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After hundreds of generations of adaptive evolution at exponential growth, Escherichia coli grows as
predicted using flux balance analysis (FBA) on genome-scale metabolic models (GEMs). However,
it is not known whether the predicted pathway usage in FBA solutions is consistent with gene and
protein expression in the wild-type and evolved strains. Here, we report that 498% of active
reactions from FBA optimal growth solutions are supported by transcriptomic and proteomic data.
Moreover, when E. coli adapts to growth rate selective pressure, the evolved strains upregulate
genes within the optimal growth predictions, and downregulate genes outside of the optimal growth
solutions. In addition, bottlenecks from dosage limitations of computationally predicted essential
genes are overcome in the evolved strains. We also identify regulatory processes that may contribute
to the development of the optimal growth phenotype in the evolved strains, such as the
downregulation of known regulons and stringent response suppression. Thus, differential gene
and protein expression from wild-type and adaptively evolved strains supports observed growth
phenotype changes, and is consistent with GEM-computed optimal growth states.
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Introduction

When prokaryotes are grown at low- to mid-log phase for
hundreds of generations through periodic serial passaging,
they acquire an increased growth rate (Lenski and Travisano,
1994; Ibarra et al, 2002; Fong et al, 2003; Barrick et al, 2009;
Conrad et al, 2009; Teusink et al, 2009). This example of
laboratory adaptive evolution is expected, as faster growing
mutants quickly outgrow slower growing cells, even if the
initial fitness difference is small (Applebee et al, 2008).
Molecular changes that confer the growth improvement have
been previously studied using fluxomics (Fong et al, 2006; Hua
et al, 2007), transcriptomics (Fong et al, 2005; Becker and
Palsson, 2008; Le Gac et al, 2008; Kinnersley et al, 2009), and
whole-genome resequencing (Herring et al, 2006; Barrick et al,

2009; Conrad et al, 2009; Charusanti et al, submitted for
publication). For example, whole-genome resequencing of
adapted strains showed that only a small number of mutations
arise after hundreds of generations (Herring et al, 2006;
Conrad et al, 2009). Although each evolved strain acquired a
different set of mutations, each set of mutations yielded a
similar growth phenotype. When these mutations were
introduced into the wild-type strain by allelic replacement,
the wild-type cells acquired the evolved-strain growth rates
(Herring et al, 2006). However, the mechanism linking the
mutations to the improved growth rate in most evolved strains
has yet to be clearly identified, except for cases in which strains
had a mutation in RNA polymerase (RNAP) or glpK (Herring
et al, 2006), which altered activity of transcription and glycerol
uptake.
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Although the genetic changes have been identified and
characterized, the resulting coordination of cellular processes
that lead to the altered phenotypes have only been studied
briefly from a network perspective. Such studies of adaptively
evolved strains have shown an activation of normally latent
metabolic pathways (Fong et al, 2006), expression improve-
ments to the strains that make them more consistent with a
high-growth rate for various minimal media conditions
(Becker and Palsson, 2008), improved respiration (Ferea
et al, 1999), optimization of a small growth-coupled circuit
(Dekel and Alon, 2005), and optimization of yield on a poor
carbon source (Teusink et al, 2009). In addition, the measured
growth rates of evolved strains were shown to be consistent
with most growth rate predictions from an in silico genome-
scale metabolic model (GEM) of Escherichia coli (Ibarra et al,
2002; Fong and Palsson, 2004).

Although all of these studies have elucidated some
characteristics of the complex adaptation process, it is not
known (1) whether absolute genome-scale gene and protein
expression levels and expression changes are consistent with
optimal growth predictions from in silico GEMs or (2) whether
measured expression changes can be linked to physiological
changes that are based on known mechanisms or pathways. To
begin to address these questions, we use constraint-based
modeling of E. coli K-12 metabolism (Feist and Palsson, 2008;
Lewis et al, 2009b) to analyze a compendium of ‘omics’ data
obtained from adaptive evolution experiments. First, we show
that the data are consistent with pathway usage from the
computationally predicted optimal growth states. We next
show that expression changes during the adaptation process
relative to wild type further converge to predicted enzyme
usage from the optimal growth rate predictions (Figure 1).
Finally, we show that changes in known regulatory processes
acting on the metabolic network, but not accounted for in the

GEMs, are consistent with the improved-growth phenotypes of
the adapted strains.

Results

The omics data sets

Multiple strains of E. coli were subjected to adaptive evolution
through serial passaging in three different M9-minimal media
conditions: lactate, glycerol, and glucose (glucose grown
strains had the glycolytic gene pgi deleted to perturb the
normal flux into glycolysis). For each growth condition, three
to six replicates of the adaptive process were performed in
parallel until each strain had reached and maintained a steady-
growth rate, which typically took 700–1000 generations (see
Fong et al, 2005, 2006 for details). Through adaptive evolution,
all strains improved their growth rate and efficiency in
converting substrate to biomass (yield) within the exponential
growth phase (Figure 2).

Fifty quantitative proteomic data sets were obtained from
the wild-type and evolved strains. Within these data sets, 983
proteins were identified with high confidence, of which 731
were identified in all strains. An extended discussion on
methods and an analysis of data content and quality can be
found in the Supplementary information. Transcriptomic
data for strains corresponding to two of the three growth
conditions (lactate and glycerol) have been published earlier
(Fong et al, 2005) and are also analyzed alongside the
proteomic data in this study using the E. coli GEM as a context
for the analysis.

In the omics data sets for the adaptation process, hundreds
of genes and proteins are differentially expressed (Supple-
mentary Table 1), representing 32–59% of the identified
proteins and expressed genes in the data sets. The proteomic
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Figure 1 A variant of flux balance analysis shows consistency with proteomic and transcriptomic data. Parsimonious enzyme usage FBA (pFBA) is used to label all
metabolic genes based on simulation results. (A) pFBA classifies each gene based on its ability to contribute to the optimal growth rate predictions and its flux level. These
classes include (1) essential genes; (2) pFBA optima, which includes genes that are predicted to be used for optimal growth in silico; (3) ELE, which includes genes that will
increase cellular metabolic flux if used; (4) MLE, which includes genes predicted to decrease the growth rate if used; and (5) pFBA no-flux, which includes genes that cannot
be used in the given growth conditions. (B) The omic data show good coverage of essential genes and the pFBA optima, and low coverage of the genes that are predicted to
be non-functional. In addition, in laboratory evolution experiments, genes within these optimal states are upregulated, whereas non-functional genes are downregulated.
These results support predicted optimal growth states, and suggest that laboratory-evolved strains further enhance these optimal growth states.
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and transcriptomic data show significant agreement in the
direction of differential expression for cases in which both the
gene and protein significantly changed expression level (see
Supplementary information for details).

We first analyze the omics data with reference to enzyme
usage in the computed optimal states from GEMs, then look at
the changes that occur during evolution by analyzing the
differential expression relative to the wild-type cells. Finally,
we look at changes that correspond to the action of non-
metabolic genes represented in the data sets.

Analysis of omics data in the context of computed
optimal growth states

Both the omics data sets and the computed solutions can be
compared in the context of network functions. The transcripts
and proteins found in the omics data sets can be mapped onto
the reconstructed genome-scale network. Computed optimal
solutions can also be presented on the network map and
compared with the omics data. A comparative analysis can
then be performed.

To determine whether gene and protein expression support
properties of optimal predicted network function, we used a
variant of flux balance analysis (FBA), referred to as
Parsimonious enzyme usage FBA (pFBA) (Figure 1A; Supple-
mentary Figure S1). As described below, this method uses
in silico simulations to identify functional properties of metabolic
pathway genes under the given growth conditions. We applied
pFBA to the omics data sets to determine whether absolute
expression and differential expression during adaptation
supports the enzyme usage in computed optimal solutions.
All reports of absolute expression coverage are a combination
of WT and evolved-strain data, as there are few proteins that
are missing in the WTstrains but identified the evolved strains,
and vice versa (fewer than four for any single growth
condition). To provide additional insight into the conclusions
in this study, an alternative method, flux variability analysis
(FVA) (Mahadevan and Schilling, 2003), was also used and
yielded supportive results (see Supplementary information for
details).

pFBA (Figure 1A) assumes that under exponential growth,
there is a selection for the fastest growing strains and for

strains that require the lowest overall flux through the
metabolic network (a proxy for minimizing the total necessary
enzyme mass to implement the optimal solution). This
additional constraint introduces a small improvement over
normal FBA (Supplementary Figure S2). Although these
assumptions may not hold true in all growth conditions for
all organisms (Teusink et al, 2006; Schuster et al, 2008;
Molenaar et al, 2009), earlier studies in E. coli (Ibarra et al,
2002; Fong et al, 2003; Schuetz et al, 2007) and data presented
here support these assumptions under our experimental
conditions.

pFBA finds the subset of genes and proteins that may
contribute to the most efficient metabolic network topology
under the given growth conditions, called here the pFBA
optima. The genes contributing to pFBA solutions can be
classified as follows:

1. Essential genes: metabolic genes necessary for growth in
the given media.

2. pFBA optima: non-essential genes contributing to the
optimal growth rate and minimum gene-associated flux.

3. Enzymatically less efficient (ELE): genes requiring more
flux through enzymatic steps than alternative pathways
that meet the same predicted growth rate.

4. Metabolically less efficient (MLE): genes requiring a growth
rate reduction if used.

5. pFBA no-flux: genes that are unable to carry flux in the
experimental conditions.

See Figure 1B for average sizes of these classes and
Supplementary Figure S1 for a more detailed description of
the classification.

Do omics data support pFBA optimal growth states?
Computed pFBA solutions correspond well with the set of
identified proteins and expressed genes, as well as gene
expression levels. Almost all in silico-predicted essential
genes are expressed. In addition, there is much higher omics
data coverage of the genes and proteins in pFBA optima as
compared with the less efficient classes (ELE and MLE) and
the conditionally non-functional pFBA no-flux class
(Figures 1B and 3). In the transcriptomic data, 482% of all
genes that can contribute to the pFBA optima are expressed. Of
the missing genes (mean of 38, representing about 18% of the
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Figure 2 In adaptive evolution through serial passaging, E. coli evolves to a higher growth rate and biomass yield at exponential growth. Growth rates and substrate
uptake rates were acquired for each strain before and after adaptive evolution, as reported earlier (Fong et al, 2005; Charusanti et al, submitted for publication). For
growth on (A) glycerol, (B) lactate, and for (C) the Dpgi strain grown on glucose, the evolved strains (red) all improved their growth rate and biomass yield at exponential
growth, compared with the unevolved parent strains (blue).
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pFBA optima), about 82% have known isozymes or redundant
pathways in the pFBA optima that can replace their functions.

Coverage of proteins in the pFBA optima is less comprehen-
sive than coverage from the transcriptomic data (Figure 3B);
however, about 40% of the missing proteins in the essential
and pFBA optima classes are members of the GO classes
‘membrane,’ ‘integral to membrane,’ or ‘transport.’ These
classes are significantly depleted from the proteomic data sets
(see Supplementary information), and commonly depleted in

other proteomic data sets (Ferguson and Smith, 2003).
Moreover, 459% (450 proteins) of the missing pFBA optima
proteins have isozymes in the pFBA optima that could replace
their function if these proteins are not expressed.

Neither proteomic nor transcriptomic data alone show
expression of all genes or proteins that can contribute pFBA
optima. Complete coverage, however, is not expected because
of model alternate optima, inaccurate probes on the arrays,
and hard-to-detect proteins. However, when the expressed
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genes and identified proteins are mapped back onto the
metabolic network, the union of the proteomic and transcrip-
tomic data correspond to 97.7% of the non-essential active
gene-associated reactions in the glycerol and lactate optimal
solutions (Figure 3C). Unsupported reactions include a few
transporters (H2O, NH4

þ ) and reactions that are necessary for
cofactor biosynthesis.

Beyond presence and absence, the expression levels of genes
are consistent with the various pFBA classes. That is, the
expression levels are greatest for the essential genes and
lowest for the pFBA no-flux genes (Figure 3D and E) and is
significant for almost all pairwise comparisons (Figure 3F). All
of the above results suggest that the pFBA optima are
expressed and likely active in E. coli K12.

Many metabolic genes and proteins are
differentially expressed with adaptation

There is high coverage of expressed genes and proteins in the
optimal computed states. As the efficient use of the metabolic
network is presumed to underlie the optimal growth pheno-
type after adaptation, the question arises: Do metabolic genes

dominate the differential changes during adaptation? Differ-
ential expression of proteins and genes in the adaptation
process occur in many functional classes; however, a large
fraction of these differentially expressed proteins and genes are
associated with metabolic clusters of orthologous groups
(COGs) (Tatusov et al, 1997) (Figure 4). Specific metabolic
COGs that show the highest enrichment include carbohydrate
transport and metabolism for the lactate- and glycerol-evolved
strains (Po0.009) and amino acid and nucleotide metabolism
in the pgi-deletion strains (Po0.012).

This high coverage of metabolism supports its important
role in the evolved-growth phenotype, and allows the analysis
of the data in the context of the genome-scale metabolic
network reconstruction (Feist et al, 2007). The dominant
contribution of metabolic genes to the changes in the omics
data sets is further validated when the data are evaluated using
singular value decomposition, which shows that metabolic GO
classes covary and separate evolved and unevolved strains
(see Supplementary information).

As some specific metabolic subsystems may change more
than others, we mapped the differential gene and protein
expression to the metabolic network using PathWave
(Schramm et al, 2010), a method that identifies groups of
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topologically close reactions that show concerted expression
changes (see Supplementary information). Among the differ-
ent data sets, this analysis shows significant changes in central
carbon metabolism, tRNA charging, and/or the metabolism of
specific amino acids (see Supplementary Table 2). Changes in
such regions of the metabolic network have an important
function in providing the metabolic precursors for biomass
production, and thus may contribute to an increased growth
rate. However, for greater insight, changes in biomass-coupled
pathways must be quantitatively associated to the actual
growth state of the cell.

Adaptive evolution overcomes dosage limitations
of essential genes

Although pathways that produce key biomass precursors are
significantly changed, it is not clear whether necessary
growth-coupled essential genes are consistently changed as
would be needed for an increased growth rate. To address this
question, we first used pFBA to identify all genes that are
needed for growth in silico and compared these with
experimental data (see Figure 5A and B). As in silico growth
is dependent on these essential genes, they may be needed in
higher abundances for higher growth rates. The adaptive
evolution strains, with their improved growth rates, are
consistent with this hypothesis. In the evolved strains,
computationally predicted essential genes and proteins are
significantly upregulated (Figure 5C) and have fewer down-
regulated genes and proteins than expected (Table I). More-
over, downregulated essential proteins are more abundant in
the WT strains than upregulated proteins (Po2�10�8). Thus,
the downregulation may be the result of tuning protein
expression for overexpressed proteins in WT. This result, with
the upregulation of essential genes and proteins, suggests that
the computationally predicted essential genes are indeed
growth coupled as predicted in silico. Moreover, this result
suggests that these essential genes not only confer cellular
viability, but they also may act as cellular bottlenecks because
of dosage limitations. Expression changes during adaptive
evolution allow these limitations to be overcome, thereby
increasing the growth rate.

The emergence of the optimal metabolic states
in adaptive evolution

All evolved strains profiled here show improvements in both
growth rate and yield (Figure 2). The upregulation of essential
genes may partially support the increased growth rate;
however, it does not address the question as to whether non-
essential gene and protein expression is more consistent with
the enzyme usage in computed optimal growth states. In
addition, the highly interconnected nature of metabolic
networks may preclude a growth improvement from upregu-
lated essential genes, if pathways that are upstream and
downstream of the essential genes do not change accordingly.
To answer these questions, we compared the differential gene
and protein expression to computational simulations of
genome-scale optimal growth states (Figure 5A and B). Thus,
all upstream and downstream pathways may be considered.

Using pFBA, we find that in all strains, the pFBA optima are
significantly upregulated in the transcriptomic and proteomic
data. This upregulation is significant for both the number of
genes (Table I), and the net fold change (Figure 5C). Further
support for the use of the pFBA optima comes from the
findings that, in-general, the less-efficient MLE genes are not
significantly upregulated (Table I), and that they are down-
regulated in most data sets (Figure 5C). Among those that are
upregulated, few contribute to any coherent functional
metabolic pathways (see Supplementary information and
Supplementary Figure S3). Only one MLE gene is consistently
upregulated in all data sets and functional in the context of a
non-downregulated pathway (see Supplementary informa-
tion). This protein, deoxyuridinetriphosphatase (3.6.1.23),
which dephosphorylates dUTP, is upregulated in all data sets.
Although this process wastes resources, this enzyme is needed
to preclude dUTP from being integrated into the genome, and
the absence of this enzyme decreases the growth rate in E. coli
(Hochhauser and Weiss, 1978). A few other MLE genes were
upregulated in multiple, but not all data sets (see Supplemen-
tary information).

The upregulation of the pFBA optima, and the lack of
upregulation among less efficient pathways reveal that the
adaptive evolution process leads to the further emergence of
pathways that help to maximize the predicted growth rate.
Thus, the differential changes are consistent with the
computed optimal growth state.

Adaptation suppresses conditionally inactive
pathways

As excess enzyme mass creates a large maintenance demand
on cells (Kurland and Dong, 1996), cells under growth
selective pressure are expected to modulate expression levels
of enzymes as needed for growth (Dekel and Alon, 2005).
Although we showed an upregulation of optimal pathways,
it is expected that genes and proteins associated with non-
functional reactions should be downregulated, thereby saving
resources for improved-growth performance.

Gene and protein expression changes in the pFBA con-
ditionally non-functional class (pFBA no-flux) are consistent
with this hypothesis. For all experimental conditions, there is a
significant downregulation of pFBA no-flux genes, except for
the lactate strain proteomic data (Table I). Moreover, when
compared with the non-evolved strains, the mean abundances
of expressed pFBA no-flux proteins and transcripts are
significantly lower in all evolved strains (P � 1�10�16 and
P¼8.3�10�8, respectively). FVA further supports the suppres-
sion of conditionally non-functional metabolic reactions (see
Supplementary Table 3). Thus, during the process of adaptive
evolution, computationally predicted non-functional path-
ways are suppressed through a concerted downregulation of
genes associated with such pathways.

Only downregulation is tied to known regulon
structure

The analysis of the omics data shows that strains under growth
pressure adjust their transcriptional program towards the
in silico-predicted optimal growth states in metabolism.
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However, the mechanisms controlling these changes are
outside the scope of the reconstructed metabolic network,
and their activities are not predicted. Thus, the question arises:
are known transcriptional regulatory mechanisms consistent
with the observed differential expression changes?

Across all conditions, the downregulated transcripts and
proteins correspond to several known regulons, and each
condition has a unique set of differentially expressed regulons
(Supplementary Table 4). For example, downregulated mole-
cular species in the glycerol-evolved strains include the
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flagellar FlhC/FlhD regulon, the GatR regulon (transport and
catabolism of galactitol), and Hns (chromosome organiza-
tion). For lactate-evolved strains, the carbohydrate meta-
bolism regulators Crp and DgsA regulons are enriched in the
downregulated genes and proteins, respectively. Among the
Dpgi strains, the four most significantly enriched regulons in
the downregulated proteins include Crp, IhfA/IhfB, MetJ, and
ArcA. All of these are associated with carbon or nitrogen
metabolism. Moreover, downregulated members of these
regulons account for a higher fraction of the expressed genes
and proteins outside of the optimal growth solutions (see
Supplementary Figure S4). Together, these results suggest that
known regulatory programs may be used in a condition-
specific manner for the downregulation of genes and proteins
in the adaptation process.

Conversely, no data set reflects known regulons among the
upregulated transcripts or proteins. The only exception is for
the glycerol-evolved strain microarrays, in which a few amino-
acid biosynthetic regulons are enriched (ArgR, LysR, MetJ),
along with the purine synthesis regulon (PurR), and Fis. These
results suggest that few known transcriptional regulatory
programs are consistently used to upregulate genes and
ultimately proteins. Therefore, it seems that there are
unknown regulatory mechanisms at work, potentially because
of mutations found in transcriptional regulators in the evolved
strains (Herring et al, 2006; Conrad et al, 2009; Charusanti
et al, submitted for publication). Mutations in these regulators
have previously led to drastic alterations in gene and protein
expression (Cooper et al, 2008; Ansong et al, 2009; Conrad
et al, submitted for publication). Further interrogation of these
mutated regulators will aid in associating the expression
changes to known regulatory pathways.

Adaptively evolved strains largely eliminate the
stringent response

Changes in transcriptional regulation observed here lead to
altered physiological responses associated with metabolism,
such as the stringent response. All experiments here were
performed in media without amino acids. Under such
conditions, the stringent response increases transcription of
amino-acid biosynthesis genes needed for growth (Traxler
et al, 2008), and simultaneously decreases the growth rate;
however, evolved strains manage to attain a higher growth
rate, despite the stringent response.

To find a rebalancing of genes involved in the stringent
response, we compared the microarray data from the glycerol-
and lactate-evolved strains to published data sets that profile
the stringent response in E. coli K-12 MG1655 (Traxler et al,
2008). Out of the 170 differentially expressed stringent
response genes, a total of 97 genes are also significantly
differentially expressed in the evolved strains (Supplementary
Table 5). In both evolved strain conditions, B90% of the
expression changes occur in the opposite direction as the
stringent response. That is, after adaptation to minimal media,
the E. coli strains show expression patterns consistent with a
decreased stringent response during growth. Only eight genes
show changes in the same direction in the evolved strains and
the stringent response. Of these, half are amino-acid biosyn-
thetic genes (ilvM, ilvD, and thrL) or have a secondary function
in amino-acid biosynthesis (folE). Thus, there is a clear
suppression of the stringent response in the evolved strains,
but alternative mechanisms allow the needed upregulation of
amino-acid biosynthesis genes normally activated by the
stringent response.

Discussion

Wild-type laboratory strains of E. coli adapt to new growth
conditions when placed under a growth rate selective pressure
(Lenski and Travisano, 1994; Ibarra et al, 2002; Fong et al,
2003; Barrick et al, 2009; Teusink et al, 2009). The genetic and
physiological characteristics of the adaptation have been
described (Herring et al, 2006; Barrick et al, 2009; Conrad
et al, 2009; Charusanti et al, submitted for publication). The
underlying genotype–phenotype relationship can be detailed
using systems biology; namely the acquisition and analysis of
omics data and the use of genome-scale models.

In this study, we obtained a compendium of quantitative
proteomic profiles of the evolved strains and used a similar set
of previously published microarrays (Fong et al, 2005; Lewis
et al, 2009a). The analysis of the data sets, using conventional
statistical methods and GEM computations, yielded three key
results. First, the proteomic and transcriptomic data are
consistent with enzyme usage in optimal growth state
computations using GEMs. Second, the essential and
non-essential metabolic genes associated with the predicted
optimal growth states are induced during the adaptive process.
This is accompanied by a suppression of proteins and

Table I Null hypotheses and P-values from hypergeometric tests involving the presence of pFBA classes in the upregulated and
downregulated genes and proteins

Lac ProtGlyc Proth0 Δpgi Prot  Glyc MA  Lac MA 

Essential genes are not enriched in up-regulation 8.88E-05 2.17E-02 2.05E-07 1.58E-07 4.52E-02

Essential genes are not depleted in down-regulation 4.08E-05 1.14E-01 1.76E-05 8.25E-07 5.63E-07

pFBA optima are not enriched in up-regulation 2.85E-04 9.88E-05 4.37E-08 4.01E-11 6.96E-04

MLE is not depleted in up-regulation 1.83E-02 2.01E-02 5.62E-04 6.12E-06 4.12E-01

pFBA no-flux class is not depleted in up-regulation 3.07E-03 8.70E-02 8.15E-04 2.18E-07 6.28E-04

pFBA no-flux class is not enriched in down-regulation 4.63E-04 2.96E-01 3.30E-04 6.98E-09 6.06E-07

MLE, metabolically less efficient; Glyc, glycerol; Lac, lactate; MA, microarray; Prot, proteome.
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transcripts outside of the optimal growth solutions. Third,
regulatory mechanisms, not accounted for in genome-scale
metabolic network models, contribute to the altered metabolic
states and the improved-growth phenotype. Known transcrip-
tional regulatory mechanisms contribute to the downregula-
tion of genes and proteins, and physiologically, there is a
suppression of the stringent response. These results have three
main implications.

First, in this work, we found a high coverage of genes and
proteins associated with the predicted optimal growth states.
This result provides added support for the validity of predicted
pathway utilization using GEMs and for the assumptions
underlying their computation. More specifically, FBA pathway
flux predictions are computed by relating uptake and secretion
rates, given the stoichiometry of the metabolic network and a
biomass objective function. The biomass function represents
the stoichiometric balance of metabolites needed for growth.
Thus, FBA allows the computation of the growth yield (the
amount of biomass produced per mole of substrate), and
predicts pathways that can be used to obtain this yield. FBA
further computes the optimal growth rate, assuming the cell
will optimize this growth yield, given the measured substrate
uptake rate and cellular maintenance costs (Varma and
Palsson, 1993) (for discussion on the subtle differences
between computed growth yields versus growth rates, see
Teusink et al (2009)).

The physiological relevance of the FBA optimal growth rate
assumption has been discussed (Schuster et al, 2008). In
particular, it has been proposed that two possible mechanisms
can lead to improved growth rates: (1) the improved efficiency
of converting substrate to biomass (consistent with FBA
predictions) or (2) the speeding up of metabolism by
increasing the expression level of any enzymes (efficient or
less efficient) to speed up metabolism. Earlier studies have
presented evidence supporting both scenarios under the
adaptive evolution experimental conditions by measuring
growth rates, substrate uptake rates, and by-product secretion
rates (Ibarra et al, 2002; Fong et al, 2003; Schuetz et al, 2007;
Teusink et al, 2009). This study provides additional experi-
mental support for both an improved efficiency and a speeding
up of metabolism in adaptively evolved strains by showing the
upregulation of the pathways in the optimal growth rate
solutions, and not in the less efficient pathways. The
upregulation of the essential genes allow for a higher growth
rate, as they are more tightly coupled to the in silico-predicted
growth rate. The upregulation of the pFBA optima allows for
improved efficiency in converting substrate to biomass
(biomass yield). Thus, the upregulation of the essential and
non-essential genes in the optimal pathways allows for both
the ‘speeding up’ of metabolism and increased efficiency, as
the measured substrate uptake increases (Fong et al, 2005;
Charusanti et al, submitted for publication) and is metabolized
through the upregulated optimal pathways.

The second implication of this work is that a few simple
mutations may perturb the function of the entire network, and
that the resulting phenotype can be better understood using
GEMs. Earlier studies have shown that simple mutations in
metabolic network enzymes produce a transient response that
minimizes flux changes (Segre et al, 2002; Shlomi et al, 2005).
However, in this work, each strain studied had ample time for

more drastic changes in gene and protein expression, as a
result of the mutations in metabolic enzymes and global
regulators attained in the adaptive time course (Herring et al,
2006; Conrad et al, 2009; Charusanti et al, submitted for
publication). Even though the cellular biochemistry is tightly
woven into a large network, the measured expression changes
shifted towards the computed optimal growth predictions.
This finding shows that some physiological observations
cannot be simply explained with a direct link to a single
mutation. However, the genotype–phenotype link, which
usually is complex, may be better identified by analyzing the
data in the biomolecular network context.

The third implication of this work is that genome-scale
models of other systems such as transcriptional regulation,
transcription, and translation are needed for a more complete
understanding of the genotype–phenotype link. This work
showed the successful model-based analysis of a large fraction
of differentially expressed genes and proteins. However, we
also witnessed changes beyond the scope of the model, such as
in the transcription and translation machinery components
(Figure 4). Many of these, such as tRNA charging enzymes, the
ribosomal proteins, and subunits of the RNAP, were upregu-
lated in most strains (data not shown). Each of these could
allow for faster growth by providing increased translation and
transcription rates (Vogel and Jensen, 1994; Klumpp et al,
2009). Metabolic models do not directly account for these
mechanisms. Thus, it is anticipated that genome-scale models
of transcription and translation (Thiele et al, 2009) will be
useful in evaluating the functional consequences of changes in
these systems. Moreover, efforts are also being made to
address additional growth rate-associated parameters, such as
changes to the cell surface to volume ratio and molecular
crowding constraints (Beg et al, 2007; Molenaar et al, 2009).

Metabolism, transcription, and translation are important for
modulating growth rate. However, the expression changes for
these systems are possibly controlled by alterations in
transcriptional regulation (Conrad et al, 2009). In the evolved
strains, there are mutations in several regulatory proteins,
such as RNAP, Crp, Hfq, or AtoS (Herring et al, 2006; Conrad
et al, 2009; Charusanti et al, submitted for publication).
Unfortunately, the normal wiring within these regulons is still
not completely characterized. However, efforts are being made
to identify the missing links in the E. coli transcriptional
regulatory network (TRN) (Cho et al, 2008). As genome-scale
TRN models are completed and linked to the comprehensive
transcription unit architecture for E. coli (Cho et al, 2009),
greater insight into the scope of the regulatory changes in the
evolved strains may be determined.

Conclusion

Experimental adaptive evolution is a useful approach to
develop an understanding of the metabolic genotype–pheno-
type relationship in bacteria and to aid in the identification of
principles underlying evolution. To identify such principles,
various types of data are being generated. For the strains in this
study, these data types include the genome sequences, gene
expression profiles, proteomic data, fluxomic data, and
physiological data. The analysis of these omics data types
using optimality properties of GEMs enables the elucidation of
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principles of adaptation and the identification of large-scale
mechanisms that confer selected optimal phenotypes. The
metabolic genotype–phenotype relationship in bacteria can
now be understood through multi-scale analysis, including:
(1) changes in the genotype and molecular constituents
(Herring et al, 2006; Conrad et al, 2009; Charusanti et al,
submitted for publication), (2) analysis of omics data in the
context of reconstructed networks that represent the compo-
nent interactions (Lewis et al, 2009a), and (3) changes in the
physiological state and performance (Ibarra et al, 2002; Fong
and Palsson, 2004). The development of the second step is
found in this study.

Materials and methods

Parsimonious enzyme usage FBA

pFBA is a bilevel linear programming optimization using the genome-
scale constraint-based model of E. coli K-12 (Feist et al, 2007). FBAwas
used to compute the optimal growth rate, using experimentally
measured substrate uptake rates (Fong et al, 2005; Charusanti et al,
submitted for publication). This was followed by a minimization of the
sum of all gene-associated reaction fluxes while maintaining optimal
growth (see Supplementary Figure S1). This proxy computes the pFBA
optima, representing the set of genes associated with all maximum-
growth, minimum-flux solutions, thereby predicting the most stoi-
chiometrically efficient pathways. The idea underlying this method is
similar to the ‘max biomass per unit flux’ objective presented earlier
(Schuetz et al, 2007), but the mathematical implementation is different
(see Supplementary information).

Five classes of genes emerge, associated with reactions that (1) are
essential for optimal and suboptimal growth, (2) are inside the pFBA
optima, (3) are ELE, requiring more enzymatic steps than alternative
pathways that meet the same cellular need, (4) are MLE, requiring a
reduction in growth rate if used, or (5) cannot carry a flux in the given
environmental condition/genotype (pFBA no-flux). Lists of genes in
each class are given in Supplementary Table 6.

Here, the pFBA optima were computed for wild-type E. coli under
growth in lactate M9-minimal media, glycerol M9-minimal media, and
a Dpgi mutant on glucose M9-minimal media, using experimentally
measured substrate uptake rates (Supplementary Table 7). As detailed
in Supplementary Figure S5, the steps were as follow. First, FBA was
used to test gene essentiality. Second, FVA with no biomass constraint
was conducted to identify reactions that cannot carry a flux. Third,
FBA helped identify the optimal growth rate, which was subsequently
set as a lower bound for the biomass function. Fourth, FVA was
conducted again to find all metabolically less-efficient reactions. Fifth,
the absolute value of flux through all gene-associated reactions was
minimized using linear programming, and this flux was set as an upper
bound for the summed network flux. Sixth, FVA was conducted on the
model, holding the maximum-predicted growth rate and minimum
network flux constant, thereby identifying all reactions that are active
in alternate optimal solutions (Reed and Palsson, 2004). Genes were
assigned to the five categories as follow. All genes necessary for growth
in silico were classified as ‘essential.’ Non-essential genes associated
with reactions that were active when maximizing biomass and
minimizing flux were classified as ‘pFBA optima’ genes. Genes that
were only associated with reactions that could not carry a flux were
identified as ‘pFBA no-flux’ genes.‘ELE’ genes were identified as those
associated with reactions that could carry a flux while optimizing
biomass, but not when minimizing flux (genes associated with the
pFBA optima were filtered out). All remaining genes, which were
associated with reactions that could carry a flux when not optimizing
biomass, were classified at ‘MLE’ genes.

The sets of pFBA genes and proteins were compared with all non-
essential upregulated proteins and mRNAs using the hypergeometric
test to determine whether there were more upregulated proteins in the
pFBA optima than expected by chance. A similar approach was used to
find the enrichment and depletion of upregulated and downregulated
species in the essential, non-functional, and less efficient pathways;

however, all genes were used for these tests. Significant tests are
shown in Table I. In addition, the significance of fold change within
upregulation and downregulation in the classes was tested by
summing up all upregulated and all downregulated genes within each
class and then comparing to 10 000 random sets of the same number of
differentially expressed metabolic genes.

Regulon enrichment

Regulon structure was determined from RegulonDB 6.0 (Gama-Castro
et al, 2008). Significance of enrichment of regulons in upregulated and
downregulated genes/proteins was determined using the hypergeo-
metric test with a false-discovery rate of 0.1. The results, however,
were robust with FDR cutoff choice.

Gene expression profiling

Microarrays corresponding to the same glycerol- and lactate-evolved
strains in this study have been published previously as described in the
corresponding studies (Fong et al, 2005; Lewis et al, 2009a) and may be
downloaded at http://systemsbiology.ucsd.edu/In_Silico_Organisms/
E_coli/E_coli_expression2. The arrays were renormalized for this study
using GCRMA. Genes that did not have a gene expression level
significantly above a set of negative controls on the arrays (FDR¼0.05)
were removed from the data set and were not considered in further
analyses.

Cell preparation

E. coli K-12 MG1655 strains used for this study were prepared earlier
(Fong et al, 2005, 2006). Briefly, for the Dpgi strains, pgi was removed
as described in Datsenko and Wanner (2000), and transferred to M9-
glucose minimal media. Wild-type strains were also transferred to
glycerol or lactate M9-minimal media. Adaptive evolution was
conducted by growing the strains in batch culture until they reached
mid-exponential growth. At this point, the culture was diluted by serial
passage into fresh media. The quantity of passaged cells was
determined based on the growth rate from the previous day. Multiple
replicates for each strain were evolved in parallel for about 700, 800,
and 1000 generations for the glycerol, pgi deletion, and lactate-evolved
strains, respectively. Despite the different number of generations, all
strains were evolved until they converged to a stable maximum growth
rate, which was maintained for at least 5 days (Fong et al, 2005, 2006).
Growth rates and substrate uptake rates were determined and reported
earlier (Fong et al, 2005, 2006). Instantaneous steady-state biomass
yields for the exponential growth phase (see Supplementary Table 7)
were determined as similarly shown earlier (Feist et al, 2010) by
dividing the mid-exponential growth rate by the substrate uptake rate
at that time:

YB; E ¼
gr

SUR

where gr is the growth rate at mid-exponential phase (1/h) and SUR is
the substrate uptake rate (g substrate/gDW biomass/h). This figure
provides a measure of how efficiently the strains can convert substrate
into biomass while in exponential growth.

For subsequent experiments, all strains were streaked out on solid
media, and a single colony was then isolated, grown up, and frozen
down. Glycerol stocks of each strain at day 1 and the evolution end
point were placed in fresh media and grown up to an OD of 0.500 at
600 nm. Cells were then pelleted, washed in PBS, and frozen before
proteomic profiling.

Cell lysis

Each cell pellet (B50ml in size as measured in a microfuge tube) was
resuspended in 1.5 ml of nanopure water. Lysis was achieved using
pressure cycling technology with the Barocycler (Pressure Bio-
Sciences, West Bridgewater, MA) for 10 cycles going between ambient
pressure for 20 s and 2.4�105 kPa for 20 s. The lysate was collected and
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placed immediately on ice. Each lysate was concentrated down to
about 500ml using a speed vac (ThermoSavant, San Jose, CA). The
protein concentration of each cell lysate was measured using a
Coomassie Plus protein assay (Pierce, Rockford, IL) using a bovine
serum albumin standard.

Protein reduction, trypsin digestion, and alkylation

Each lysate was dried down and 150 ml of 8 M guanidine HCL, and 3ml
of Bond Breaker TCEP solution (Pierce) was added. The samples were
vortexed and incubated at 601C for 30 min. Iodoacetamide was added
to a concentration of 20 mM and then each sample was incubated at
room temperature for 30 min. The samples were diluted 10-fold with
freshly prepared 50 mM ammonium bicarbonate solution, pH 7.8 and
CaCl2 was added to a final concentration of 1 mM. Finally, trypsin was
added in a 1:50 (wt/wt) ratio of trypsin to sample protein, and the
samples were digested at 371C for 4 h.

Peptide concentration and cleanup

Each digest was desalted using Supelco (St Louis, MO) Supelclean C-18
tubes as described elsewhere (Masselon et al, 2005). Each sample was
concentrated using vacuum centrifugation to adjust the concentration
to be 1 mg/ml.

SCX fractionation of peptides and data
preprocessing

A measure of 300mg of a pooled sample of all glycerol adaptation
samples, lactate adaptation samples, and Dpgi study samples were
fractionated separately into 25 SCX LC fractions for analysis using a
LTQ iontrap mass spectrometer to obtain tandem MS (i.e. MS/MS) data
for peptides as described earlier (Qian et al, 2005). The MS/MS spectra
were analyzed using the peptide identification software SEQUEST (Eng
et al, 1994) in conjunction with the annotated protein translations
from the genome sequence of E. coli. 44 610 peptide identifications that
met the criteria of: (1) a minimum XCorr value of 2; (2) a minimum
discriminate score of 0.6 (Strittmatter et al, 2004); and (3) a peptide
prophet probability of at least 0.99 were used to build an accurate mass
and time (AMT) database with peptide sequences and normalized
elution times.

Accurate mass and time tag analysis of peptides

LC-MS spectra were analyzed using the accurate mass and elution time
tag approach (Zimmer et al, 2006). A detailed description of this
method is provided in the Supplementary information. The AMT tag
approach, in the end, provides peptide identifications along with their
abundances for all the data sets. The data for each peptide identified in
each sample were represented by the median value obtained across the
three LC-MS runs. These data were loaded into the software tool
DAnTE (Polpitiya et al, 2008) for further analysis. Peptide abundances
were transformed to log base 2 and an outlier check was applied by
observing the Pearson correlations between data sets. Any data sets
with weak correlations were excluded from further analysis. A linear
regression-based normalization method available in DAnTE was then
applied within each replicate category. The central tendency adjusted
peptide abundances were used to infer the corresponding protein
abundances through the ‘Rrollup’ algorithm in DAnTE (Polpitiya et al,
2008). During the Rrollup step, the Grubbs outlier test was applied
with a P-value cutoff of 0.05 to further remove any outlying peptides.
Protein expression values were computed with all data sets combined
(Supplementary Data 1), and for individual growth conditions
(Supplementary Data 2) for differential expression analysis. Data
may be downloaded at https://proteomecommons.org/dataset.jsp?i¼
74547(hash¼JenmtXBVI/RUip5X+dbDKDK8NXeJPVZBxMdbWqZz+
n1rV7H1g6WEBaeKo5mr4KXIplrB7cV4+pxDj+dVV6j9pmeclWEAA
AAAAAAFYw¼¼). The raw data may also be downloaded at http://
omics.pnl.gov/view/publication_1019.html.

Computation of differential expression

Differential expression was computed for all identified proteins and all
transcripts with a significantly higher expression than negative
controls on the microarrays (FDR¼0.05). The grand mean was
subtracted from the data sets of interest, and differentially expressed
genes and proteins were determined with a two-sample t-test. False-
discovery rate cutoffs were determined as discussed in Storey and
Tibshirani (2003).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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