculation of unit secretory cost of any protein that is
processed by the secretory pathway. We have shown that the
model can correctly predict the switch from the use of high-
affinity to low-affinity glucose transporter as a result of resource
optimization (Fig. 2). With the unit secretory cost calculation and
reported transcriptome data, we also detected that upon expres-
sion of a recombinant protein, which is processed by the secretory
pathway, yeast optimizes the limited secretory capacity by down-
regulating the expression of secretory proteins that are expensive
to process (Supplementary Fig. 2). These two simulations suggest

that the cell allocates its limited resources by an optimization
strategy, which can be accomplished through regulatory networks
that have been evolved through the long history of yeast upon
extracellular and intracellular environments51,52.

We next used the model to simulate protein misfolding and
retention of CPY and hereby identified that there is a certain ER
tolerance to the misfolded protein (Fig. 3). Parameter sensitivity
analysis showed the importance of retro-translocation in ER
stress. This suggests that increasing the level of retro-
translocation may alleviate the ER stress caused by the reten-
tion of misfolded protein. Since quality control and ERAD
pathways are highly conserved between yeast and higher eukar-
yotes, this may indicate targets for treating a number of human
diseases related to misfolded protein accumulation such as Alz-
heimer’s and Parkinson’s53–55, which has been reported as ther-
apeutic interventions56,57. This analysis suggests the potential of
pcSecYeast to investigate the mechanism behind the misfolding
fitness cost by simulating numerous hypotheses. This model is a
proof of concept, and it could be further applied to study the
importance of protein secretory pathway involvement in human
diseases, e.g., the unfolded protein response (UPR) system in
cancer cells, which is strongly activated by high accumulation of
misfolded proteins in the ER58. Adopting pcSecYeast concept into
a cancer cell line, for example, will allow to simulate and get a
more systematic understanding of the UPR system overactivation
in cancer cells in the future.
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Rational design for recombinant protein production is a crucial
task due to the importance of recombinant protein market share,
but a very difficult task due to the complexity of the secretory
pathway. pcSecYeast serves as a platform for the rational design
of system-level engineering targets for recombinant protein pro-
duction (Figs. 5, 6). Besides experimentally validating the pre-
dicted engineering targets for α-amylase production (Fig. 6), we
further noticed consistency between predicted targets for other
recombinant proteins and literature reports, such as HEM2,
HEM3, and HEM12 for hemoglobin production59. We confirmed
that even though HEM4 is also in the heme synthesis pathway,
this is not a rate-limiting step in the heme synthesis59. According
to the priority rank from the model prediction, Hem4 has lower
predicted priority score compared with other proteins such as
Hem2 and Hem3. In addition, for targets that were predicted with
nonsignificant impact when overexpressed, we found that pre-
vious studies to report similar results. For example, over-
expressing vacuolar sorting gene SEC15 and SEC4 has been
shown to have no positive impact on α-amylase production45

(Supplementary Data 9).
To be noted here, our model captures most of the secretory

processes, but currently exclude some processes such as Endo-
some and Golgi-associated degradation pathway (EGAD)60, the
unfolded protein response and other signaling and regulatory
networks61. Therefore, including those processes could poten-
tially increase the prediction accuracy, in particular when it
comes to the dynamic aspects of protein secretion. Besides that,
we simplified some processes to perform the simulation, which
would also introduce some uncertainties, for example, different
types of glycans and glycoforms can exist for N-glycosylation62.

However, modifications to incorporate these processes in the
model will be relatively easy in case there is a need to study
specific proteins where these processes are important.

In conclusion, we present pcSecYeast as the genome-scale
model which allows systematic modeling of the protein secretory
pathway and its interaction with metabolism and gene expression
in yeast. This model enables the systematic prediction of engi-
neering targets for recombinant protein production, from both
the metabolic and secretory part of the model. The model facil-
itates in silico testing of various hypotheses for specific protein
expression, while the predicted targets are validated to be suitable
for the application. With this advancement, we expect that this
type of powerful genome-scale secretory model could also be
developed for other recombinant protein-producing cells, which
will entail a fully in silico hypothesis generation and identification
of cell engineering targets for strain development.

Methods
Construction of pcSecYeast and constraint-based analysis. We reconstructed
pcSecYeast, which accounts for cell metabolism and protein synthesis processes.
Detailed instruction can be found in Supplementary Method 2–6 and Supple-
mentary Figs. 9–13. The reconstruction is based on the latest yeast GEM,
Yeast8.3.517. Firstly, we refined all protein PTM precursors synthesis reactions in
the model, such as dolichol synthesis for N-glycosylation, GPI anchor synthesis for
GPI modification (Supplementary Data 1). Missing reactions in those precursor
synthesis pathways with corresponding GPRs and necessary transport reactions
were added into the model for gap-filling.

We split all reversible enzymatic reactions into forward and reverse reactions,
and split reactions catalyzed by isozymes into multiple identical reactions with
various isozymes to facilitate substrates and EC number annotation extraction steps
in further kcat match process. Besides that, we formulated protein synthesis
reactions for all proteins in the model. To facilitate the reconstruction process, the
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protein synthesis and secretion were divided into 12 different processes: protein
translation, protein translocation, ER N-glycosylation, disulfide bond formation,
ER O-glycosylation, GPI anchor transfer, COPII anterograde transport, COPI
retrograde transport, Golgi N-glycosylation, Golgi O-glycosylation, versatile
vesicular transport to destination compartment. Compared with other fine-grained
proteome constrained models, transcription was not included in pcSecYeast, as it
was shown that adding transcription does not impact model predictions due to the
strong linear correlation of transcription with translation63. While transcription
was not added in the model, both the energy cost of transcription and the cellular
RNA content were included in the biomass equation of pcSecYeast. Thus, adding
the transcription would drastically increase the model complexity and lower the
simulation efficiency without necessarily improving model predictive strength.
Furthermore, translation processes such as translation initiation, elongation, and
termination were lumped into one reaction since those reactions were also linearly
correlated and the amount of the energy and resources used in translation was the
main information to capture in the simulations. Protein-specific information
matrix (PSIM) and localization information for all proteins used in further protein
modification steps were downloaded from UniPort64 and the SGD65 database
(Supplementary Data 6). We formulated these processes into 72 template reactions.
Using the template reactions, we formulated protein synthesis reactions for all
proteins in the model. To represent the abundance of unpresented proteins that go
through ER, we added a dummy ER protein in the model which uses the same
composition as the protein in the biomass protein, and the PTM for the dummy ER
protein is calculated as the mean protein modification for proteins that pass
through the secretory pathway using the protein abundance from PaxDb22 and
PSIM information. Protein content in the biomass was used to represent protein
abundance for proteins excluded in the model. The ratio was rescaled from 1 in the
original GEM Yeast8 to a lower value 0.3, which was estimated based on the fact
that all proteins in the model taking up roughly 70% of the total proteome
according to the PaxDb database. Detailed model construction and constraints
coupling can be found in Supplementary Method 2–6. RAVEN2 toolbox66 and
COBRA toolbox67 were used in the reconstruction.

Model simulation for growth using glucose concentration as the constraint.
Since the specific growth rate is integrated into the coupling constraints, we
adopted a binary search method when we simulated growth. For each specific
growth rate, we sampled the glucose concentration until the minimal glucose
concentration that can sustain the growth was found. The glucose concentration
was used to calculate kinetics using the Michaelis–Menten equation where KM and
maximal uptake rate kcat of glucose transporters were collected from the
literature68–70. As for the glucose transporters which does not have any kcat values,
the Vmax data was used to convert to kcat values with the assumption that the
expression levels are comparable in the collected dataset since they expressed
transporter constructs under constitutive promoters in a yeast glucose-transporter
null-mutant24,69,71. The model was set with minimal media and the dummy
protein production was set as the objective. Due to the requirement of the linear
programming (LP) solver (SoPlex, https://soplex.zib.de), all constraints were
written in a LP file for solving in each simulation21,72. This method for adding
constraints is used in all following simulations unless otherwise stated.

Estimation of unit secretory cost and direct cost for secretory proteins. Unit
secretory cost of synthesizing about 500 proteins that localize to the cell membrane
or are secreted were estimated using the model. At a specific growth rate of 0.1 h−1,
we used pcSecYeast to produce a sequential small fraction production of those
proteins, respectively. The glucose uptake rate minimization was set as the
objective. Using the simulated glucose uptake rates and the production rates, we
could fit the linear equation to get the slope which is the unit secretory cost for each
protein. This cost stands for the energetic cost for synthesizing the protein, PTM,
sorting and even the related cost for the corresponding fraction of the catalytic
machineries in these processes.

Direct cost accounts for the energetic cost for synthesizing the amino acids,
bounded glycan precursors and enzyme bounded energetic molecules, which was
calculated with only the basic GEM constraints including the mass balance and
reaction bound, without any enzyme-related constraint. Since this simulation does
not require any extra constraint, we used the optimize function and default Gurobi
solver in COBRA toolbox67 rather than the SoPlex and LP file method.

Estimation of secretory cost for glucose transporters. Secretory cost specifies the
cost for utilizing each glucose transporter to sustain a given glucose uptake rate and
the corresponding growth rate, respectively. The secretory cost can be calculated as
the required abundance of the transporter multiplied by the unit secretory cost:

Secretory costi ¼ unit secretory costi � Ei

� � ¼ unit secretory costi �
Vglc;total

kcat;i � ½S�
S½ �þKM;i

ð1Þ

Analysis of gene expression versus protein unit secretory cost. Absolute
transcriptome data for three strains (AAC, MH34, and B184) with different

α-amylase production levels were used for the correlation analysis (Supplementary
Data 18)25. Pearson correlation coefficient was used to assess the correlation of unit
secretory costs with the expression levels.

Simulation of protein misfolding and accumulation. We used CPY as an
example to show how the model responds toward misfolded protein production.
CPY was expressed in the model with different levels from the native abundance
(native expression level) towards its 25-fold levels as reported in the literature32 by
constraining its translation flux. In order to identify the factor causing the accu-
mulation of misfolded protein in the ER, we performed the parameter sensitivity
analysis for ERAD capacity, ER volume, ER membrane space, total secretory
machinery capacity and retro-translocation complexes abundance, respectively.
Since the membrane space and the volume of proteins are positively correlated with
the protein weight73, ER membrane space and ER volume constraints can be
converted to proteome abundance constraints, which can be calculated from the
proteome data. Therefore, all these parameters can be constrained by an upper
limit on the total abundance of the corresponding proteins. In the meanwhile, we
changed the misfolding ratio constraint of CPY by coupling the flux of misfolding
reaction and the translation reaction of CPY. When misfolded protein was retained
in the ER, we used the multiple rounds reactions of binding Kar2 and Pdi1 to
reflect the occupancy of Kar1 and Pdi1 as reported2,32. The coefficient of this
reaction was used to represent the time for the retention. For simulations of the
combination of CPY expression levels and misfolding ratio, we used the binary
search as mentioned above to search for the maximum specific growth rate. The
accumulated CPY rate was obtained from the simulated flux under the maximum
specific growth rate condition. To reflect the CPY production as close to the in vivo
as possible, we adjusted the N-glycans attached to the N-glycosylation sites of
CPY74.

Expansion of pcSecYeast to recombinant protein specific models. We
expanded pcSecYeast to represent the recombinant protein production by adding
the production and secretion reactions using the same template reactions for the
native secretory proteins. The PTMs, amino acid sequences and leader sequences
were collected from the literature. Detailed information for those proteins and the
literature reference can be found in Supplementary Data 7.

Model simulation for recombinant protein production. To simulate recombinant
protein production, the model was constrained with a certain specific growth rate,
and then the recombinant protein production was maximized. SD-2×SCAA
medium was used in the simulations42. All constraints mentioned except the
specific parameters used in the parameter sensitivity analysis were added when
writing the LP file for solving by SoPlex (https://soplex.zib.de).

Machine learning for protein feature importance analysis towards the protein
production. Machine learning was integrated to score the importance of factors. In
this study, various factors (PTMs, amino acid compositions) were used as the input
features and the maximum recombinant protein production rate was used as the
target label. We split the created dataset into a training dataset and testing dataset
at the ratio of 80% and 20%, respectively. A random forest regressor with 10
estimators was used to train the model. Feature importance scores from the ran-
dom forest were computed by SHAP (SHapley Additive exPlanations)75. Python
(3.7.6) with SHAP (0.39.0), scikit-learn (0.23.2), pandas (1.1.3), SciPy (1.5.2),
NumPy (1.20.2) and Matplotlib (3.3.2) were used in the analysis and visualization.
Five-fold cross validation was performed.

Overexpression target prediction for recombinant protein overproduction.
Identification of overexpression targets for improving recombinant protein pro-
duction was performed using the concept of FSEOF43 but to identify the proteins
with increased expression during the enforcement of recombinant protein pro-
duction. To be noted here, original FSEOF searches for the candidate fluxes to be
amplified through scanning for those fluxes that increase with enforced product
formation flux under the objective function of maximizing biomass formation flux,
which is under the assumption that there is a tradeoff between growth and target
production. pcSecYeast is much more complex than the basic GEM and can better
represent the cell state, which the recombinant protein production does not always
increase with the decrease of growth. Besides that, there is metabolic state switch of
the fermentation ratio for energy production. Therefore, to eliminate growth and
metabolic state influence, we selected a small window (0.25 h−1-0.3 h−1) for this
analysis. In this window, we reduced the growth rate in uniform small intervals and
maximized the recombinant protein production rate to perform simulations. The
carbon flux towards biomass production was instead diverted to recombinant
protein production. As a result, the model can predict abundances for all native
proteins in each simulation. From all simulations, we related the abundance
changes for each native protein to the reduction in growth rate and the enforcing
increase in recombinant protein production rate. The native proteins with
amplificated expression accompanied increased recombinant protein production
were selected as initial potential overexpression targets. In order to reduce the
potential target number for experimentation, we used several cut-offs to rank the
priority for those predicted targets: 1) for proteins that always increase with the
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enforcement of the recombinant protein production with a Spearman correlation
score 1, the priority score was set to 1; 2) for proteins with priority score 1 and
showed 1.2-fold abundance change of the maximum recombinant protein pro-
duction state towards the maximum specific growth rate, the priority score was set
to 2; 3) for proteins with priority score 2 and showed a comparable difference
towards the reference PaxDb abundance, which represents the reservation state of
the protein abundance in the cell, the priority score was set to 3; 4) for proteins
with priority score 3 and were neither subunits of complexes nor contain paralogs,
the priority score was set to 4. Proteins with the priority score close to 0 in the
result indicate those proteins are not identified as overexpression targets. Targets
with higher priority scores should be prioritized for overexpression. Proteins with
priority score lower than 0 should be considered as downregulation targets. Based
on the criteria, we ranked the targets and generated annotated tables as result for all
tested eight recombinant proteins, respectively (Supplementary Data 8–15). For
plotting the common targets shared by all eight recombinant proteins analyzed in
this study, we only chose the priority score of 3 and 4 for the analysis. As for the
predicted overexpression targets for α-amylase overproduction, we grouped those
proteins based on their functions (Supplementary Fig.8a) and selected 18 proteins,
which covers most of the function and ranked with high priority score for further
validation (Supplementary Fig. 8).

Experimental validation. All strains and plasmids used in this study are listed in
Supplementary Table 2. Plasmids for gene overexpression were constructed by
insertion of the gene fragment, which was amplified from the yeast genome then
assembled with the expression vector pSPGM1 through Gibson assembly method.
The standard LiAc/SS DNA/PEG method was used for yeast transformation.

For strain constructions, yeast strains were grown in SD-URA medium at 30 °C
according to the auxotrophy of the cells. For α-amylase production in shake flasks,
yeast strains were cultured for 96 h at 200 rpm, 30 °C with an initial OD600 of 0.05
in the SD-2×SCAA medium containing 20 g L−1 glucose, 6.9 g L−1 yeast nitrogen
base without amino acids, 190 mg L−1 Arg, 400 mg L−1 Asp, 1,260 mg L−1 Glu,
130 mg L−1 Gly, 140 mg L−1 His, 290 mg L−1 Ile, 400 mg L−1 Leu, 440 mg L−1 Lys,
108 mg L−1 Met, 200 mg L−1 Phe, 220 mg L−1 Thr, 40 mg L−1 Trp, 52 mg L−1 Tyr,
380 mg L−1 Val, 1 g L−1 BSA, 5.4 g L−1 Na2HPO4 and 8.56 g L−1 NaH2PO4·H2O
(pH= 6.0)42.

The α-amylase activity was measured using the α-amylase assay kit (Megazyme)
with a commercial α-amylase from Aspergillus oryzae (Sigma-Aldrich) as the
standard. Samples were centrifuged for 10 min at 15,000 g, 4 °C and the
supernatant was used for extracellular α-amylase quantification.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Protein Specific Information Matrix (PSIM) information for all proteins in S. cerevisiae
was collected from literature and UniProt database. Proteome and transcriptome data
used in this study was collected from literature and PaxDb database. Enzyme turnover
numbers (kcat values) were collected from BRENDA database. Simulated costs and
predicted targets for recombinant protein overproduction are also provided in the
Supplementary Data. All data used in this study are included in Supplementary Data and
GitHub repository [https://github.com/SysBioChalmers/pcSecYeast]76. Intermediate
results are available in the Zenode [https://doi.org/10.5281/zenodo.6320643]77. Source
data are provided with this paper.

Code availability
To facilitate further usage, we provide all codes and detailed instruction in GitHub
repository [https://github.com/SysBioChalmers/pcSecYeast]. Descriptions of the code
can be found in the Supplementary Method 2–6. All codes to reproduce figures were also
included in the GitHub repository.
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