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Microfluidic single-cell transcriptional analysis
rationally identifies novel surface marker profiles
to enhance cell-based therapies
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Current progenitor cell therapies have only modest efficacy, which has limited their clinical

adoption. This may be the result of a cellular heterogeneity that decreases the number of

functional progenitors delivered to diseased tissue, and prevents correction of underlying

pathologic cell population disruptions. Here, we develop a high-resolution method of

identifying phenotypically distinct progenitor cell subpopulations via single-cell transcriptional

analysis and advanced bioinformatics. When combined with high-throughput cell surface

marker screening, this approach facilitates the rational selection of surface markers for

prospective isolation of cell subpopulations with desired transcriptional profiles. We establish

the usefulness of this platform in costly and highly morbid diabetic wounds by identifying a

subpopulation of progenitor cells that is dysfunctional in the diabetic state, and normalizes

diabetic wound healing rates following allogeneic application. We believe this work presents a

logical framework for the development of targeted cell therapies that can be customized to

any clinical application.
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C
ell-based therapies have been proposed for regenerative
medicine and wound healing applications1. Progenitor
cell therapies are being tested in clinical trials to either

directly address diabetic pathophysiology2, or to treat diabetic
complications such as retinopathy, critical limb ischaemic and
diabetic foot ulcers3. However, existing cell-based approaches
have been developed primarily empirically based on the ‘legacy’
surface markers (SMs) that were originally described for other cell
types4, making it difficult to decide how to proceed when trials
fail. Recently, there has been an increased understanding of the
heterogeneity of stem and progenitor cell populations5,6, as well
as a shift in the mechanistic hypothesis of cell therapies from
direct tissue engraftment to enhancement of dysfunctional
endogenous repair pathways7. Thus, there is a need to
rationally develop targeted cell-based approaches for specific
clinical applications through the selection of cell subpopulations
with desired transcriptional profiles.

Customized cell therapies require an in depth knowledge of
both disrupted cellular pathways in diseased tissue and
therapeutic cell SM profiles to isolate discrete cell pools for
application. Progress has been made in understanding gross
repair pathway disruptions in diseased tissues, which provides a
basis for rationally replacing deficient growth factors and
cytokines8–11. While enrichment of progenitor cells has shown
therapeutic promise12,13, a more granular understanding of the
subpopulation dynamics of diseased and therapeutic progenitor
cell pools has proven challenging because the resolution afforded
by traditional population-level assays is insufficient to capture the
complex relationships in heterogeneous cell populations14–16.
Standard approaches rely on pooling RNA or protein from
hundreds of thousands of cells to report aggregate gene
expression, and are thus unable to detect differential
distributions in gene expression among cell subgroups. Recent
advances in high-throughput, microfluidic technology have
enabled massively parallel single-cell gene expression analyses,
with the resulting data providing insights into the relationships
among cells in complex tissues17–20. Leveraging this technique in
previous work, we have combined single-cell transcriptional
analysis with advanced mathematical modelling to characterize
heterogeneity in putatively homogeneous populations, as well as
identify critical perturbations in cell subpopulations in pathologic
states21–24. Most recently, we have utilized single-cell analysis to
link defects in the neovascular potential of diabetic and
aged progenitor cells to the selective depletion of specific cell
subsets25–27. These findings support the concept of functional
heterogeneity within progenitor cell pools and highlight the
potential of highly selected cell therapies to reverse specific
cellular and pathophysiologic defects in diabetic and other
impaired tissues.

In this work, we sought to create a rational framework to
develop targeted cell therapies from heterogeneous progenitor
populations for specific clinical diseases such as diabetes.
Specifically, we hypothesized that single-cell transcriptional
analyses could prospectively identify physiologically distinct
progenitor cell subpopulations depleted in diabetes and with
enhanced wound healing activity, based on the differences in
individual cell gene expression distributions. Furthermore, the
parallel assessment of intra-cellular and surface targets would
enable subpopulation enrichment for therapeutic application by
providing novel cell surface ‘recipes’. Importantly, this
approach was designed to identify subpopulation-defining SMs
comprehensively (by testing all 386 markers with commercially
available antibodies) and blindly (assuming no mechanistic
hypothesis). This comprehensive, blind approach greatly expands
the potential SM pool and increases the likelihood of identifying
subpopulations with robustly expressed markers to select cells.

Results
Stem cell subpopulation and SM identification. Utilizing
human adipose-derived stem cells (hASCs) as a test progenitor
cell pool, we first obtained a comprehensive profile of hASC SM
expression through single-cell transcriptional analysis of ‘all’
known SMs with commercially available antibodies (Fig. 1a,
Supplementary Data 1). This allowed us to cast the widest
possible net in our search for novel subpopulation-defining
markers without relying on a priori assumptions of gene
expression. Using this approach, we identified over 200 markers
that were expressed within hASCs. Focusing on the B90 SMs
with highest, non-uniform expression (which are most likely to
distinguish biologically important cell subsets; Supplementary
Fig. 1), we identified a distinct subpopulation of hASCs that was
consistently present across multiple partitional clustering
permutations (Fig. 1b). This subpopulation could be defined with
high sensitivity and specificity by two SM genes (DPP4 and CD55;
Fig. 1c) and was present across multiple human patients
(Supplementary Fig. 2a–d). To confirm that this was not an
artefact, this transcriptionally defined subpopulation was
recapitulated on a protein level (Supplementary Fig. 2a–b), and
could be prospectively isolated based on the protein co-expression
of DPP4 and CD55 using fluorescence-activated cell sorting
(FACS) (Fig. 1d). To predict the function of this subpopulation,
we first identified the targets overexpressed in our initial experi-
ment (Supplementary Table 1) and evaluated their function based
on the published literature. We found that these cells expressed
increased levels of general stem cell markers (such as CD34 and
CD73), as well as genes associated with cancer stem cells (CD99
and ITGB3) and embryonic stem cells (GGT1), suggesting that
this subpopulation may have increased regenerative and wound
healing potential28–30.

Stem cell subpopulation verification and in vitro characterization.
To confirm that these cells were functionally distinct from the
parent pool, we performed repeat single-cell transcriptional
analyses with a new gene list focused on intra-cellular targets
thought to be important in wound healing (Supplementary
Fig. 2e)8–11. We found that the identified cell subset, defined by
and enriched via DPP4 and CD55 expression, displayed a
transcriptional profile with increased expression of ‘intra-cellular’
genes related to cell survival, stemness, blood vessel growth and
tissue remodelling (Fig. 1e–f, Supplementary Figs 2f, 4b). To extend
our results beyond the 96 genes explicitly analysed, canonical
pathways overrepresented in these cells were determined using
ingenuity pathway analysis (IPA) (Fig. 1g). These inferred
pathways included multiple cardiovascular and wound healing
processes, lending additional support to an enhanced wound
healing potential for this discrete cell subset.

We next sought to confirm the functional importance of the
DPP4/CD55 subpopulation. Starting in vitro we assessed cell
survival, stemness, proliferation and colony-forming capacity,
as these are idealized characteristics of effective cell therapies.
As predicted, subpopulation enrichment led to enhancement
in cell survival following exposure to an apoptotic stimulus
(Fig. 2a,b, Supplementary Fig. 3), improved cell robustness
as determined by proliferation and colony-forming capacity
(Fig. 2c,d), and prolonged expression of cell stemness markers
across extended passages (Fig. 2e).

Disease effects on stem cell subpopulation dynamics. We have
previously catalogued the depletion of progenitor cell subsets
from therapeutic cell populations in murine disease models25–27,
consistent with the hypothesis that cellular perturbations underlie
disease-specific sequelae. Building on this work, we verified that
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Figure 1 | Single-cell transcriptional analysis identifies a subpopulation of human ASCs with putatively enhanced regenerative potential. (a) Single-cell

transcriptional screening of all known cell SMs to identify those with differential expression (most useful for cell subtyping). Gene expression presented as

fold change from median (yellow—high expression, 32-fold above median to blue—low expression, 32-fold below median; grey—no expression).

(b) Single-cell analysis focused on high copy number, differentially distributed SM genes identified a cell subpopulation present across repeated k-means

clusterings. (c) Linear discriminate analysis (LDA) identified SMs for prospective subpopulation isolation, with ROC analysis of cluster sensitivity and

specificity utilizing the ‘best’ individual or groups of genes determined using forward feature selection. (d) Single-cell confirmation of prospective hASC

subpopulation isolation via FACS using two LDA-defined SMs (DPP4 and CD55). (e) Positive hASC subpopulation enrichment enhances gene expression

distributions for multiple genes related to tissue regeneration (selected significantly affected genes displayed as determined via Kolmogorov–Smirnov

testing). (f) Single-cell whisker plots and pooled cell RT-PCR demonstrating a confirmation of selected single-cell gene distribution findings on a population

level. (g) Top scoring IPA-constructed transcriptome network based on the genes significantly increased following positive hASC selection. Significant

‘seed’ genes are coloured in red to distinguish them from the remaining ‘inferred’ entities in the network. *indicates Pr0.05 for positive selection versus

hASCs or negative selection, via one-way ANOVA. Error bars represent s.e.m.
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Figure 2 | Effect of prospective hASC selection and co-morbidities on ASC subpopulation dynamics to inform cell source decisions. (a,b) Enrichment

for the transcriptionally identified hASC subpopulation enhances cell survival following exposure to an in vitro apoptotic stimulus (Fas ligand; measuring

caspase activation (red)), (c,d) increases cell proliferation and clonogenecity and (e) prolongs stemness marker (CD34) expression. (f,g) The

transcriptionally identified ASC subpopulation is significantly depleted and possesses deregulation of critical signalling pathways visible on single-cell

analysis in the setting of both diabetes and aging. Gene expression presented as fold change from median (yellow—high expression, 32-fold above median

to blue—low expression, 32-fold below median; grey—no expression). (h) Principal component projections of individual cells (left) and genes (right)

demonstrating considerable segregation among phenotypes, driven largely by vascular/tissue remodelling genes. (i) Single-cell transcriptional analysis of

healthy, aged and diabetic mASCs reveals that the depletion/dysfunction of cluster 1 cells in these states is not a the result of cell SM loss and

redistribution to other clusters (expression profiles of subpopulation-defining SMs and tissue remodelling genes highlighted). (j) Flow cytometric analysis

demonstrating dynamic DPP4/CD55 subpopulation increases in wild-type wounds, supporting their role in the wound healing process. The DPP4/CD55

subpopulation was also elevated in diabetic and aged wounds as compared with uninjured skin, with a trend toward compensatory overrecruitment

consistent with an impaired cellular functionality. *indicates Pr0.05 via one-way ANOVA or Student’s t-test (healthy versus aged or diabetic in f; day 7

versus respective controls in j). 4indicates Pr0.05 for positive versus negative selection via Student’s t-test. Error bars represent s.e.m. Scale bar, 50mm.
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this DPP4/CD55 subpopulation was abundantly present in the
adipose tissue of healthy mice (Supplementary Fig. 4). However,
we found that both diabetes and aging were associated with
decreases in the numbers of these cells in adipose tissue (Fig. 2f),
as well as deregulation of critical cellular wound healing signalling
pathways (Fig. 2g,h). This cellular dysfunction was not explained
by SM drift (Fig. 2i), and was confirmed in humans in the setting
of diabetes (Supplementary Fig. 5a). These data support the
disruption of a highly functional subset of progenitor cells
as a global mechanism for disease-specific complications and
impaired therapeutic cell functionality.

Consistent with the critical role of adipocyte precursors in
physiologic wound healing31, and supporting the clinical
potential of the identified cell subset, we found increased levels
of DPP4/CD55 cells in the healing wounds of healthy mice, which
returned to basal levels after wound closure (Fig. 2j). Increases in
the DPP4/CD55 subpopulation were also seen in diabetic and

aged wounds (Fig. 2j), however, trends toward compensatory
overrecruitment were observed in these pathologic states,
consistent with an impaired or deleterious cellular functionality.
These data support a diminished therapeutic potential of
autologous cells in these pathologic settings, even following
subpopulation enrichment, and suggest that allogeneic cell pools
may be more beneficial in patients with underlying disease.

Therapeutic efficacy of stem cell subpopulation enrichment.
Guided by these findings, we evaluated the in vivo therapeutic
potential of subpopulation-enriched, allogeneic ASC-based
therapies in the setting of impaired murine diabetic wounds. As
predicted based on the transcriptional and in vitro enhancements
of the identified ASC subpopulation, and its dysregulation in the
diabetic state, a single application of FACS-enriched healthy
ASCs accelerated wound closure rates and improved dermal
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Figure 3 | Prospective ASC selection enhances in vivo wound healing potential. (a–c) A single, local application of enriched mASCs to murine diabetic

wounds significantly accelerates wound closure rates (tracked via digital photography and serial wound area measurements) as compared with unsorted or

negatively selected cells, essentially normalizing diabetic murine wound healing kinetics. (d) Application of enriched mASCs to diabetic wounds also

significantly increases dermal regeneration. (e) Supporting a paracrine mechanism of action, enriched ASCs significantly upregulate fibroblast collagen

gene expression following exposure to enriched ASC conditioned medium, likely via increased growth factor expression (g). (f) Conditioned medium from

enriched ASCs does not have the same beneficial effect on diabetic wound healing as direct cell application despite enhanced growth factor expression (g),

highlighting the importance of sustained cytokine secretion with live-cell therapies. (g) Enrichment of diabetic ASCs does not correct growth factor

deficiencies, supporting the use of allogenic cells. For wound healing curves, Pr0.05 via one-way ANOVA indicated by: 4for positive versus negative

selection; $for negative selection versus unsorted cells; #for positive versus all groups; bfor positive selection versus no cell control. þ indicates Po0.05 via

one-way ANOVA for all comparisons. *indicates Pr0.05 via one-way ANOVA or Student’s t-test for remaining data (positive versus negative selection and

hASCs in e). Error bars represent s.e.m. Scale bar, 100mm.
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regeneration compared with application of unsorted or depleted
cells, effectively ‘normalizing’ diabetic healing to wild-type
kinetics (Fig. 3a–d). These cells persisted for up to 16 days in situ
(Supplementary Fig. 5b), likely acting via IPA-predicted cytokine-
mediated improvements in local wound healing pathways, and
the upregulation of fibroblast collagen production (Fig. 3e,g)32.
In the field of wound healing, very few interventions are capable
of ‘normalizing’ the wound healing timeline, demonstrating the
power of this approach. Importantly, depletion of this ASC
subpopulation completely abrogated the beneficial effects of cell
therapy (Fig. 3a–e), and enriched medium did not have the
same beneficial wound healing effect as a single direct cell
subpopulation application (Fig. 3f). Consistent with our single-
cell data demonstrating impairment of diabetic ASCs across
subpopulations, enrichment of diabetic ASCs did not restore their
wound healing capacity (Fig. 3g, Supplementary Fig. 6a). These
data suggest that healthy, enriched ASCs are both necessary and
sufficient to maximally improve wound healing using this
approach.

Regarding the safety of ASC application, one-time dosing was
used to limit allogenecity, and cell applications were tolerated
without local or systemic signs of rejection. Moreover, treated
wounds demonstrated considerable vascularity on closure
(Supplementary Fig. 6b), with no evidence of tumour formation
or wound breakdown 3 months after application. Further
increasing the clinical potential of these findings, rapid sub-
population enrichment of hASCs was also possible via magnetic-
assisted cell sorting (MACS) for the cluster-discriminating
SMs DPP4 and CD55 (Supplementary Fig. 6c), enabling a total
processing time (from tissue collection to cell application) on the
scale of an hour. These data demonstrate the potential utility
of targeted cell subpopulation enrichment for cell-based ther-
apeutics utilizing a process that is adaptable to virtually any
pathologic state.

Discussion
This work establishes the efficacy of single-cell analysis for the
rational enhancement of cell-based therapeutics by addressing
pathologic alterations in progenitor cell biology. Importantly, this
methodology overcomes the inherent challenges progenitor cell
heterogeneity imposes on our understanding of pathologic
cellular perturbations and the standardization of cell-based
approaches, and enables the logical assessment and development
of targeted cell therapies addressing an underlying cause of
specific clinical defects. Importantly, by making no a priori
assumptions of cell SM expression, this approach is adaptable
to any cell population. It also definitively informs decisions
regarding the utility of autologous versus allogeneic cell sources.

hASCs were the target population assessed here due to their
therapeutic potential, limited immunogenecity and safety
profile33–37. Our findings build on our previous work
demonstrating ASC subpopulation perturbations in diabetes27,
critically identifying novel SMs for prospective subpopulation
isolation, testing and therapeutic application. While there are
currently no FDA-approved progenitor cell treatments for
superficial wounds, multiple products containing mesenchymal
progenitors are in early stages of clinical testing1. Our data
support the safety and effectiveness of hASC therapies for the
treatment of diabetic wounds, and suggest that sub-fractionation
of other progenitor cell populations may similarly enhance their
therapeutic potential in this setting. On the basis of these findings,
future direct comparisons with other treatment modalities are
warranted. This experimental framework did not seek to address
the underlying defects of diabetes. We nonetheless envision that a
similar methodology would be beneficial to more curative cell
therapies, such as pancreatic islet cell transplantation. Given the

adaptability of this approach to any cell type, the authors feel this
technique has the potential to standardize and improve cell-based
therapies for any disease state.

Methods
hASC isolation. Human abdominoplasty specimens were obtained after acquiring
informed consent from patients, in accordance with the Stanford University
Institutional Review Board guidelines. For initial experiments, ASCs were collected
from the tissue samples of multiple adult female patients without major medical
conditions who were undergoing elective abdominoplasty procedures. For
experiments on the effect of diabetes on hASC subpopulations, ASCs were isolated
from consecutive patients (n¼ 3) undergoing elective bariatric surgery who met
predefined criteria for diabetes mellitus (haemoglobin-A1c (HgbA1c)46.5).
Controls for these experiments were adult patients without major medical
conditions undergoing elective abdominoplasty (n¼ 4) without a history of
diabetes mellitus or HgbA1CZ6.0). Human ASCs from all groups were isolated
based on an established protocol38. Raw human abdominoplasty specimens
were manually minced, washed and treated with 0.075% collagenase type I
(Sigma-Aldrich, St Louis, MO) in Hank’s balanced salt solution (Life Technologies,
Grand Island, NY) for 1 h at 37 �C with gentle agitation. The reaction was stopped
with the addition of fetal bovine serum (FBS), and after centrifugation, the pelleted
stromal vascular fraction was prepared for FACS as described below.

Animals. Young (3 months) and aged (21 months) wild-type mice (C57BL/6), and
young diabetic mice (db/db; BKS.Cg-Dock7mþ /þ Leprdb/J) were obtained from
Jackson Laboratories (Bar Harbor, ME) and the National Institute on Aging (NIA,
Bethesda, MD). Luciferaseþ /GFPþ mice (FVB-Tg(CAG-luc,-GFP)L2G85Chco/J)
were also obtained Jackson laboratories. All protocols were approved by the
Stanford Administrative Panel on Laboratory Animal Care.

mASC isolation. Murine ASCs (mASCs) were isolated from young, aged, diabetic
and luciferaseþ /gfpþ murine inguinal fat pads, minced and digested for 1 h at
37 �C using collagenase I (Sigma-Aldrich). After quenching the reaction and
centrifugation, the pelleted stromal vascular fraction (SVF) was prepared for FACS
as described below.

FACS. Fresh human or mASCs were sorted on a FACS Aria II instrument
(BD Biosciences, San Jose, CA) with the use of a 100-mm nozzle. Cells were isolated
as described above, and incubated for 20 min in FACS buffer (phosphate-buffered
saline (PBS) supplemented with 2% FBS) containing one of the following antibody
combinations: (1) anti-human ef-450-conjugated CD45 (eBioscience, San Diego,
CA), APC- or PE-conjugated CD34 (BD Biosciences), FITC-conjugated CD31
(BD Biosciences), PE- or APC-conjugated DPP4 (BD Biosciences) and PE-Cy7-
conjugated CD55 (Biolegend, San Diego, CA); (2) anti-mouse ef-450-conjugated
CD45 (eBioscience), APC-conjugated CD34 (Biolegend), PE-Cy7-conjugated
CD31 (BD Biosciences), FITC-conjugated DPP4 (BD Biosciences) and
PE-conjugated CD55 (Biolegend); or (3) anti-mouse PE-Cy7-conjugated CD45
(Biolegend), APC-conjugated CD34 (Biolegend), ef-450-conjugated CD31
(eBioscience), APC-Cy7-conjugated DPP4 (Abcore, Ramona, CA) and
PE-conjugated CD55 (Biolegend). Using a Becton Dickinson flow cytometric cell
sorter, cells were either sorted as single cells into 6 ml of lysis buffer for single-cell
transcriptional analysis, or as populations for subsequent culture. ASCs were
defined with the SM profile CD45� /CD31� /CD34þ (to exclude contaminating
hematopoietic and endothelial cells found within the SVF), and CD55 and DPP4
expression within this ASC population was used for positive and negative sub-
population selection (see Supplementary Fig. 2a,b for gating scheme). Cells sorted
for culture were plated onto conventional tissue culture plates in the DMEM
(Life Technologies) supplemented with 10% FBS and 1% P/S. Plated cells were
cultured under standard conditions (37 �C and 5% CO2) and used at or before
passage two. In vitro assays were run in triplicate unless otherwise stated.

In vitro survival assays. hASC survival was assessed using two methods following
exposure to the apoptotic stimulus Fas ligand (1, 10 or 100 ng per ml for 5 h;
Human Recombinant Super FasL; Enzo Life Sciences, Farmingdale, NY). Apoptotic
caspase activation was assessed using the CaspaTag Caspase 3–7 kit (Millipore,
Billerica, MA) according to the manufacturer’s instructions. Briefly, cells were
seeded on a chamber slide, and following exposure to FasL, cells were washed and
incubated for 1 h at 37 �C with the CaspaTag reagent solution. After washing, red
fluorescence was captured using a Leica DM5000 microscope (Leica Microsystems,
Inc., Wetzlar, Germany) equipped with a DFC300FX camera. Hoescht staining was
used to label nuclei, and untreated cells were used a control. Fluorescence intensity
(595 nm) was analysed using Image J software (NIH, Bethesda, MD). Brightfield
images were also obtained for assessment of apoptotic cell morphology.

Downstream annexin V activation was also assessed following FasL
exposure using the Mitochondrial Membrane Potential/Annexin V Apoptosis
kit (Invitrogen, Carlsbad, CA), according to the manufacturer’s instructions.
Following exposure to the FasL, cells were washed, lifted using trypsin and
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incubated with MitoTracker Red dye for 30 min at 37 �C and 5% CO2. Cells were
then washed, incubated in Alexa Flour 488 annexin V for 15 min, and analysed via
flow cytometry (FACS Aria II instrument; BD Biosciences). Untreated cells were
used as negative controls.

Cell proliferation. hASC proliferation was assessed following FACS sorting using a
BrdU proliferation assay. Sorted hASCs (2� 103) were seeded in 96-well plates
under standard culture conditions (DMEM with 10% FBS, 37 �C and 5% CO2).
After reaching B70% confluence, the cells were serum starved in DMEM
containing 0.5% FBS for 24 h to induce quiescence. Fully supplemented medium
was then re-applied for 18 h. BrdU (Cell Proliferation ELISA, BrdU; Roche, Basel,
Switzerland) was then added to the medium, and after an additional 6 h, cell
proliferation was assayed according to the manufacturer’s instructions.

Colony-forming assay. hASC clonogenic capacity was assessed by FACS sorting
single cells into each well of 48-well plates containing standard cell growth
medium. Medium was changed every 5–7 days, and at day 14 the number of cells
forming colonies (defined as a cluster of 30 cells or greater) was manually counted
using standard light microscopy.

Real-time quantitative PCR. Total RNA was isolated from sorted primary hASCs,
diabetic mASCs or human dermal fibroblasts (Life Technologies) using the RNeasy
Mini Kit (Qiagen, Germantown, MD) and transcribed to cDNA (Superscript
First-Strand Synthesis Kit, Invitrogen). Real-time qPCR reactions were performed
using Taqman gene expression assays (Applied Biosystems, Foster City, CA) for
human DPP4 (dipeptidyl-peptidase 4, Hs00175210_m1), CD55 (CD55 molecule,
decay accelerating factor for complement, Hs00892618_m1), TEK (Endothelial
Tyrosine Kinase, Hs00945146_m1), CD248 (CD248 molecule, endosialin,
Hs00535586_s1), JAG1 (jagged 1, Hs01070036_m1), CD47 (CD47 molecule,
Hs00179953_m1), COL1A1 (Collagen, Type I, Alpha 1, Hs00164004_m1), COL1A2
(Collagen, Type I, Alpha 2, Hs01028956_m1) or COL3A1 (Collagen, Type III,
Alpha 1, Hs00943809_m1); or murine Col1a1 (Mm00801666_g1), Col1a2
(Mm00483888_m1) or Col3a1 (Mm01254476_m1) using a Prism 7900HT
Sequence Detection System (Applied Biosystems). Expression levels of the target
genes were normalized to R18S (Eukaryotic 18S rRNA, Hs99999901_s1), GAPDH
(Glyceraldehyde 3-phosphate dehydrogenase, Hs99999905_m1) or Actb (b-actin,
Mm01205647_g1). Relative gene expression across conditions was calculated
following intra-donor normalization.

Murine wound healing model. Four-month-old male diabetic mice (db/db;
BKS.Cg-Dock7mþ /þ Leprdb/J, Jackson Laboratories) were randomized into
four treatment groups: no cells, unsorted cells (SVF) and positively selected
(DPP4þ /CD55þ ) and negatively selected (DPP4� /CD55� ) cells, isolated from
healthy, male 4-month-old wild-type mice via FACS as described above (n¼ 10
wounds per condition). Using an established protocol39, two 6 mm full-thickness
cutaneous wounds were excised on either side of the midline of the murine
dorsum, with each wound stented with silicone rings sutured in place to prevent
wound contraction. Following wounding, a total of 5� 105 cells in 80ml of saline
was injected sub-dermally in four sites around the wound edge, with the no cell
control group receiving saline injections only. All wounds were covered with an
occlusive dressing (Tegaderm, 3M, St Paul, MN). Digital photographs were taken
on day 0, 5, 9, 13, 17, 21 and 24. Wound area was measured using Image J software
(NIH). On closure, wounds were collected and fixed in 4% paraformaldehyde
overnight and embedded in paraffin, or immediately embedded in OCT (Sakura
Finetek USA, Inc., Torrance, CA). For analysis of dermal thickness, paraffin
sections were stained with hematoxylin and eosin (H&E, Sigma-Aldrich) and
average thickness was calculated from three measurements per high-power field per
wound. To assess vasculature in healed wounds, 7-micron thick frozen sections
were immunohistochemically stained for CD31 (1�—1:100 Rb a CD31 (Ab28364;
Abcam, Cambridge, MA); 2�—1:400 AF547 Gt a Rb, Life Technologies), with
nuclei stained with DAPI.

The effect of DPP4/CD55 ASC conditioned medium on diabetic wounds was
assessed using the same wound model in diabetic mice. Excisional wounds were
created as above, and treated at day 0 with 200 ml of conditioned medium collected
from primary sorted DPP4/CD55 mASCs (48 h incubation with DMEM/0.5% FBS
under standard culture conditions), or PBS, using a pullulan-collagen hydrogel
biodegradable scaffold40. Wounds were tracked until closure using digital
photographs as above.

The murine wound healing model was also used to assess DPP4þ /CD55þ cell
presence in healthy, diabetic and aged wounds, as compared with uninjured skin
(n¼ 4 wounds per condition). Briefly, cutaneous wounds were created on young
(3 months) and aged (21 months) wild-type mice (C57BL/6, Jackson Laboratories),
and young diabetic mice (db/db; BKS.Cg-Dock7mþ /þ Leprdb/J, NIA). Cutaneous
wounds were collected at days 3, 7 and 14, and the tissue was minced and digested
for 1 h at 37 �C using collagenase I (Sigma-Aldrich). Uninjured skin was used as
controls for each group. After quenching the reaction and centrifugation, the
pelleted SVF was prepared for FACS as described above. To exclude hematopoietic
lineage cells from this analysis, DPP4/CD55 cells were reported as the percentage of
CD45� cells that were CD31� /CD34þ /DPP4þ /CD55þ .

In vivo bioluminescence imaging. Viability of mASCs was assessed in vivo in
diabetic mice using bioluminescence imaging (n¼ 6 wounds per condition) based
on an established protocol40. Wounded mice were treated with 2.5� 105 luciferase
positive, DPP4/CD55 enriched or unsorted ASCs injected circumferentially in the
wound bed, as above. Mice were anaesthetised at multiple time points and injected
with 150 mg kg� 1 luciferin in PBS intraperitoneally. Images were obtained 10 min
later using a 30 s exposure time with a cooled CCD camera using the Xenogen
IVIS 200 System (Caliper Life Sciences, Mountain View, CA). Luminescence
was quantified as units of total flux in an area of interest subtracted from the
background luminescence. Images were taken serially until no bioluminescence
was detected.

ASC modulation of fibroblast collagen production. The effect of DPP4/CD55
healthy and diabetic ASCs on fibroblast collagen production was assessed following
fibroblast exposure to ASC conditioned medium. Conditioned medium was
collected from primary sorted DPP4/CD55 positive, negative and control hASCs,
or positive and control mASCs (24–48 h incubation with DMEM/0.5–1% FBS
under standard culture conditions). Human dermal fibroblasts (Life Technologies)
seeded at 1� 105 cells per well in a 6-well plate with DMEM/10% FBS for 24 h,
or primarily isolated murine dermal fibroblasts (obtained via overnight incubation
in trypsin (Invitrogen) followed by 1 mg ml� 1 Liberase TL (Roche))41, were then
exposed to hASC or mASC conditioned medium, respectively, for 48 h. The cells
were then washed, and total fibroblast RNA was isolated for RT-PCR as above.

In vitro ASC growth factor release. mASC platelet-derived growth factor-a
(PDGF-a) release was assessed following FACS sorting of healthy and diabetic
mASCs. Sorted mASCs (2� 104) were seeded in 24-well plates under standard
culture conditions (DMEM with 10% FBS, 37 �C and 5% CO2). After reaching
B90% confluence, the media was switched to DMEM containing 1% FBS.
After 24 h the media was collected and protein levels of PDGF-a were quantified
using a murine ELISA kit (R&D Systems, Minneapolis, MN) according to the
manufacturer’s instructions.

Magnetic-assisted cell sorting. MACS sorting of hASCs was performed using a
MultiSort Kit (Miltenyi Biotec, San Diego, CA). Freshly isolated human SVF was
stained with Biotin-conjugated anti-human CD55 (Biolegend) for 20 min on ice,
washed, stained with anti-Biotin MicroBeads, and enriched/depleted for CD55þ

cells using a MACS Separation Column (Miltenyi Biotec). The Multi-Sort Release
Reagent was used to dissociate MicroBeads from the cells, which were then labelled
with PE-conjugated anti-human DPP4 (Miltenyi Biotec). Cells were washed,
stained with anti-PE MicroBeads and enriched/depleted for DPP4þ cells using a
MACS Separation Column (Miltenyi Biotec). Sorted cells and unsorted controls
were stained with FACS antibodies as above for subsequent analysis.

Microfluidic single-cell analysis. Single-cell reverse transcription and low cycle
pre-amplification were performed using an established protocol22. Cell suspensions
of freshly isolated human or mouse SVF were sorted as single cells into each well of
a 96-well plate using a Becton Dickinson FACS Aria flow cytometer into 6 ml of
lysis buffer and SUPERase-In RNAse inhibitor (Applied Biosystems). Live/dead
gating was performed based on the propidium iodide exclusion. Reverse
transcription and low cycle pre-amplification was performed following addition of
Superscript III reverse transcriptase enzyme (Invitrogen), Cells Direct reaction mix
(Invitrogen), and target gene-specific TaqMan assay (primer/probe) sets (Applied
Biosystems; Supplementary Data 1, Supplementary Tables 2–4; 20 min at 50 �C,
2 min at 95 �C, followed by a gene target-specific 22-cycle pre-amplification
(denature at 95 �C for 15 min, anneal at 60 �C for 4 min, each cycle)).
Exon-spanning primers were used where possible to avoid amplification of
genomic background. Sample loading agent (Fluidigm, South San Francisco, CA)
and Universal PCR Master Mix (Applied Biosystems) was mixed with the resultant
single-cell cDNA and loaded into 96.96 Dynamic Array chips (Fluidigm) along
with TaqMan assays (Supplementary Data 1, Supplementary Tables 2–4) and assay
loading agent according to the manufacturer’s instructions (Fluidigm). Products
were analysed on the BioMark reader system (Fluidigm) using a hot start protocol
to minimize primer-dimer formation, 40 quantitative PCR cycles were performed.

Gene list generation. The approach to selection of B90 SM genes for initial
subpopulation analysis was one of exclusion, with a focus on SMs with the highest
potential for protein based sub-fractionation. Specifically, roughly 400 candidate
gene targets with known commercially available antibodies were initially screened
via single-cell analysis (Supplementary Data 1). Increasingly restrictive filters were
then used to remove targets that would be unlikely to yield FACS-separable
subpopulations (Supplementary Fig. 1)42. The approach excluded genes not found
to be expressed in our target population, followed by those expressed in 495% or
o5% of these cells. Of the remaining genes, those with the lowest median cycle
threshold value (corresponding to highest median copy number) were included in
the initial SM gene list (Supplementary Table 2, Supplementary Fig. 7a).
Subsequent human and murine gene lists were then generated using cluster
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defining genes (Fig. 1b) and intra-cellular targets thought to be important in
wound healing (Supplementary Figs 2e,7b,c; Supplementary Tables 3,4).

Statistical analysis. Results are presented as mean±s.e.m. Standard data analysis
was performed using a Student’s t-test or one-way analysis of variance (ANOVA),
with subsequent comparisons between individual methods completed using a
Tukey’s post hoc analysis. Wound healing curves were assessed at each time point
using one-way ANOVA (historical wild-type murine wound healing curve overlaid
for visual comparison). Results were considered significant for Pr0.05.

Analysis of single-cell data was performed using an established protocol21,22.
Expression data from all chips for each experiment were normalized to the median
expression of each gene in the pooled sample, before being converted to base 2
logarithms. Absolute boundaries defined as ±5 cycle thresholds from the median
(or 32-fold increases/decreases in expression) were placed and non-expressing data
points were allocated to this floor. To aid data visualization, colour-coded
clustergrams were then produced using hierarchical clustering, with a ‘complete’
linkage function and Euclidean distance metric (MATLAB, R2011b, MathWorks,
Natick, MA).

To identify subpopulations within this single-cell transcriptional data, k-means
clustering was used with a standard Euclidean distance metric, with each cell
assigned membership to each cluster as dictated by similarities in gene expression
distributions (decreasing the within-cluster sum of square distances in the
96-dimensional gene hyperspace) in MATLAB, and clustering was repeated for
k¼ 2 through 5. Optimally partitioned clusters were then sub-grouped using
hierarchical clustering to facilitate visualization of data patterning within
and across these clusters22.

Two-sample Kolmogorov–Smirnov tests were used to identify genes with
significantly different distribution patterns between population clusters and/or
groups, using a cutoff value of Po0.05 with Bonferroni correction for multiple
samples. For comparisons among subgroups, the empirical distribution of cells
from any given cluster was evaluated against the distribution of all the remaining
cells in the experiment.

To identify those SM gene combinations best able to distinguish each cluster,
forward feature selection was used using linear discriminate analysis with fivefold
cross-validation. The resulting receiver operating characteristic curves were
constructed to compare the sensitivity and specificity of each gene set in
discriminating the cluster of interest and areas under the curve (AUC) calculated.
Selection of the n¼ 2 gene model (CD55 and DPP4) was made subjectively based
on the breakpoints in the distribution of associated AUC values.

To construct transcriptome networks based on the genes significantly increased
following positive selection for the SM proteins CD55 and DPP4, IPA (Ingenuity
Systems, Redwood City, CA) was used. In this analysis, the 96 genes from the
corresponding single-cell analysis (as opposed to the entire transcriptome) were
defined as the reference set (that is, possibility space). This approach was taken to
prevent bias of enrichment calculations in IPA’s internal algorithm.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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