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Abstract: The antimicrobial peptide Leg1 (RIKTVTSFDLPALRFLKL) from chickpea legumin is active
against spoilage bacteria, yeast, and mold. The present study tested its effectiveness under food
storage conditions and examined options to obtain a food-grade agent. The minimum inhibitory
concentration (MIC) of Leg1 against E. coli (62.5 µM) proved stable over seven days at 20 ◦C or
4 ◦C. It was not influenced by reduced pH (5.0 vs. 6.8), which is relevant in food such as meat. An
incubation temperature of 20 ◦C vs. 37 ◦C reduced the MIC to 15.6/7.8 µM against E. coli/B. subtilis.
With a minimum bactericidal concentration in meat of 125/15.6 µM against E. coli/B. subtilis, Leg1 is
equivalently effective as nisin and 5000–82,000 times more active than sodium benzoate, potassium
sorbate, or sodium nitrite. Replacing the counter-ion trifluoroacetate derived from peptide synthesis
by the more natural alternatives acetate or chloride did not impair the activity of Leg1. As an
alternative to chemical synthesis, an optimized protocol for chymotryptic hydrolysis was developed,
increasing the yield from chickpea legumin by a factor of 30 compared to the standard procedure.
The present results indicate that food-grade Leg1 could possibly be applicable for food preservation.

Keywords: antimicrobial peptides; chickpea; chymotryptic hydrolysis; counter-ions; digestion
optimization; Leg1; meat

1. Introduction

Food-spoilage microorganisms are a major cause of food loss and waste. For example,
about 20% of the global meat produce is lost mainly as a consequence of microbial contami-
nation. Controlling the load of microorganisms in animal products is therefore an important
approach for reducing food waste [1]. Antimicrobial peptides (AMPs) may evolve into
an interesting new class of preservatives. They interact specifically with the bacterial
membrane leading to membrane disintegration and, consequently, to bacterial death [2].
Due to this general mechanism, AMPs often show broad-spectrum activity against a wide
range of bacteria including antibiotic-resistant strains [3]. In recent decades, an increasing
number of antimicrobial peptides has been identified. According to the Antimicrobial
Peptides Database (APD), 3257 AMPs have been listed from different sources including
some synthetic peptides: 2414 are derived from animals, 360 from plants, 365 from bacteria,
22 from fungi, eight from protists, and five from archaea. As to the most prominent effects,
83.67% of all identified peptides have antibacterial, 37.16% antifungal, 20.77% anti-candida,
5.86% antiviral, and 4.16% antiparasitic bioactivities (https://wangapd3.com/main.php,
accessed on 13 April 2021). To date, however, nisin (E 234) is the only peptide that has
been approved as food preservative in the European Union (Annex II of Regulation (EC)
1333/2008). Nisin is produced by Lactococcus lactis and contains several unusual amino
acids and thioether bridges. AMPs from food sources are of particular interest for food
preservation, because they can be considered as food-grade, safe ingredients. To date,
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most food-derived AMPs have been identified in milk and milk products, where they
are either naturally present or released from milk proteins by enzymatic hydrolysis or
fermentation [4–9]. Additionally, other animal proteins and, in particular, plant foods can
be interesting sources of bioactive peptides [10,11]. Recently, the antimicrobial peptide Leg1
(RIKTVTSFDLPALRFLKL) was identified in chymotrypsin hydrolysates from chickpea
legumin [12]. The peptide is active against a range of food pathogens, spoilage bacteria,
yeast, and mold [12,13]. Because of this broad activity and the peptide’s origin from a
common food, Leg1 could become a potential food preservative.

One possible constraint for the application of antimicrobial peptides in food can be
their limited chemical stability. Peptides can be cleaved by non-enzymatic hydrolysis
and proteolytic degradation [14,15]. Both reaction types are dependent on environmental
conditions, such as water activity, temperature, and pH value [16]. High non-enzymatic
proteolysis rates are mainly observed at low pH and/or high temperatures and are, there-
fore, of limited relevance for food storage [17]. Proteolytic degradation, in contrast, is
likely to occur during food processing and storage. For instance, several endogenous
peptidases in meat and fish are able to hydrolyze internal (endopeptidases) or terminal
peptide bonds (exopeptidases) [18]. Additionally, plant and bacterial proteases are used in
the meat industry to improve tenderization, which may influence the activity of peptide
preservatives [19]. Additionally, reactive amino acid side chains of the peptides can be
modified during the storage of meat, e.g., by oxidation or glycation, which may result in
changes of the peptide structure and function [20,21].

For further assessment of whether Leg1 is applicable as food preservative, the present
study tested its stability in solution and its stability and activity in meat. An additional goal
of our experiments was to optimize the yield of Leg1 and its variant Leg2 (RIKTVTSFDL-
PALRWLKL), which differs only in one amino acid, from chymotryptic hydrolysates
of chickpea.

2. Materials and Methods
2.1. Peptide Synthesis

The peptides Leg1 (RIKTVTSFDLPALRFLKL), Leg2 (RIKTVTSFDLPALRWLKL), and
QILQWQ were commercially synthesized by ChinaPeptides Co. (Shanghai, China) us-
ing solid phase synthesis and delivered both as trifluoroacetate (TFA−) and acetate salt
lyophilized powders (≥95%). The peptides were stored at −20 ◦C and dissolved in sterile
water at a concentration of 2 mM. The stock solutions were diluted to the given con-
centrations with sterile water prior to use. Purity, mass, and sequence of the peptides
were verified by enhanced mass spectrum full scan and enhanced product ion (EPI) scan
measurements with a UHPLC system (Ultimate 3000 RS, Thermo Fisher, Idstein, Ger-
many) coupled to a TripleQuad 6500+ mass spectrometer (AB Sciex, Darmstadt, Germany)
equipped with Duospray Ion Source [12].

2.2. Bacterial Strains and Culture Conditions

Escherichia (E.) coli NEB 5α was obtained from New England Biolabs (Ipswich, MA,
USA) and Bacillus (B.) subtilis ATCC 6051 from the Leibniz Institute DSZM-German Collec-
tion of Microorganisms and Cell Cultures (Braunschweig, Germany). Both bacterial strains
were cultured in nutrient broth (8 g/L, Carl Roth, Karlsruhe, Germany) at 37 ◦C for 24 h
under shaking in a temperature-controlled incubator shaker (Innova42R New Brunswick,
New York, NY, USA) as described before [12].

2.3. Stability Test in Solution

Aqueous solutions containing 31.3 µM, 62.5 µM, 125 µM, 250 µM, and 500 µM of
Leg1/Leg2 were stored in triplicates for 0, 1, 3, 7, 14, 21, and 28 days at 4 ◦C. In a second
test set, the analogous storage experiment was carried out at room temperature (20 ◦C).
Afterwards, the residual antimicrobial activity of the peptides was analyzed by a colorimet-
ric microdilution assay containing peptide solution, E. coli suspension (1–5 × 106 cfu/mL)
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and resazurin (6 mg/mL). After incubation for 16 h, the 96-well plate was measured at
570 nm [12]. For comparison, the stability of the approved preservatives nisin from Lac-
tococcus lactis (62.5–1000 µM, Sigma-Aldrich, Taufkirchen, Germany), sodium benzoate
(20,000–640,000 µM, ≥99.5%, Sigma-Aldrich), potassium sorbate (10,000–320,000 µM, 99%,
Fisher Scientific, Schwerte, Germany), and sodium nitrite (5000–160,000 µM, ≥99%, Sigma-
Aldrich) were dissolved in sterile water and tested in the same way. The antimicrobial
activity was determined in triplicates and expressed by the minimal inhibitory concentra-
tion (MIC). The MIC was defined as the lowest concentration inhibiting bacterial growth.
Ampicillin (25 µM; ampicillin sodium salt, Carl Roth) was used as positive and water as
negative control.

To exclude possible interference with the resazurin assay, e.g., by antioxidative activity
of the test substances, the antimicrobial activity of the peptides has been verified by a
second independent microdilution assay recording bacterial growth at 600 nm [12].

2.4. Antimicrobial Assays at pH 5.0, pH 6.8, 20 ◦C, and 37 ◦C

The antimicrobial activity of Leg1 and Leg2 was tested at different pH (6.8 and 5.0) and
temperatures (37 ◦C and 20 ◦C) in the resazurin assay as described above. While pH 6.8 was
used according to the previously established standard protocol [12], pH 5.0 was the lowest
pH at which bacterial growth could be observed. It was adjusted using 1 N HCl in all
solutions including nutrient broth, water, and peptide solutions. Additionally, the resazurin
assay was performed at 37 ◦C providing optimal bacterial growth and at 20 ◦C, which was
the lowest temperature at which any growth was observed. Leg1 and Leg2 were tested in a
concentration range between 0.5 µM and 125 µM in two-fold dilutions. For comparison, the
approved preservatives nisin (0.5–250 µM), sodium benzoate (5000–80,000 µM), potassium
sorbate (5000–160,000 µM), and sodium nitrite (2500–80,000 µM) were tested in the same
way. Ampicillin (25 µM) was used as positive and sterile water as negative control. The
MIC values were determined in triplicate.

2.5. Stability of Leg1 on Meat

To test the activity of Leg1 in a meat matrix and its stability during the storage of
meat, pork from a local supermarket was cut into pieces (approx. 2 × 2 cm2). Four
pieces were put into a petri dish and used immediately for further experiments. The petri
dishes were prepared in triplicate. First, the meat was covered with the test solutions
(10 µL each) in different concentrations. For comparison, the approved preservatives nisin,
sodium benzoate, potassium sorbate, and sodium nitrite were tested in the same way
as Leg1. After 2 min, the bacterial suspension (1–5 × 105 cfu/mL) was pipetted onto
the meat. After another 2 min at 20 ◦C, the meat was incubated at 37 ◦C for 16 h and
then swabbed by sterile compact dry swabs, which were transferred into nutrient broth
according to the manufacturer’s instruction (Carl Roth). The swabs were then transferred
to agar plates, which were incubated at 37 ◦C until bacterial colonies were visible. When no
growth was detectable on the agar plates after 16 h of incubation, the effect was interpreted
as bactericidal activity, which was expressed as the minimal bactericidal concentration
(MBC) on meat. The MBCs determined by Heymich et al., in solution [12] and at higher
concentrations, were tested using twofold dilution steps. Thus, concentrations of 62.5–500
µM Leg1, 62.5–500 µM nisin, 320,000–1,280,000 µM sodium benzoate, 320,000–1,280,000
µM potassium sorbate, and 160,000–1,280,000 µM sodium nitrite were used against E. coli.
The tests against B. subtilis were carried out with 7.8–500 µM Leg1, 7.8–500 µM nisin,
160,000–1,280,000 µM sodium benzoate, 640,000–1,280,000 µM potassium sorbate, and
80,000–1,280,000 µM sodium nitrite. Ampicillin (25 µM) was used as positive and water as
negative control. The bactericidal activity on meat was analyzed in triplicate.

2.6. Antimicrobial Activity of Leg1 Using Different Counter-Ions

The antimicrobial activity of Leg1 bound to three different counter-ions, TFA−, acetate
and chloride, was tested against E. coli and B. subtilis. The TFA− salt and the acetate
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salt of Leg1 were obtained from ChinaPeptides Co. The chloride salt was generated by
exchanging the TFA− counter-ion in aqueous solution according to Sikora et al. [22]. The
exchange was performed in 0.1 M HCl solution. The procedure including dissolution
in HCl, incubation for 5 min and lyophilization was repeated four times. The peptide
solutions and dilutions were prepared as described in Section 2.1. The antimicrobial activity
of the peptide salts was tested using two antimicrobial assays, the inhibition curve assay
and the resazurin assay according to Heymich et al. [12] at concentration ranges from
7.8 µM to 1000 µM. Ampicillin (25 µM) was used as positive and water as negative control.
Briefly, 50 µL of the bacterial solution (1–5 × 105 cfu/mL) was added to the test solution
and the OD at 600 nm was recorded. The resazurin assay was carried out as described in
Section 2.3. Additionally, the resazurin assay was performed for sodium trifluoroacetate,
sodium chloride, and sodium acetate using the same concentration ranges. All MIC values
of both assays were determined in triplicates.

2.7. Relative Quantification of Leg1 and Leg2 by UHPLC–MS/MS-sMRM

Relative quantification of Leg1 and Leg2 was achieved using a UHPLC system Ulti-
mate 3000 RS coupled to a TripleQuad 6500+ mass spectrometer equipped with a Duospray
Ion Source. For liquid chromatography, a C18 column (YMC Triart; 500 µm × 100 mm,
3 µm, 12 nm, 1/16”) was used at 35 ◦C with a flow rate of 30 µL/min. The sample (5 µL)
was injected in full loop and the cut-off valve was set to 2 min and 55 min. A gradient of
0.1% formic acid (FA) as eluent A and 0.1% FA in acetonitrile (ACN) containing 2% water
as eluent B (−15 min 2% B, 5 min 2% B, 55 min 43.4% B, 55.5 min 97% B, and 65 min 97%
B) was used to separate the peptides. The Turbo Spray Ion Source was operated at 350 ◦C
with 5000 V. The curtain gas was set to 40 psig, nebulizer gas to 40 psig, heating gas to 60
psi, de-clustering potential to 80 V, ion release delay to 30 V, and ion release width to 15 V.
The detection window for the scheduled multiple reaction monitoring (sMRM) method
was set to 300 s and Q1 mass (Da), Q3 mass (Da), retention time (min), and collision energy
(V) were defined for every transition. The software Skyline 20.1.0.76 (MacCoss Lab) was
used to create sMRM methods including precursor ions charged 1 to 4 and transitions
charged 1 to 4 containing b/y ion types. The mass range was set between 200 m/z and
1500 m/z with a mass tolerance of 0.055 m/z. The milk peptide QILQWQ, which is not
present in chickpea, was used as internal standard. To identify the quantifier and two
qualifiers for the peptides, direct infusion, EPI scans and sMRM measurements of the
synthesized peptides were performed. The data were evaluated using the software Analyst
(version 1.6.3, AB Sciex, Darmstadt, Germany) and Skyline. The final parameters of the
method are shown in Table 1. Representative sMRM chromatograms are included in the
Supplementary Materials, Figure S1).

Table 1. Relative quantification of Leg1 and Leg2 in chickpea chymotryptic hydrolysates by ultrahigh performance-tandem
mass spectrometry in scheduled multiple reaction monitoring mode (UHPLC–MS/MS-sMRM). The analytical parameters
of the method are displayed. QILQWQ was used as internal standard. The net charge is given by superscript numbers
(1+,2+,3+,4+).

Peptide Sequence Theoretical
Mass (Da)

RT 1

(min)
Precursor
Ion (m/z)

Quantifier
Ion (m/z)

Collision
Energy (eV) Confirmation Ions (m/z)

RIKTVTSFDLPALRFLKL
(Leg1) 2118.59 36.1 530.334+ 957.021+ 30.4 710.422+ 581.342+

RIKTVTSFDLPALRWLKL
(Leg2) 2157.62 36.7 540.084+ 729.932+ 27.0 686.412+ 780.452+

QILQWQ 814.94 25.2 408.222+ 242.163+ 22.6 333.162+ 355.231+

1 Retention time.

2.8. Optimization of Digestion Parameters

To maximize the yield of Leg1 and Leg2 released from the chickpea globulin fraction by
chymotryptic hydrolysis, the digestion parameters enzyme/protein ratio, incubation time,
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temperature, protein pretreatment (denaturation/reduction/alkylation), and digestion
stop were optimized in respect to the previously developed standard protocol [12]. The
standard protocol included an enzyme/protein ratio of 1:50, 16 h of incubation at 25 ◦C,
stopping of the digestion with FA, pretreatment by denaturation with urea, reduction
of the disulfide bridges with dithiothreitol (DTT), and alkylation using iodoacetamide
(IAA). Presently, each digestion parameter was modified separately while maintaining the
other parameters identical to the standard protocol. Enzyme/protein ratios of 1:15, 1:50,
and 1:100, digestion times of 4, 16, and 24 h, and temperatures of 25 ◦C and 37 ◦C were
compared with regard to the yield of Leg1 and Leg2. The digestion was either stopped with
FA, at 95 ◦C, or not at all. The standard protocol was repeated using urea as denaturation
agent, urea combined with DTT and IAA, digestion buffer, and digestion buffer combined
with DTT and IAA. The samples were analyzed by UHPLC–MS/MS-sMRM in triplicate.
The standard peptide was added before MS measurement with a final concentration of
2.716 × 10−4 µg/µL. The peak areas were quantified with MultiQuant (AB Sciex); an index
(analyte peak area/standard peak area) was created for each single measurement and each
analyte. The results were expressed as percentages in comparison to the parameters used
in the standard protocol [12], which were set to 100%. All experiments were performed
in triplicate.

2.9. Statistical Analysis

The statistical analysis was conducted using the software GraphPad PRISM 8. For
three points of comparison, one-way analysis of variance (ANOVA) with Turkey’s Honest
Significant Different (HSD) test was used. For pairwise comparison (95% confidence
interval) and for the comparison of two groups, a two-tailed, unpaired t-test was performed.
The results are shown as the mean of triplicates ± standard deviation. The levels of
significance were * p < 0.05 and ** p < 0.01.

3. Results and Discussion

The antimicrobial peptide Leg1 (RIKTVTSFDLPALRFLKL) derived from chickpea
legumin is active against microorganisms, such as bacteria, yeast, and mold, which cause
food spoilage or food infection [12,13]. To further assess whether Leg1 could be a po-
tential food preservative, its stability was tested in solution and in a food matrix. Leg2
(RIKTVTSFDLPALRWLKL), which is also obtained from chickpea legumin, is a variant
that differs only in one amino acid from Leg1 (F→W). The variation did not change the
antimicrobial activity as demonstrated by identical MIC values of Leg1 and Leg2 against
each of 16 previously tested bacterial strains [12]. Therefore, the present study focused on
Leg1. However, some of the experiments were also carried out with Leg2.

3.1. Stability of Leg1 in Solution

After storing solutions of Leg1 for 0, 1, 3, 7, 14, 21, and 28 days at 20 ◦C or 4 ◦C, the
antimicrobial activity was tested by the resazurin assay against E. coli. The MIC values
were determined for each incubation time. At both temperatures, the MIC of 62.5 µM was
stable during storage for up to seven days. Only after 14, 21, and 28 days did the MIC
value increase to 125 µM (Table 2). For comparison, Leg2 and the approved preservatives
nisin (125 µM), sodium benzoate (40,000 µM), potassium sorbate (20,000 µM), and sodium
nitrite (10,000 µM) were tested in the same way. Leg2 showed the same behavior as Leg1,
whereas the other preservatives were stable for the entire incubation time.

During short and long-term storage, proteinogenic amino acids may be modified by
non-enzymatic reactions or proteolysis [23]. These reactions are strongly dependent on the
amino acid composition [24]. In a pure aqueous solution, for example, oxidation of lysine
or tryptophan or dehydration of serine or threonine may occur. Since Leg1/Leg2 remained
stable for at least seven days, it can be concluded that modifications of reactive amino acids
during storage at room temperature are not likely or that possible modifications do not
affect the antimicrobial activity. Previous studies confirmed a high stability of antimicrobial
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peptides, even at higher temperatures. Baindara et al. observed that the antimicrobial
activity of a peptide remained stable during incubation for 30 min at up to 100 ◦C, but
reported significant reduction at 121 ◦C [25]. Stability up to 100 ◦C was also described
for the peptide HKPLP by Sun et al. [26] and for 15 different peptides by Ebbensgaard
et al. [27]. Additionally, Georgalaki et al. reported thermal stability of the food-grade
antibiotic macedocin during short-term heating, long-term incubation for up to four weeks
at 30 ◦C, and even full activity after autoclaving at 121 ◦C for 20 min [28].

Table 2. Stability of Leg1 during storage at 20 ◦C for 0–28 days. The residual antimicrobial activity
against E. coli was measured by the resazurin assay and is expressed as minimal inhibitory concentra-
tion (MIC). For comparison, the stability of the variant Leg2 and the approved preservatives nisin,
sodium benzoate, potassium sorbate, and sodium nitrite were analyzed in the same way. The same
results were obtained during storage at 4 ◦C for 0–28 days.

MIC (µM) at Day(s)

0 1 3 7 14 21 28

Leg1 62.5 62.5 62.5 62.5 125 125 125
Leg2 62.5 62.5 62.5 62.5 125 125 125
Nisin 125 125 125 125 125 125 125

Sodium benzoate 40,000 40,000 40,000 40,000 40,000 40,000 40,000
Potassium sorbate 20,000 20,000 20,000 20,000 20,000 20,000 20,000

Sodium nitrite 10,000 10,000 10,000 10,000 10,000 10,000 10,000

The stability of peptides is dependent on the individual peptide sequence. The present
results indicate that aqueous solutions of Leg1 can be stored before use for up to four weeks
at room temperature or 4 ◦C while the MIC will only increase by one dilution step.

3.2. MIC of Leg1 Dependent on pH and Temperature

The antimicrobial activity of Leg1 was analyzed at pH 6.8/pH 5.0 and at 37 ◦C/20
◦C to examine if differences in pH and temperature can affect the activity. In previous
studies, the activity of Leg1/Leg2 was analyzed at 37 ◦C and pH 6.8, which are optimal
growing conditions for the tested bacteria. However, food is usually stored at or below
room temperature (20–22 ◦C) and the pH value in foods is often slightly acidic. In meat, pH
values between 5 and 7 are common. Table 3 displays the results for the different incubation
temperatures for Leg 1 and, for comparison, Leg2 and the approved preservatives nisin,
sodium benzoate, potassium sorbate, and sodium nitrite. The MIC values of Leg1 against
E. coli and B. subtilis decreased twofold at 20 ◦C compared to the temperature of 37 ◦C.
Hence, for foods stored at or below room temperature lower peptide concentrations are
necessary to inhibit bacterial growth. Lower MICs at 20 ◦C were also observed for Leg2
and the approved preservatives. The MIC of Leg2 against B. subtilis decreased fourfold
to 4.0 µM. In our experimental setup, possible effects at temperatures below 20 ◦C could
not be determined because no growth of E. coli and B. subtilis was detectable at lower
temperatures, even in the absence of preservatives. Therefore, additional experiments
are required to test the antimicrobial activity of Leg1 against psychrophilic bacteria at
refrigeration temperatures.

Shifting the pH to 5.0 did not change the activity of Leg1 indicating that the peptide is
also active at slightly acidic pH (Table 4). Similar results were obtained for Leg2 and nisin.
The MIC values of the approved preservatives sodium benzoate and potassium sorbate
were very high at pH 6.8 and did not change at pH 5.0. For both compounds, an activity
optimum below pH 5.0 was reported [29]. The MIC of sodium nitrite at pH 5.0 was more
than five times (E. coli) and 16 times (B. subtilis) lower compared to MICs under optimal
growth conditions indicating its improved activity at pH 5.0. In the present experiments,
the pH test range was also limited by the low growth rate of both test strains in a more
acidic environment so that further experiments are required using acid-tolerant bacteria.
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Table 3. Antimicrobial activity of Leg1 against E. coli and B. subtilis at different temperatures
expressed as minimal inhibitory concentration (MIC). For comparison, the variant Leg2 and the
approved preservatives nisin, sodium benzoate, potassium sorbate, and sodium nitrite were tested
in the same way.

MIC in µM (mg/mL) at Temperatures

37 ◦C 20 ◦C 37 ◦C 20 ◦C

E. coli B. subtilis

Leg1 62.5 (0.13) 15.6 (0.03) 15.6 (0.03) 7.8 (0.02)
Leg2 62.5 (0.13) 15.6 (0.03) 15.6 (0.03) 4.0 (0.01)
Nisin 125 (0.42) 15.6 (0.05) 7.81 (0.03) 1.0 (0.004)

Sodium benzoate 40,000 (5.8) 20,000 (2.9) 80,000 (11.5) 10,000 (1.5)
Potassium sorbate 20,000 (3.0) 20,000 (3.0) 160,000 (24.0) 20,000 (3.0)

Sodium nitrite 10,000 (0.68) 20,000 (1.36) 40,000 (2.76) 20,000 (1.36)

Table 4. Antimicrobial activity of Leg1 against E. coli and B. subtilis at different pH values expressed
as minimal inhibitory concentration (MIC). For comparison, the variant Leg2 and the approved
preservatives nisin, sodium benzoate, potassium sorbate, and sodium nitrite were tested in the
same way.

MIC in µM (mg/mL) at pH

6.8 5.0 6.8 5.0

E. coli B. subtilis

Leg1 62.5 (0.13) 62.5 (0.13) 15.6 (0.03) 15.6 (0.03))
Leg2 62.5 (0.13) 62.5 (0.13) 15.6 (0.03) 15.6 (0.03)
Nisin 125 (0.42) 125 (0.42) 7.81 (0.03) 7.81 (0.03))

Sodium benzoate 40,000 (5.8) 40,000 (5.8)) 40,000 (5.8) 40,000 (5.8)
Potassium sorbate 40,000 (6.0) 40,000 (6.0) 80,000 (12.0) 80,000 (12.0)

Sodium nitrite 40,000 (2.76) <2500 40,000 (2.76) <2500

Leg1, Leg2, and nisin are highly active in a pH range of 5.0–6.8. Sodium benzoate
and potassium sorbate are usually applied at more acidic pH values below 5 and sodium
nitrite at pH 5. Therefore, antimicrobial peptides could meet the demand for preservatives,
applicable for neutral and slightly acidic foods. In particular, Leg 1 showed high activity in
the pH range most relevant for meat (pH 5–7).

3.3. Bactericidal Activity of Leg1 on Meat

Leg1 proved to be stable during storage in aqueous solution. In contact with food,
however, additional degradation reactions could occur, such as enzymatic proteolysis by
food-derived proteases. Therefore, the bactericidal activity of the test substances was also
assessed under food-storage conditions using routine test methods for foodstuffs. For this
purpose, raw meat (pork) was pretreated with Leg1 and then inoculated with E. coli or B.
subtilis. After 16 h at 37 ◦C, the bactericidal activity was measured. The MBCs of Leg1 on
meat were 125 µM and 15.6 µM for E. coli and B. subtilis, respectively (Table 5), and thus
equal to the MBCs observed in a previous microdilution assay [12]. This implies that meat
constituents do not inhibit the activity of Leg1.

The MBCs of the approved preservatives nisin, sodium benzoate, potassium sorbate,
and sodium nitrite were tested on meat in the same way. Nisin was equally effective as
Leg1. The MBC values of sodium benzoate, potassium sorbate, and sodium nitrite on meat,
however, ranged between 320,000 and 1,280,000 µM and exceeded the MBC in solution
indicating a lower activity under the conditions of meat storage. Compared to Leg1, the
MBCs of the conventional chemical preservatives were at least 2500 times higher. Despite
the low pH value of meat (about 5.6) and the presence of proteases, Leg1 demonstrated
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high antimicrobial activity under the conditions of meat storage and clearly outperformed
the efficacy of the approved chemical preservatives in this matrix.

Table 5. Bactericidal activity of Leg1 against E. coli and B. subtilis on meat expressed as minimal bac-
tericidal concentration (MBC). For comparison, the approved preservatives nisin, sodium benzoate,
potassium sorbate, and sodium nitrite were tested in the same way.

MBC in µM (mg/mL)

E. coli B. subtilis

Leg1 125 (0.26) 15.6 (0.03)
Nisin 125 (0.42) 15.6 (0.052)

Sodium benzoate 1,280,000 (184.0) 640,000 (92.0)
Potassium sorbate 640,000 (96.0) 1,280,000 (192.0)

Sodium nitrite 640,000 (44.10) 320,000 (22.08)

3.4. Influence of the Counter-Ion on the Antimicrobial Activity of Leg1

For the previous experiments, Leg1 was commercially synthesized as TFA− salt. This
is common in solid phase synthesis, because TFA is used for cleavage from the solid
phase (resin) and is a component in the mobile phase for peptide purification by liquid
chromatography. TFA is known to be cytotoxic by inhibiting cell proliferation and, therefore,
could impact bacterial growth. Additionally, it could affect the secondary structure of
peptides, which may be relevant for interaction with the bacterial membranes [30]. Since
the unnatural counter-ion TFA− is undesirable for the application in food, we assessed
whether the observed antimicrobial activity of Leg1 relies on the counter-ion TFA−. For
this purpose, Leg1 peptides prepared with the counter-ions TFA−, acetate, and chloride
were subjected to the antimicrobial assay. Table 6 lists the MICs obtained in the resazurin
assay and Figure 1 displays the bacterial growth curves. The MIC values were identical in
the case of all three counter-ions, implying that TFA− in the peptides has no significant
impact on the antimicrobial strength and can be replaced by natural counter-ions. This is in
accordance with the results of Greber et al. for short cationic lipopeptides [31]. In contrast,
Sikora et al. described divergent MIC values of AMPs depending on their counter-ions
and recommended the testing of peptides with different counter-ions individually [30].
Castiglia et al. did not observe any influence of acetate and chloride on MICs, but reported
a better solubility of peptide chlorides [32].

Table 6. Antimicrobial activity expressed as minimal inhibitory concentration (MIC) of Leg1 with
trifluoroacetate (TFA−), acetate, and chloride as counter-ions against E. coli and B. subtilis.

Counter-Ion
MIC (µM)

E. coli B. subtilis

TFA− 62.5 15.6
acetate 62.5 15.6

chloride 62.5 15.6

In accordance with the present results, the sodium salts of TFA, acetate, and chloride
did not show any antimicrobial effects in concentrations up to 1000 µM (Supplementary
Materials, Table S1) confirming that the counter-ion has no influence on the antimicrobial
activity of Leg1. Hence, the generation of Leg1 as food-grade chloride or acetate is possible
without losing activity. The majority of peptide pharmaceuticals are manufactured in
high quantities by chemical synthesis. This method is preferably employed for small to
medium-sized peptides [33].
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3.5. Optimization of the Chymotryptic Release of Leg1 and Leg2 from Chickpea Storage Protein

As an alternative to synthesis, Leg1 could also be obtained from chickpea hydrolysates.
The process should aim for a maximal yield avoiding, however, unnatural additives to
improve the hydrolysis efficiency. Using chickpea protein as raw material, Leg1 and Leg2
are released in parallel from two different legumin variants. The present study optimized
different parameters of the chymotryptic digestion such as enzyme/protein ratio, time,
temperature, stopping of the digestion, and digestion pretreatments compared to the
standard protocol [12]. The relative yields of Leg1 and Leg2 were analyzed by UHPLC–
MS/MS in sMRM mode. The analytical parameters including precursor ions, quantifiers,
qualifiers, retention times of Leg1, Leg2 and the internal standard are summarized in
Table 1. In general, the results for Leg1 and Leg2 were very similar, but in some cases
significant differences between the release behaviors of both peptides were observed
(Figure 2).

Foods 2021, 10, x FOR PEER REVIEW 10 of 15 
 

 

Figure 1. Inhibition curves of Leg1 against the growth of E. coli and B. subtilis over 16 h with different counter-ions: (a,b) 
trifluoroacetate (TFA–), (c,d) acetate, and (e,f) chloride. As controls, 25 µM ampicillin (positive control, +) and water (neg-
ative control, −) were used. 

3.5. Optimization of the Chymotryptic Release of Leg1 and Leg2 from Chickpea Storage Protein 
As an alternative to synthesis, Leg1 could also be obtained from chickpea hydroly-

sates. The process should aim for a maximal yield avoiding, however, unnatural additives 
to improve the hydrolysis efficiency. Using chickpea protein as raw material, Leg1 and 
Leg2 are released in parallel from two different legumin variants. The present study opti-
mized different parameters of the chymotryptic digestion such as enzyme/protein ratio, 
time, temperature, stopping of the digestion, and digestion pretreatments compared to 
the standard protocol [12]. The relative yields of Leg1 and Leg2 were analyzed by 
UHPLC–MS/MS in sMRM mode. The analytical parameters including precursor ions, 
quantifiers, qualifiers, retention times of Leg1, Leg2 and the internal standard are sum-
marized in Table 1. In general, the results for Leg1 and Leg2 were very similar, but in 
some cases significant differences between the release behaviors of both peptides were 
observed (Figure 2).  

 

(a, 1) 

 

(a, 2) 

 

(b, 1) 

 

(b, 2) 

Figure 2. Cont.



Foods 2021, 10, 1192 11 of 15

Foods 2021, 10, x FOR PEER REVIEW 11 of 15 
 

 

 

(c, 1) 

 

(c, 2) 

 

(d, 1)  

 

(d, 2)  

 

(e, 1) 

 

 (e, 2)  

  
Figure 2. Cont.



Foods 2021, 10, 1192 12 of 15

Foods 2021, 10, x FOR PEER REVIEW 12 of 15 
 

 

 

(f, 1) 

 

(f, 2) 

Figure 2. Optimization of the chymotryptic release of (left lane, 1) Leg1 and (right lane, 2) Leg2 from chickpea legumin. 
The following parameters were tested: (a) enzyme/protein ratio, (b) incubation time, (c) incubation temperature, (d) di-
gestion stop (FA, formic acid), (e) digestion additives (DTT, dithiothreitol; IAA, iodoacetamide; DB, digestion buffer). (f) 
Comparison of the optimized digestion protocol with the standard protocol. The amounts of Leg1 and Leg2 were analyzed 
by ultrahigh performance-tandem mass spectrometry in scheduled multiple reaction monitoring mode (UHPLC–MS/MS-
sMRM) and the results are shown as the index (analyte peak area/standard peak area) mean of triplicates ± standard 
deviation in percent compared to the standard protocol (Ctl). The levels of significance were ns, non-significant, * p < 0.05, 
** p < 0.01. 

Besides the enzyme/protein ratio of 1:50 used in the previously developed standard 
protocol [12], higher (1:15) and lower (1:100) ratios were tested, but resulted in smaller or 
unchanged yields of Leg1 and Leg2. Reducing the incubation time (4 h vs. 16 h) increased 
the yield of Leg1 more than tenfold. The twofold increase observed for Leg2 release was, 
however, not significant. In contrast, extending the incubation time to 24 h did not change 
the yield. Both peptides possess missed cleavage sites at the C-termini of phenylalanine 
and tryptophan. In the case of Leg1, longer incubation times with chymotrypsin would 
therefore lead to the peptide fragments RIKTVTSF, DLPALRF, and LKL. Thus, it can be 
concluded that further degradation of the peptides Leg1/Leg2 during longer digestion pe-
riods overcompensates for their ongoing formation. Increasing the temperature from 25 
°C to 37 °C reduced the release of Leg1 and Leg2. This is in accordance with the manufac-
turer`s guidelines for chymotrypsin. Its temperature optimum is 25 °C, in contrast to most 
proteases, which possess an optimal operation temperature of 37 °C. 

In the standard protocol, the digestion stops after the addition of FA [12]. As an al-
ternative, the hydrolysis could be terminated by enzyme inactivation at 95 °C. Further-
more, the necessity for stopping the hydrolysis was also examined. Interestingly, the ter-
mination of hydrolysis influenced the release of Leg1 and Leg2 differently. Whereas the 
heat impact considerably increased the yield of Leg2, no significant change was observed 
for Leg1 after heating. Unterminated hydrolysis, on the other hand, resulted in a lower 
yield of Leg1. This observation indicates that Leg1 and Leg2 may be further degraded 
during prolonged proteolysis. Despite the significant rise in generated Leg2 after short-
term heating at 95 °C, stopping the digestion by FA was better reproducible, so that we 
did not change the standard protocol in this respect. Besides, high temperatures may pro-
mote non-enzymatic and thermal peptide degradation. 

Prior to digestion, the standard protocol used for the comprehensive monitoring of 
the peptide profile in chickpea hydrolysates included reduction and alkylation steps to 
achieve high sequence coverage [12]. Protein denaturation by urea and DTT and further 
stabilization of the denatured protein by alkylation of reduced cysteine residues with IAA 
improves the accessibility of the proteins to chymotrypsin. In the course of varying the 
parameters to optimize peptide generation, chymotryptic hydrolysis was carried out 
without reduction/alkylation and without urea denaturation. In contrast to expectations, 
the yield of Leg1 and Leg2 increased by a factor of 20–100 when the protein extract was 

Figure 2. Optimization of the chymotryptic release of (left lane, 1) Leg1 and (right lane, 2) Leg2 from chickpea legumin.
The following parameters were tested: (a) enzyme/protein ratio, (b) incubation time, (c) incubation temperature, (d)
digestion stop (FA, formic acid), (e) digestion additives (DTT, dithiothreitol; IAA, iodoacetamide; DB, digestion buffer). (f)
Comparison of the optimized digestion protocol with the standard protocol. The amounts of Leg1 and Leg2 were analyzed
by ultrahigh performance-tandem mass spectrometry in scheduled multiple reaction monitoring mode (UHPLC–MS/MS-
sMRM) and the results are shown as the index (analyte peak area/standard peak area) mean of triplicates ± standard
deviation in percent compared to the standard protocol (Ctl). The levels of significance were ns, non-significant, * p < 0.05,
** p < 0.01.

Besides the enzyme/protein ratio of 1:50 used in the previously developed standard
protocol [12], higher (1:15) and lower (1:100) ratios were tested, but resulted in smaller or
unchanged yields of Leg1 and Leg2. Reducing the incubation time (4 h vs. 16 h) increased
the yield of Leg1 more than tenfold. The twofold increase observed for Leg2 release was,
however, not significant. In contrast, extending the incubation time to 24 h did not change
the yield. Both peptides possess missed cleavage sites at the C-termini of phenylalanine
and tryptophan. In the case of Leg1, longer incubation times with chymotrypsin would
therefore lead to the peptide fragments RIKTVTSF, DLPALRF, and LKL. Thus, it can be
concluded that further degradation of the peptides Leg1/Leg2 during longer digestion
periods overcompensates for their ongoing formation. Increasing the temperature from
25 ◦C to 37 ◦C reduced the release of Leg1 and Leg2. This is in accordance with the
manufacturer‘s guidelines for chymotrypsin. Its temperature optimum is 25 ◦C, in contrast
to most proteases, which possess an optimal operation temperature of 37 ◦C.

In the standard protocol, the digestion stops after the addition of FA [12]. As an alter-
native, the hydrolysis could be terminated by enzyme inactivation at 95 ◦C. Furthermore,
the necessity for stopping the hydrolysis was also examined. Interestingly, the termination
of hydrolysis influenced the release of Leg1 and Leg2 differently. Whereas the heat impact
considerably increased the yield of Leg2, no significant change was observed for Leg1 after
heating. Unterminated hydrolysis, on the other hand, resulted in a lower yield of Leg1.
This observation indicates that Leg1 and Leg2 may be further degraded during prolonged
proteolysis. Despite the significant rise in generated Leg2 after short-term heating at 95
◦C, stopping the digestion by FA was better reproducible, so that we did not change the
standard protocol in this respect. Besides, high temperatures may promote non-enzymatic
and thermal peptide degradation.

Prior to digestion, the standard protocol used for the comprehensive monitoring of
the peptide profile in chickpea hydrolysates included reduction and alkylation steps to
achieve high sequence coverage [12]. Protein denaturation by urea and DTT and further
stabilization of the denatured protein by alkylation of reduced cysteine residues with
IAA improves the accessibility of the proteins to chymotrypsin. In the course of varying
the parameters to optimize peptide generation, chymotryptic hydrolysis was carried out
without reduction/alkylation and without urea denaturation. In contrast to expectations,
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the yield of Leg1 and Leg2 increased by a factor of 20–100 when the protein extract was
dissolved in plain digestion buffer. Thus, a simplified digestion protocol is suggested
avoiding non-food grade additives. Instead of DTT, other reducing reagents can be used
like tris-(2-chlorethylphosphate) and β-mercapto-ethanol. Additionally, the alkylation
agent IAA can be replaced, for example, by chloroacetamide, acrylamide, or iodoacetic
acid. Müller & Winter tested different combinations of reduction and alkylation reagents.
Combined DTT/acrylamide resulted in the highest number of identified unique peptide
sequences, whereas DTT/IAA led to the same yield as a protocol without reduction and
alkylation steps [34]. Urea is used to obtain high solubility, but is also known to induce
chemical modifications [35]. It depends on the amino acid composition of the proteins and
the target peptide whether these agents are necessary. For the generation of Leg1/Leg2 from
the chickpea albumin and globulin fraction, denaturation, reduction, and alkylation are not
necessary and even inhibit the release of the peptides. Most likely, the peptides’ increased
accessibility after sample pretreatment results in the hydrolysis of missed cleavage sites in
Leg1/Leg2.

In summary, the optimized protocol including a shorter digestion time of 4 h and the
direct protein hydrolysis without pretreatment increased the yield of Leg1 (30-fold) and
Leg2 (110-fold) significantly (Figure 2f). Using the human pancreatic digestion enzyme chy-
motrypsin without chemical hydrolysis enhancers such as DTT and IAA has the additional
benefit of providing a food-grade product.

4. Conclusions

The present results indicate that the stability of Leg1 in solution and its activity at
slightly acid pH and on meat warrant further experiments to test its applicability in food
preservation. Additional studies are now required to extend the assessment to more food
pathogens and spoilage bacteria. MIC values of 250 and 500 µM Leg1 were observed, for
example, against two different strains of Listeria monocytogenes, which are of particular
relevance for meat spoilage [12]. As a next step, the application of Leg1 to further food
products and under various storage conditions must be tested. Food-grade production of
Leg1 could be achieved by chemical synthesis or by the chymotryptic digestion of chickpea
storage proteins. In addition to chemical synthesis or enzymatic hydrolysis of food proteins,
biotechnological processes, which are often rather cost-effective, can also be considered for
large-scale production [36,37].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10061192/s1, Table S1: Antimicrobial activity of sodium TFA−, sodium acetate, and
sodium chloride against E. coli and B. subtilis displayed as minimum inhibitory concentration (MIC) in
µM; Figure S1: Relative quantification of Leg1 and Leg2 in chymotryptic hydrolysates of the chickpea
globulin fraction by ultrahigh-performance liquid chromatography–tandem mass spectrometry in
scheduled reaction monitoring mode (UHPLC–MS/MS-sMRM): (A) Representative Chromatogram
of a hydrolysate (4 h incubation) and the three MRM transitions of (B) QILQWQ (internal standard
peptide), (C) Leg1, and (D) Leg2 as described in Table 1.
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