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Abstract
T-type, low-voltage activated, calcium channels, now designated Cav3 channels, are involved in a wide variety of physiological
functions, especially in nervous systems. Their unique electrophysiological properties allow them to finely regulate neuronal
excitability and to contribute to sensory processing, sleep, and hormone and neurotransmitter release. In the last two decades,
genetic studies, including exploration of knock-out mousemodels, have greatly contributed to elucidate the role of Cav3 channels
in normal physiology, their regulation, and their implication in diseases. Mutations in genes encoding Cav3 channels
(CACNA1G, CACNA1H, and CACNA1I) have been linked to a variety of neurodevelopmental, neurological, and psychiatric
diseases designated here as neuronal Cav3 channelopathies. In this review, we describe and discuss the clinical findings and
supporting in vitro and in vivo studies of the mutant channels, with a focus on de novo, gain-of-function missense mutations
recently discovered in CACNA1G and CACNA1H. Overall, the studies of the Cav3 channelopathies help deciphering the
pathogenic mechanisms of corresponding diseases and better delineate the properties and physiological roles Cav3 channels.
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aldosteronism

Introduction

In the early 1980s, Llinas and Yarom [91] reported that hy-
perpolarization of inferior olivary neurons of the cerebellum
could reveal a low-threshold Ca2+ conductance, which was
inactivated at their resting membrane potential. The concept
of low-voltage activated (LVA) Ca2+ current then arose in the
neuroscience community as this conductance was described in
many different types of neurons, including thalamic [90], sen-
sory [19, 152], and hippocampal [165] neurons. This LVA
Ca2+ current, also typical for its fast inactivation (Transient)
and small unitary conductance (Tiny), was soon after named
“T-type” [110, 112]. The unique voltage sensitivity of T-type
Ca2+ channels is particularly well suited to regulate neuronal

excitability and their oscillatory behavior near the resting
membrane potential. A transient membrane hyperpolarization
arising from inhibitory post-synaptic potentials (IPSPs) or ac-
tivation of potassium (K+) channels deinactivates T-type
channels. A subsequent rebound in the membrane potential
triggers opening of T-type channels and favors a low-
threshold spike (LTS) that initiates rebound burst firing
(Fig. 1a). The role of T-type channels in bursting behavior is
physiologically relevant, especially in sleep [5, 84] with the
generation of sleep spindles. In the last two decades, following
the molecular cloning of the Cav3 (T-type) channels in the
2000s, genetic studies have greatly contributed to elucidate
the role of T-type channels in normal physiology, as well as
to identify their implication in diseases. Notably, mutations in
the genes encoding the Cav3 channels have been linked es-
sentially to neurodevelopmental, neurological, and psychiatric
diseases designated here as neuronal Cav3 channelopathies.

Cav3 channels: from molecular
to physiological diversity

Cav3 molecular diversity

Before the cloning era, a diversity within T-type channels
was already proposed, based on observed differences in
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inactivation properties and sensitivity to blockers, such as
nickel (Ni2+) ions [74]. The first cDNA coding for the
pore-forming subunit of a T-type channel was cloned in
1998 by Perez-Reyes and colleagues [119]. This was follow-
ed by extensive molecular cloning of several paralogs
(isoforms) and orthologs, mainly in vetebrates, leading to
the actual landscape of three genes (CACNA1G ,
CACNA1H, and CACNA1I) encoding the α1 subunit of T-
type channels, Cav3.1 (α1G), Cav3.2 (α1H), and Cav3.3
(α1I), respectively (Figs. 1, 2, and 3) (for representative re-
views, see [117, 118, 158]). The distinctive features of T-
type channels making them well suited to regulate excitabil-
ity (low voltage range for activation, ion selectivity, fast
kinetics for activation and inactivation) are conserved in
the most early-diverging animals, such as in Trichoplax
adhaerens, which expresses a single Cav3 channel [135].
Hence, genome survey in Salpingoeca rosetta indicates that

Cav3 channels have emerged more than a billion years ago in
an eukaryotic ancestor of choanoflagellates and metazoans
[103].

In mammals, the functional diversity in T-type channels
arises not only from the three genes expressing Cav3 isoforms
with distinct electrophysiological properties [13, 28] but also
from several alternative splicing events [56, 98, 99, 118].
Alternative splicing can generate multiple variants from a sin-
gle Cav3 isoform with significantly distinct electrophysiolog-
ical properties and drug sensitivity [25, 26, 54, 83, 101, 105,
132, 172]. Also, alternative splicing can regulate the Cav3
channel expression at the plasma membrane [133].
Alternative splicing could contribute to the clinical severity
of Cav3 channelopathies, as documented by in vitro studies
showing that disease-associated mutations exhibit distinct
electrophysiological properties when reproduced in different
splice variants [66, 122].

Cav3.1 Cav3.2 Cav3.3

a

b

c

Fig. 1 Electrophysiological
properties of T-type/Ca3
channels. a Illustration of the
implication of Cav3.1 channels in
rebound burst firing in
thalamocortical relay neurons, as
reported in [81].
Hyperpolarization deinactivates
T-type channels, which promotes
low-threshold spike and rebound
burst firing. This firing activity in
completely lost in thalamocortical
relay neurons from Cav3.1−/−

mice (for details, see [81]). b
Current traces for Cav3.1,
Cav3.2, and Cav3.3 channels ob-
tained in HEK-293 cells, illus-
trating their differences in inacti-
vation kinetics (see [13, 28]). c
Illustration of the Cav3 window
current that occurs in the range of
the resting membrane potential
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The tissue-specific expression of the Cav3 channels is
clearly important to consider when investigating their physio-
logical roles, as well as their implication in disease phenotypes
[131]. In mammals, all Cav3 channels are expressed early
during development. In adult, the three Cav3 isoforms are
expressed mainly in the central and peripheral nervous sys-
tems and also in neuroendocrine and cardiac tissues [101,
102]. Within the brain, in situ hybridization studies have
shown that the three Cav3 isoforms display both specific
and distinct patterns of expression [12, 144]. In addition,
Cav3 splice variants can be expressed in a tissue/cell-
specific manner and be developmentally regulated [118].
Until now, the lack of highly specific antibodies for any of

the Cav3 isoforms/variants has hampered precise analysis of
their tissue and cellular and subcellular distribution at the pro-
tein level [1, 100, 166], which was partly circumvented by the
generation of knock-in (KI) animals carrying epitope-tagged
Cav3 channels [8, 58].

Cav3 physiology

A hallmark of Cav3 channels is their unique ability to control
neuronal excitability, requiring small membrane depolariza-
tions to open (LVA), which distinguishes them from the
high-voltage activated (HVA) channels [108, 168]. Their
low threshold of voltage activation, coupled with their tonic

Fig. 3 Cladogram representation
of the Cav channel family
including the gene names and the
corresponding Cav subunits.
HVA stands for high-voltage ac-
tivated channels (L-, P/Q-, N-,
and R-types) and LVA stands for
low-voltage activated channels
(T-type). The channelopathies
column refers to the overall so-
called Ca2+ channelopathies, with
the detailed properties of the Cav3
channelopathies presented and
discussed in the text. The diseases
caused by mutations in the S6
segments of the corresponding
Cav channels are indicated (#)
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Fig. 2 Schematic representation
of the main Cav3 regulations (for
previous reviews, see [29, 73, 75,
170]). The yellow asterisks point
to the Cav3.2-selective
regulations, including the metal/
redox (His191, yellow circle) and
glycosylation (Asn192, red circle)
sites in S3–S4 extracellular linker
of the domain I
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inactivation near resting membrane potential, allows Cav3
channels to deinactivate and to underly the low-threshold
spike/rebound bursting phenomenon seen in many types of
neurons (Fig. 1a). The three Cav3 isoforms, which exhibit
distinct electrophysiological properties [13, 28] (Fig. 1b), reg-
ulate differentially neuronal excitability [12, 39, 100]. In ad-
dition, the Ca2+ influx through Cav3 channels can also directly
regulate intracellular Ca2+ concentrations [24, 51]. Indeed, all
three Cav3 channels display an overlap of their steady-state
inactivation and activation properties giving rise to a window
current (Fig. 1c) that ressembles a “background” Ca2+ current
[153]. It results from the activity of a small fraction of Cav3
channels remaining open in the voltage range near the resting
membrane potential [34, 40]. The physiological role of this
Cav3 window current is still poorly understood. It was shown
to contribute to the slow oscillation in non-REM sleep [46].

Genetic manipulation of Cav3 expression in the mouse has
provided significant information regarding the physiological
roles of neuronal Cav3 channels and a quick overview of the
findings obtained with Cav3 knock-out (KO)mouse models is
provided here. In KO mice for Cacna1g (Cav3.1−/−), no LVA
T-type current could be recorded in thalamocortical relay neu-
rons and these neurons showed no burst firing activity [81]
(Fig. 1a). In these animals, spike-and-wave discharges that
occur in absence epilepsy models were prevented. The loss
of thalamocortical oscillations was also observed in central
medial nucleus, which reflects the overall importance of
Cav3.1 channels in thalamic neurons [146]. Cav3.1−/− mice
were less prone to develop tonic seizures in the maximal elec-
troshock seizure test, compared with wt littermates and
Cav3.2−/− mice, suggesting a prominent role of the Cav3.1
isoform in mediating tonic seizure [127]. Interestingly, over-
expression of the Cav3.1 channel in a Cacna1g transgenic
mouse line results in a pure absence epilepsy phenotype with
no ataxia or other neurological disturbances [57], suggesting
that an increase in Cav3.1 current is sufficient to the patho-
genesis of spike-wave seizures. Cav3.1−/− animals display a
deficit in motor performance and in cerebellar learning [23,
94] and are resistant to harmaline-induced tremor [115]. In
these animals, the T-type current was also significantly re-
duced in the subiculum, which is involved in hippocampal-
dependent cognitive processes [79].

The KO mice for Cacna1h (Cav3.2−/−) exhibit a variety of
phenotypes including neurological deficits [36]. The nocicep-
tive role of Cav3.2 channels, which are highly expressed in the
dorsal root sensory neurons [10, 11, 136], was validated using
these Cav3.2 KO animals [41, 147] and further established
when Cav3.2 channels were selectively deleted in low-
threshold mechanoreceptor primary afferent neurons [58]. In
the brain, Cav3.2 is predominantly expressed in the dentate
gyrus of the hippocampus [1, 8]. In Cav3.2−/− animals sub-
jected to pilocarpine-induced status epilepticus, which models
temporal lobe epilepsy, the appearance of epileptic seizures

was strongly attenuated, validating the pro-epileptogenesis
role of upregulated hippocampal Cav3.2 channels [7, 151].
In addition, Cav3.2−/− mice show elevated anxiety and im-
paired hippocampus-dependent contextual memory and learn-
ing [38, 59].

Inactivation of Cacna1i in the mouse (Cav3.3−/−) resulted
in the loss of LVA Ca2+ currents in the thalamic reticular
nucleus (nRT) neurons and revealed a role of Cav3.3 channels
in sleep. Cav3.3 channels dominate nRT rhythmogenesis and
play a role in sleep spindles, the electroencephalographic hall-
mark of non-rapid eye movement (NREM) sleep [5, 85]. Of
note, experiments performed in double Cav3.3 and Cav3.2
KO mice revealed that the lack of Cav3.2 channels further
aggravates neuronal, synaptic, and EEG deficits in the
Cav3.3−/− background, indicating a role of Cav3.2 channels
in regulating nRT excitability and rhythmogenesis [116, 145].

Cav3 modulation

There is no evidence for a requirement of protein-protein as-
sociation to obtain “native-like” properties of T-type channels
when the Cav3 proteins are expressed in heterologous sys-
tems, as the HEK-293 cell line. This is contrasting with
HVA Ca2+ channels, the L-type Cav1.1 to Cav1.4, and neu-
ronal Cav2.1 P/Q-type, Cav2.2 N-type and Cav2.3 R-type,
which require the auxiliary α2/δ, β, and γ subunits for their
proper expression and function (reviewed in [108, 168]).
However, a regulatory role of several proteins was identified
for Cav3 channels, including the HVA auxiliary subunits [52],
Kelch-like 1 [3], Stac1 [126], or the putative “Ca2+ channel
and chemotaxis receptor domain containing 1,” CACHD1
[43] (Fig. 2). Regulation of Cav3 channels by such endoge-
nous proteins would more likely reflect the numerous signal-
ling pathways targeting Cav3 channels, as reported for the G
protein βγ-dimer [50, 162], calmodulin [33, 86], syntaxin-1A
[159], and spectrin α/β and ankyrin B [61] (Fig. 2).

The fine tuning of the functional properties of Cav3 chan-
nels by a large variety of endogenous pathways and ligands is
nowwell established [29, 73, 75, 170] (Fig. 2). One of the first
endogenous modulations described for Cav3 channels was the
inhibitory effect of the endocannabinoid anandamide [27].
Other bioactive lipids, including arachidonic acid [143], N-
acyl ethanolamides and polyunsaturated fatty acids [31], or
5,6-EET [21], were shown to also inhibit Cav3 channels in
the micromolar range through a direct interaction [32]. Cav3
channels are also modulated by phosphorylation pathways,
including the serine/threonine kinases, PKA and PKC [30,
71], Ca2+/CaM-dependent protein kinase II (CaMKII) [4,
161], rho-associated kinase (ROCK) [76], CDK5 [63], ex-
change factor activated by cAMP (Epac) [111], and
hypoxia-inducible factor (HIF) [18]. As demonstrated for
Cav3.2 channels, the phosphorylation status greatly influ-
ences the gating properties [9]. Phosphorylation also regulates
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an activity-dependent Ca2+ inhibition recently discovered for
Cav3 channels, especially Cav3.3 [22, 35]. Other post-
translational modifications regulating Cav3 channels, here
Cav3.2 channels, including ubiquitination [60] and glycosyl-
ation [114, 160] have also been described. These latter studies
point out that Cav3 isoform-specific modulations exist and are
important to investigate further as they represent physiologi-
cally relevant selective regulations (Fig. 2). Of interest, the
metal/redox modulation of T-type channels is also Cav3.2-
specific. Cav3.2 channels are selectively upregulated by re-
ducing agents such as L-cysteine, while the oxidizing agent
ascorbate produces Cav3.2 channel inhibition [148]. This re-
dox regulation occurs through the metal-catalyzed oxidation
of a histidine residue (His191 in the human isoform) localized
in the extracellular S3–S4 linker of domain I of Cav3.2 chan-
nel [72, 80]. Cav3.2 channels are also preferentially inhibited
by the trace metal zinc (Zn2+) with an IC50 in the
submicromolar range (∼ 0.8 μM), which is 100- and 200-
fold lower than Cav3.1 and Cav3.3 channels, respectively
[149]. Further studies, using a KI mouse model, have demon-
strated that His191 is important for fine tuning of neuronal
excitability in dorsal root sensory neurons [156].

Cav3 channelopathies

CACNA1G/Cav3.1 in late-onset cerebellar ataxia
ADCA/SCA42

The Cav3.1 channel is highly expressed in the cerebellum,
especially in Purkinje neurons [144], and was therefore a like-
ly candidate for cerebellar disorders, especially ataxia.
Hereditary cerebellar ataxias are rare neurodegenerative dis-
orders, characterized by a cerebellar syndrome (gait alteration,
limb incoordination, dysarthria, eye movement anomalies)
with or without other neurological symptoms [45]. Using link-
age analysis and whole-exome sequencing, CACNA1G was
linked to an autosomal dominant cerebellar ataxia (ADCA)
phenotype in three families, supporting its implication in
spinocerebellar ataxia SCA42 [44] (Fig. 3). A recurrent mis-
sense mutation causing the p.Arg1715His substitution in the
voltage sensor S4 segment of domain IV (IVS4, Fig. 4) of
Cav3.1 was identified in these three unrelated pedigrees.
This p.Arg1715His mutation affects the gating properties of
the Cav3.1 channel with the steady-state activation properties
shifted positively when expressed in HEK-293 cells. The ex-
pected reduction in channel activity was confirmed using
computer modeling in deep cerebellar nuclei neurons that
showed a decreased neuronal excitability. SCA42 is charac-
terized by a slowly progressive ataxia with a variable onset but
mainly in young adulthood. Athough the prevalence of
SCA42 is very low, the association of this p.Arg1715His-
Cav3.1 mutation with SCA42 was subsequently confirmed

in Japanese and Chinese families [82, 88, 104, 109].
Additional CACNA1G missense mutations have been identi-
fied in other SCA42 patients, including p.Arg1068Cys,
p.His1611Gln, and p.Pro2273His variants. However, they
have shown no statistically significant electrophysiological
effect in heterologous expression systems [44], while the var-
iant p.Met1574Lys [88] has not been yet electrophysiological-
ly explored. These additional CACNA1G variants clearly re-
quire further functional analysis to validate them as SCA42-
causative mutations. Recently a KI mouse model of SCA42
was generated [65], harboring the above described mutation
(p.Arg1723His in the mouse). Both heterozygous and homo-
zygous KI mice demonstrated an adult-onset mild ataxia phe-
notype with comparable levels of motor impairment using
rotarod and footprint tests, confirming the dominant inheri-
tance of SCA42. Significant Purkinje neuron loss and degen-
eration of the molecular layer were also observed. This mouse
model of SCA42 recapitulates well the observations made in
SCA42 patients, as well as the electrophysiological analyses
showing a positive shift of the voltage dependence of Cav3.1
channels [44]. Overall, this study confirms that SCA42 is
caused by the p.Arg1715His mutation in Cav3.1 [65].

CACNA1G/Cav3.1 in childhood cerebellar atrophy

Another set of de novoCACNA1Gmutations was identified in
a cohort of infants with childhood cerebellar atrophy (ChCA),
using a combination of candidate gene panel and whole-
exome sequencing [34]. ChCA is a devastating infantile
neurodevelopmental disorder, with severe motor and cogni-
tive impairments, cerebellar atrophy, and variable features in-
cluding facial dysmorphism, digital anomalies, microcephaly,
hirsutism, and epilepsy. Twomutations were identified in four
individuals, three patients carrying a p.Ala961Thr mutation
(in the Cav3.1 IIS6 segment) and one patient carrying a
p.Met1531Val mutation (in the Cav3.1 IIIS6 segment) [34]
(Fig. 4). Both mutations drastically altered the channel gating
properties, especially the inactivation properties, with a signif-
icant slowing of the inactivation kinetics (5 times) and a neg-
ative shift (− 10 mV) of the potential for half-inactivation. In
addition, these two mutations promoted a much larger win-
dow current that was fully inhibited by TTA-P2, a selective
Cav3 channel blocker [34]. Overall, this study has demon-
strated that p.Ala961Thr and p.Met1531Val are gain-of-
function mutations. Importantly, this first description of de
novo dominantCACNA1Gmutations causing ChCAwas con-
firmed by a recent study reporting on the same mutations
(p.Ala961Thr and p.Met1531Val), identified in three patients
and in one patient, respectively [6], strengthening the recur-
rence of these mutations in ChCA. The devastating conse-
quence of ChCA gain-of-function mutations in humans re-
veals that Cav3.1 channel has a critical role in setting up cer-
ebellar physiology during development. Further studies are
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necessary to uncover the pathogenic mechanism underlying
the ChCA condition and to establish more precisely the devel-
opmental and functional roles of Cav3.1 channels in the
cerebellum.

CACNA1G/Cav3.1 in epilepsy

Because of their presence in cortical and thalamic structures
and their role in modulating neuronal firing, T-type channels
have always been considered candidates for idiopathic gener-
alized epilepsies (IGEs). Interestingly, it was shown that
Cacna1g is a genetic modifier of epilepsy in a mouse model
of Dravet syndrome caused by mutations in the voltage-gated
Na+ channel gene Scn1a [16], as well as a modifier in a Scn2a
mouse model of focal epilepsy [15]. In humans, mutations in
CACNA1G have been reported in juvenile myoclonic epilepsy
patients [134]. However, the two reported missense mutations
coding for p.Ala570Val and p.Ala1089Ser substitutions had
no electrophysiological effect when explored in heterologous
expression system, questioning their pathogenic status on a
monogenic basis. A recent study has documented that IGEs
have complex (oligogenic or multigenic) inheritance patterns
with a likely combination of both common and rare genetic
risk variants required to cause the disease. Among them,
CACNA1G, carrying a high number of missense variants in
IGEs samples, still represents a susceptibility gene [55].

CACNA1G/Cav3.1 in other neurological diseases

Potential disease-causing variants in CACNA1G have also
been identified in intellectual disability/cognitive disorders
[106] and monoallelic deletions of the CACNA1G gene have
been associated with mild intellectual disability without cere-
bellum atrophy [123]. Also, CACNA1G was identified as a
candidate gene for autism spectrum disorder (ASD) in a subset
of cases [142] but the CACNA1G association with ASD has
yet to be replicated in a larger study [48]. CACNA1G also
appeared to be a candidate gene in essential tremor, one of
the most common movement disorders, with CACNA1G

variants identified in three families [113]. It is therefore likely
that the clinical spectrum of diseases associated with
CACNA1G mutations will increase in a near future.

CACNA1H/Cav3.2 in epilepsy

The CACNA1H gene, as CACNA1G, has received much at-
tention regarding its potential implication in inherited epilepsy
phenotypes. In some spontaneous mouse models of general-
ized epilepsy, the tottering (tg), lethargic (lh), and stargazer
(stg) mouse strains, an increase in T-type current density was
observed [169]. Strikingly, in the GAERS rat (Genetic
Absence Epilepsy Rats from Strasbourg), a missense muta-
tion, p.Arg1584Pro in Cacna1h, was found to co-segregate
with the slow-wave discharge phenotype [150]. In heterolo-
gous expression system, this missense substitution in the in-
tracellular loop linking the domains III to IV (LIII–IV) could
induce a gain of channel activity when introduced in a Cav3.2
splice variant containing exon 25 [14, 122].

In humans, several studies have reported associations be-
tween CACNA1H single nucleotide polymorphisms (SNPs)
and epileptic phenotypes, especially in idiopathic generalized
epilepsy (IGE) [42, 69, 87, 138], reviewed in [158, 167], since
the first report by Chen et al. [37] describingCACNA1H SNPs
in childhood absence epilepsy (CAE) patients. Functional
studies of several of these CACNA1H missense variants re-
vealed that they could modify biophysical properties or pro-
tein trafficking of Cav3.2 in heterologous expression systems
[69, 154, 155], in a loss- or gain-of-function manner. Many of
these missense variants were found in the intracellular loop
linking the domains I and II (LI–II) of Cav3.2 and one of
them, p.Cys456Ser (Fig. 4), significantly increased spontane-
ous firing and reduced the threshold for rebound burst firing,
when overexpressed in hippocampal neurons [53]. Yet, to
date, none of these CACNA1H variants has been undoubtedly
identified as causing seizure phenotypes. In other words,
CACNA1H variants are not causing monogenic epilepsy
[17]. As for CACNA1G, CACNA1H variants should be

A961T M1531V
M1549V / I (PA/FH4)

R1715H (SCA42)

C456S
(CAE)

(ChCA)
(ChCA)

R1346H
(SCZ)

Fig. 4 Schematic localization of the main Cav3 mutations described in
the text, including (i) the Cav3.1 mutations: p.Arg1715His in SCA42 [44,
65], p.Arg961Thr and p.Met1531Val in ChCA [6, 34]; (ii) the Cav3.2

mutations: p.Arg1549Val and p.Arg1549Ile in PA/FH4 [47, 130], and
p.Cys456Ser in CAE [53, 155]; and (iii) the Cav3.3 mutation:
p.Arg1346His in SCZ [2, 62]
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considered a risk factor for developing epilepsy, most likely
implicating other genetic and/or environmental factors [67].

CACNA1H/Cav3.2 in other neurological diseases

Four missense variants in the CACNA1H gene were identified
in six individuals with ASD and the corresponding Cav3.2
variants showed altered electrophysiological properties in het-
erologous expression [140]. Whether these CACNA1H vari-
ants segregate with the ASD phenotype remains to be validat-
ed as these variations have low penetrance and some of them
were also found in unaffected individuals. Additional
CACNA1H variants were reported in a patient with persistent
pain [137] and in patients with amyotrophy lateral sclerosis
[125, 141]. Again, further studies are needed to validate asso-
ciation of CACNA1H variation with these conditions.

CACNA1H/Cav3.2 in primary aldosteronism

Using whole-exome sequencing, Scholl et al. [130] identified
a recurrent missense mutation, p.Met1549Val, in the
CACNA1H gene in five unrelated patients from a cohort of
patients diagnosed with primary aldosteronism (PA) in early
childhood (Fig. 3). This point mutation resulted in a signifi-
cant gain of Cav3.2 channel activity. Soon after, Daniil et al.
[47] also performing whole-exome sequencing in PA patients
reported another substitution at this residue, p.Met1549Val,
with similar gain-of-function properties. Additional gain-of-
function mutations, p.Ser196Leu, p.Pro2083Leu, and
p.Val1951Glu, were also identified in this study [47]. If one
patient was diagnosed with minor mental retardation and mul-
tiplex developmental disorder, other patients showed no ap-
parent signs of seizures, cardiac arrhythmia, or muscular or
neurological alterations. CACNA1H-related PA is now de-
fined as familial hyperaldosteronism type 4 (FH4; [120]).

The Met1549 amino acid is located in highly conserved
sequence of the IIIS6 segment of Cav3.2 that lines the inner
part of the channel pore and is involved in channel inactiva-
tion [97] (Fig. 4), indeed at the same position as Met1531 in
Cav3.1 (Fig. 3). The two pathogenic substitutions of Met1549
(Val and Ile) confer ultraslow inactivation kinetics, significant
negative shift in the steady-state inactivation properties, and
an increased window current. These data support an increase
in channel activity and a rise in intracellular Ca2+ [47, 130].
Notably, all these mutants led to increased aldosterone pro-
duction and increased expression of the genes coding for ste-
roidogenic enzymes in the adrenocortical H295R cell line af-
ter K+ stimulation [47, 124]. AdditionalCACNA1Hmutations
causing PA/FH4 will likely be identified, as exemplified by
the recent description of a p.Ile1430Thr substitution (IIIS5
segment), in an aldosterone-producing adenoma [107].

CACNA1I/Cav3.3 in neurological/psychiatric diseases

Genome-wide association studies (GWAS), as well as the
identification of de novo variants in the CACNA1I gene, have
contributed to implicate CACNA1I as a genetic risk factor in
schizophrenia (SCZ) [64, 77, 129]. When expressed in the
HEK-293 cell line, one of the two Cav3.3 missense variations
identified in [64], p.Arg1346His (Fig. 4), resulted in a lower
expression level of the Cav3.3 protein, a reduced N-glycosyl-
ation, and a reduced expression at the plasma membrane, re-
ducing the Cav3.3 current but with no change in the electro-
physiological properties [2]. A KI mouse model was generat-
ed using the CRISPR/Cas9 editing approach to introduce the
p.Arg1305His orthologous mutation [62]. The homozygous
animals show altered excitability in the nRT and deficits in
sleep spindle occurrence and at NREM/REM transitions. This
animal model will facilitate further investigations of the role of
Cav3.3 channels in impaired sleep spindle and nRT function
in SCZ. Additional CACNA1I variants have been identified in
SCZ patients, confirming CACNA1I as a genetic risk factor in
SCZ [95, 163, 164]. CACNA1I is also considered a risk gene
in autism [93] and other complex neuropsychiatric disorders
[128].

Conclusions and perspectives

De novo gain-of-function mutations in Cav3 channels:
a wider group of S6-pathies?

These last years, many novel disease-related Cav3 channel
variants have been reported and some of them are causing
severe disorders. This is the case for the de novo gain-of-
function mutations in Cav3.1 and Cav3.2 channels in child-
hood cerebellar atrophy (ChCA) and primary aldosteronism
(PA/FH4), respectively. These deleterious missense mutations
involve residues, Ala961 and Met1531 in Cav3.1 and
Met1549 in Cav3.2, in the highly conserved S6 segments
lining the inner part of the pore channel (Fig. 4). These resi-
dues were implicated in Cav3 channel inactivation in earlier
structure-function studies [49, 97]. Notably, these “S6 muta-
tions” in Cav3.1 and Cav3.2 are reminiscent to several de
novo gain-of-function mutations recently described in other
genes encoding Cav channels (Fig. 3). These other Cav “S6
mutations” also cause severe, mainly neurodevelopmental,
clinical phenotypes. S6 mutations in CACNA1C, which en-
codes the Cav1.2 L-type channel, cause Timothy syndrome
(TS), a congenital long-QT cardiac arrhythmia with or without
severe neurological phenotypes, including autism and mental
retardation [89, 139]. There are S6 mutations in CACNA1D,
which encodes Cav1.3, another L-type channel, that causes a
neurodevelopmental disorder including ASD, intellectual dis-
ability with or without neurological (hypotonia, epilepsy) and
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endocrine (primary aldosteronism or hyperinsulinemic
hypoglycaemia) features (PASNA) [70, 121]. There are also
S6 mutations in Cav2.3, the neuronal R-type channel encoded
by CACNA1E, that causes developmental and epileptic en-
cephalopathies (DEE) [68]. There is also recent evidence for
de novo S6 mutations inCACNA1A, encoding the neuronal P/
Q-type Cav2.1 channel, linked to severe DEEwith intellectual
disability and variable motor symptoms [78]. All these S6
missense mutations share functional features: they significant-
ly impair the inactivation properties of the affected Cav chan-
nels, likely promoting increase in intracellular Ca2+ concen-
tration and the subsequent cellular damages caused by abnor-
mal Ca2+ homeostasis [96]. Considering the similarity in their
pathogenic mechanism, we tentatively propose here to define
this group of Ca2+ channelopathies as “S6-pathies.” Further
studies, exploiting animal models of the corresponding chan-
nelopathies, will help to identify the pathogenic mechanisms
underlying the diseases and better delineate the precise impli-
cation(s) of the corresponding Cav channels. Deciphering the
role of Cav3.1 and Cav3.2 in ChCA and PA/FH4, respective-
ly, should benefit from a combined effort of the “calcium
channelopathy” community.

Structural studies of Cav3 channels: further
deciphering of the disease mechanisms

High-resolution structural studies can provide atomic-level
views of disease mechanisms [20]. Notably, the Cryo-EM
structure of the Cav3.1 channel was recently reported
[171], opening new opportunities to better understand the
molecular and functional consequences of disease mutations
in Cav3.1 channel, as well as in Cav3.2 and Cav3.3 channels
by homology modeling. It is also anticipated that the phar-
macology of Cav3 channels will benefit from the develop-
ment of novel therapeutic approaches using structure-guided
drug discovery. Cav3/T-type channels have always been
considered promising pharmacological targets considering
their implication in a wide variety of neurological conditions,
including epilepsy and pain. However, until now, the clinical
development of drugs targeting Cav3 channels has not been
as successful as expected [92, 157], likely because of the
wide tissue expression of the Cav3 channels, the lack of
selective Cav3 channel blockers, and, beyond that, the lack
of Cav3 isoform-specific blockers. Further studies should
establish whether there is a therapeutic potential of Cav3
blockers in the treatment of ChCA and PA/FH4 diseases that
are directly caused by increased activity of the Cav3.1 and
Cav3.2 channels.
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