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A B S T R A C T   

Advanced technologies are commonly used in modern agriculture to break the yield barriers and increase crop 
productivity. Seeds treated with plant growth-promoting rhizobacteria (PGPR) are an effective bio-priming 
method to introduce beneficial microbial inocula into the rhizosphere or soil. Bio-priming is a type of seed 
treatment that employs biological entities, which involves the hydration of seeds and inoculation with beneficial 
microorganisms. Mainly, the seed bio-priming technique improves the seed quality, germination, viability, vigor 
index, growth promotion, production, and subsequent disease resistance by enhancing the uniform speed of 
germination and production of others growth regulators. In the majority of cases, bacterial inoculants mostly 
PGPR are used for seed bio-priming, it is an ecologically comprehensive strategy that uses selected PGPR to 
promote plant growth by producing regulatory substances, enhancing uptake of nutrients, protecting seedlings/ 
plants from seed or soil-borne pathogens. Bio-priming methods using PGPR inoculants are becoming more 
common in modern agriculture as an alternative to chemical treatments. They are more environmentally sus
tainable and safer for future agriculture apart from improving plants and soil health.   

1. Introduction 

Harmful chemicals are used to protect crops against infections, 
however, they have a major adverse impact, such as human and cattle 
poisoning, environmental contamination and ecological disruption. Bio- 
priming may provide a revolutionary approach for plant growth, pro
tection and sustainable development. Seed bio-priming is a technique 
for enhancing seed germination, stress management, plant growth 
regulation, and acting as a bio-control agent/inoculum by inducing 
plant immunity (Sarkar et al., 2021; Fig. 1). Beneficial or efficient mi
crobes are applied directly to the soil, by seed bio-priming or seed 
inoculation, plant tissues treatment, or with different soil applications to 
protect the plants when there is a high risk of harmful microbial infec
tion or inhibitors on the plant tissues (Mahmood et al., 2016). There are 
numerous studies about the beneficial attributes of PGPR, such as 

increasing the bio-availability of various soil nutrients for plant growth, 
stimulating phytohormones for example auxins, cytokinins and gibber
ellins, abiotic and biotic stress management of plants by producing many 
metabolites including ACC-deaminase and biocontrol agents such as 
antibiotics, hydrogen cyanide, siderophore and lytic enzymes produc
tion, which in turn enhancing the speed and percentage of seed germi
nation, proliferation of root growth, ability to withstand in 
contaminated soils, and soil structure (Basu et al., 2021). 

2. Seed bio-priming and method of priming 

Seed bio-priming, which involves soaking the seeds in liquid bacte
rial culture suspension for a particular period, initiates physiological 
developments/processes within the seed thereby preventing plumule 
and radicle emergence before the seed is sown (Bisen et al., 2015; Fig. 2). 

* Corresponding author at: Department of Microbiology and Director, PAKB Environment Conservation Centre, Raiganj University, Raiganj, 733 134 Uttar 
Dinajpur, West Bengal, India. 
** Co-corresponding author at: Microbiology, Crop Production Division, ICAR-National Rice Research Institute, Cuttack 753 006 Odisha, India. 

E-mail addresses: pkdmvu@gmail.com (P.K. Das Mohapatra), panneerccri@rediffmail.com (P. Panneerselvam).  

Contents lists available at ScienceDirect 

Current Research in Microbial Sciences 

journal homepage: www.sciencedirect.com/journal/current-research-in-microbial-sciences 

https://doi.org/10.1016/j.crmicr.2021.100071 
Received 17 May 2021; Received in revised form 9 September 2021; Accepted 10 September 2021   

mailto:pkdmvu@gmail.com
mailto:panneerccri@rediffmail.com
www.sciencedirect.com/science/journal/26665174
https://www.sciencedirect.com/journal/current-research-in-microbial-sciences
https://doi.org/10.1016/j.crmicr.2021.100071
https://doi.org/10.1016/j.crmicr.2021.100071
https://doi.org/10.1016/j.crmicr.2021.100071
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmicr.2021.100071&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Current Research in Microbial Sciences 2 (2021) 100071

2

The onset of physiological processes within the seed boosts plant 
growth-promoting (PGP) levels in the spermosphere, which enhances 
the many fold proliferation of inoculated PGPR bacteria within the seeds 
and it protects the seed from pathogens attack, allowing the plant to 
withstand adverse conditions. Bio-priming is a coating process or seed 
treatment with beneficial PGPR under controlled hydration conditions, 
which improves the preparatory methods prior to germination without 
the emergence of the radicle (Sukanya et al., 2018). It’s linked to 
increased hydrolytic enzyme activity, reactive oxygen species (ROS), 
detoxifying enzyme activity, and changes in internal plant hormone 
levels, as well as differential gene expression in plants, all of which lead 
to improved plant growth and resistance to stress viz. biotic and abiotic 
(Deshmukh et al., 2020). For a better understanding of the role of 
bio-priming with PGPRs in phyto-stimulation and nutrient enhance
ment, in-depth and innovative research studies at the biochemical, 
proteomics and transcriptome levels are needed. 

3. Role of PGPR in bio-priming for plant growth promotion 

Bio-priming of seeds with PGPR is one of the inexpensive and eco- 
friendly solutions to increase the growth in the early or primary stages 
of its growth (Raj et al., 2004; Deshmukh et al., 2020; Fig. 3). The use of 
beneficial PGPRs such as Pseudomonas spp. (Chitra and Jijeesh, 2021), 
Enterobacter spp. (Roslan et al., 2020), Bacillus spp. (Bidabadi and 
Mehralian, 2020; Panneerselvam et al. 2019; Li et al., 2021), Azotobacter 
spp. (Bidabadi and Mehralian, 2020), Azospirillum spp. (Gowthamy 
et al., 2017) and Burkholderia spp. (Ait Barka et al., 2006) as a 

bio-inoculant or seed bio-priming agent has been well documented and 
utilized to improve stress tolerance, nutrient uptake and seed germina
tion (Fig. 3). In general, those living organisms shows different multi
functional activities like production of plant growth regulators, such as 
auxins, cytokinins, abscisic acid, and gibberellins, as well as secretion of 
effector molecules and secondary metabolites through modulation of 
various pathways/cascades, are the most suitable for the biopriming 
method and provides resistance to plant against biotic stress (Singh 
et al., 2020; Audenaert et al., 2002). Raj et al. (2004) studied that 
bio-priming of Pennisetum glaucum seeds with Pseudomonas spp. strains 
helped to enhance the plant growth and resistance to the disease. 
Bio-primed seeds can lead to better plant establishment and increased 
plant yield by increasing germination rate, increasing root length and 
volume, increasing the number of lateral roots (Ait Barka et al., 2006; 
Cakmakci et al., 2007; Chitra and Jijeesh, 2021). Deshmukh et al. (2020) 
reviewed that bio-priming with PGPR enhances crop seedling growth 
and also found that these PGPR can significantly improve plant growth 
and health. Hence, bio-priming with PGPR could therefore be beneficial 
to plant growth. 

4. Recent advancements and limiting factors of seed bio-priming 

In various field crops, modern and advanced priming techniques like 
nanoparticles, gamma-ray, magnetic ray, and UV irradiation are being 
established and used. Seed priming with UV irradiation and nano
particles can improve seed germination and seedling development 
(Siddiqui et al., 2011;Ghafari et al., 2013). Seed priming with gamma 

Fig. 1. Seed priming methods for better enhancement of seed germination and plant development.  
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and magnetic rays improves rice plant yield and wheat antioxidant ac
tivity, respectively (Maity et al., 2005; Balakhnina et al., 2015). Various 
priming approaches are available such as hydropriming, osmopriming, 
Solid matrix priming, chemopriming, thermopriming, and biopriming, 
etc. Seeds are immersed in water under ideal temperature conditions 
(typically 5 to 20 ◦C) during hydropriming. Osmopriming (also known 
as "osmotic priming" or "osmotic conditioning") is a widely used 
pre-sowing process that involves treating seeds with osmotic liquids at 
low water potential to assist in water uptake regulation. Solid matrix 
priming (‘matriconditioning’) has been designed as a cost-effective 
approach to osmopriming, which requires enormous volumes of os
motic fluid and expensive aeration and temperature control devices 
(Mercado and Fernandez, 2002; Ermiş et al., 2016). The seeds are 
combined with solid (organic or inorganic) materials (‘solid priming’) to 
properly modify the moisture levels and regulate water absorption 
during solid matrix priming (Paparella et al., 2015). DNA replication, 
RNA, DNA, and protein synthesis are all examples of molecular actions 
that can occur as a result of seed priming (Varier et al., 2010). The DNA 
repair (Base- and Nucleotide-Excision Repair) system has also been 
triggered during the early stages of seed imbibition to protect genomic 
integrity (Paparella et al., 2015; Kimmelshue et al., 2019). Seed dry 
coating, film coating, seed dressing, pelleting, and entrustment coating 
seeds via foliar application or direct soil application are all advanced 
methods for beneficial bacteria enhancement, with inoculation being 
the most prominent (I. Afzal et al., 2020). 

5. Contribution of PGPR for plant systemic resistance through 
seed bio-priming 

Another positive feature of PGPR bio-priming on seed has indeed 
triggered the host plant to develop systemic resistance, which is a 
physiological state of improved defense ability that is created by specific 
environmental catalysts or stimuli and indications to strengthening and 
stimulating the plant’s innate immune defense system against different 
environmental factors and pathogenic infections and attacks. Bioprimed 
seeds with high levels of antioxidative enzymes such as catalase, su
peroxide dismutase, peroxidase, glutathione reductase, ascorbic acid, 
and others showed better antioxidative defense mechanisms after 

seedling (Hussain et al., 2019). Plant bio-priming by PGPR causes sys
temic resistance to a maximum range of plant pathogens (Naznin et al., 
2013). Many PGPR in the plant rhizosphere contributes to induced 
systemic resistance (ISR) (Pieterse et al., 2014). The main contribution 
of PGPR that trigger plant ISRs have the ability to response the root 
immune system locally by producing signal or molecules that transfers 
to the plants leaves to actuate the defensive ability systemically. The 
pattern of amount and type of root secretions changes due to pathogen 
attack, which in turn leads to the selection of some ISR-inducing bacteria 
at the rhizosphere (Berendsen et al., 2018). Bio-priming by PGPR leads 
to ISR signaling and subsequently increases plant growth and develop
ment via. changes in the physical and chemical properties under salinity 
stress (Ji et al., 2020). Bio-priming of Azospirillum sp. a salt-resistant 
strain has been reported to improve grain weight and growth of Triti
cum aestivum L. (wheat) plants under salt stress (Nia et al., 2012). 
Bio-priming of Azospirillum sp. on lettuce seeds improved crop quality, 
increased growth and stability under different stressful conditions 
(Fasciglione et al., 2015). It has been reported that P. fluorescens, P. 
stutzeri, and P. aeruginosa strains isolated from tomato rhizosphere in
crease the production of phytohormones and ACC-deaminase and 
improve the tricarboxylic acid cycle and thus increase salt tolerance (De 
La Torre-González et al., 2018). Bio-priming of rice seeds with 
B. amyloliquefaciens has been shown to increase the tolerance of salinity 
and improve growth by producing auxin, abscisic acid, and regulating 
the expression and biosynthesis of several genes under salinity stress 
conditions (Shahzad et al., 2017). Seed bio-priming is one of the novel 
approaches to carry beneficial PGPR from lab to land, which increases 
overall plant growth, resistance against biotic & abiotic stresses and 
yield in different crops by enhancing physiological, biochemical, and 
molecular levels, this is one of the valuable assets for sustainable agri
cultural production in the modern era. 

6. PGPR based formulation and recommendations for future 
research 

Biological seed coating is a new seed treatment technology in which 
microbial inoculants are coated on the seed surface to inhibit seed and 
soil-borne diseases (Afzal et al., 2020). The successful microbial 

Fig. 2. Method of seed treatment in bio-priming with PGPR.  
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inoculants are depended on the selection of a right type of microbial 
strain, better adaptability, longer shelf life, novel carriers (solid or 
liquid), and other additives etc. The formulation has a significant effect 
on microbial survival during the product development, storage, and 
application processes in the field, as well as the efficiency of the product 
once treated to the plant host and the application’s commercial viability 
(Herrmann and Lesueur, 2013; O’Callaghan, 2016; O’Callaghan, 2016). 
Though microbial formulation is a significant concern, a very limited 
number of investigation has been performed regarding this area (Parnell 
et al., 2016; Rocha et al., 2019). Some recent findings reported that the 
seeds treated with biopolymer enhance the shelflife of an individual as 
well as the combination of bacteria (Jagadeesh et al., 2019), this is 
another area to be focused in the future along with some important 
micronutrients, enzyme activators and additives etc. For example, a 
biochar-based seed covering containing Bradyrhizobium japonicum 
inoculum allowed for the long-term maintenance of a high bacterial 
population, resulting in efficient soybean nodulation (Chen, 2021; 
Gowthamy et al., 2017). The physical and chemical features of biochar 
play a significant impact on bacterial viability (Oni et al., 2019) in seeds. 
Seed coating or priming techniques to be developed and standardized 
for all type of field, plantation and horticultural crops, which should be 
cost-effective, time-saving and affordable to all the level of farmers. 
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