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Probing pairing symmetry in 
multi-band superconductors by 
quasiparticle interference
A. Dutt1, A. A. Golubov1,2, D. V. Efremov3 & O. V. Dolgov4,5

We study momentum and energy dependencies of the quasiparticle interference (QPI) response 
function in multiband superconductors in the framework of the strong-coupling Eliashberg approach. 
Within an effective two-band model we study the s± and s++ symmetry cases, corresponding to 
opposite or equal signs of the order parameters in the bands. We demonstrate that the momentum 
dependence of the QPI function is strikingly different for s± and s++ symmetries of the order parameter 
at energies close to the small gap. At the same time, the QPI response becomes indistinguishable for 
both symmetries at higher energies around the large gap. This result may guide future experiments on 
probing pairing symmetry in iron pnictides as well as in other unconventional superconductors.

Recent developments of the tunneling spectroscopy technique have allowed to make a great progress in elucidat-
ing the physics of high-temperature superconductors1–4. In particular, the analysis of quasiparticle interference 
provided information about the phase shift of the superconducting order parameter between different bands in 
most of the Fe-based superconductors (FeBS), which are in focus of research during past years5–8.

Most of the physical properties of FeBS are well established, but the symmetry of the superconducting order 
parameter is still under discussion. The studies of the thermodynamics of FeBS, and also the ARPES, revealed 
that the superconducting order parameter is a singlet and has a nodeless s-wave symmetry. Further investigations 
of the inelastic neutron and QPI spectra allowed to determine that the optimally doped FeBS have the supercon-
ducting order parameter with different signs on the electron and hole Fermi pockets, the so-called and s+− sym-
metry state. At the same time, there are materials with only electron bands, as in AFe2Se2, or hole bands, as in 
AFe2As2 (here A = K, Rb, Cs), in which the symmetry of the superconducting order parameter is different from 
s+−. Moreover, some of the recent experiments and theoretical investigations show that the sign can be changed 
either with doping or by an increase of disorder9–17. Therefore the important question to be addressed is, how 
universal is s± symmetry.

In the previous works18,19, it has been established that the qualitative determination of the superconducting 
order parameter is possible by studying the energy dependence of QPI spectra within the frequency window close 
to the small band gap. In the present paper, we explore the momentum dependence of the QPI-response function 
I(q, ω) to show the relation of the developed theory to experimental works, which use the momentum dependent 
QPI-response function at fixed energies. In the framework of the two-band Eliashberg model we show that Q(q, 
ω) is strikingly different for s++ and s± symmetries of the superconducting order parameter at energies close to 
the small gap.

The paper is organized as follows: In Sec. 2 we describe the model of QPI in the low energy limit. Under Sec. 3 
we present the results for the momentum dependence of QPI response function in a two-band model, consisting 
of an electron and a hole band. The behavior by which the QPI response function deviates from the conditions of 
perfect nesting, i.e. its dependence upon the ellipticity of the electron bands and the energy mismatch δμ between 
the two band pockets were explored. In the Sec. 4 the possible case for scattering between two electron (hole) 
pockets is discussed. Finally, in Sec. 5 we give the summary and the conclusion made from the data analysis.
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The model
In general, the single-particle correlation functions, including I(q, ω), in multiband systems with strong coupling 
interaction can be found by using the multiband extension of the Eliashberg theory20–27. The theory can be applied 
to Fe-based superconductors, since the Fermi surface of the moderately doped compounds consists of two or 
three relatively small and almost circular, hole-like pockets at Γ = (0, 0) and two elliptic electron pockets at 
M = (π, 0) and (0, π) points28–31. Furthermore, due to the small anisotropy of the order parameter in Fe-based 
superconductors, the good description can be achieved with use of ξ-integrated quasiclassical Green functions 

∫ω ξ ω=α α αˆ ˆN d kg G( ) (0) ( , ), where α is the band index. Further simplification can be done by consideration of 
an effective two-band model, since it was shown in32 that the problem in the clean limit can be treated in such 
representation. In the Nambu notations the full Green functions have the form:
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where the τ̂i denote Pauli matrices in Nambu space. Here ξα,k = εα,k − εF is the linearized dispersion at the Fermi 
energy. The order parameter φα

  and the renormalized frequency ωα  are complex functions of the frequency ω. 
Through the text we use retarded Green functions omitting the index R. The quasiclassical ξ-integrated Green 
functions ω τ τ= +α α αˆ ˆ ˆg gg ( ) 0 0 1 1 are obtained by numerical solution of the Eliashberg equations21
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The kernels ωαβ
φ ω∼K z( , ),  of the fermion-boson interaction have the standard form ?:
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For simplicity, we use the same normalized spectral function of the electron-boson interaction B(Ω) obtained 
for spin fluctuations in inelastic neutron scattering experiments33 for all the channels. The maximum of the spec-
tra is Ωsf = 144 cm−1 (Fig. 1), which determines the natural energy scale34,35. This spectrum gives a rather good 
description of the thermodynamical32 and optical36,37properties in the SC as well as normal states38. The matrix 
elements λαβ

φ  are positive for attractive interactions and negative for repulsive ones. Further for simplicity we will 
omit the subscripts ω and φ denoting λ λ=αβ

φ
αβ

  and λ λ= | |αβ
ω

αβ
∼

.
Scanning tunneling spectroscopy provides the differential conductance which is proportional to the local 

single particle density of states N(r, ω)

ω ω∝ | |
dI
dV

g Nr r r( , ) ( ) ( , ),2

where g(r) is the local tunneling matrix element. The local density of states is related to the single particle retarded 
Green functions:
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Here Tr[..] is taken over both Nambu and band indices. In the linear response approximation the perturbation of 
the density of states due to an impurity with the point-like scattering δ τ= αβÛ r U r( ) ( ) 3 reads:
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where ω
β

Ĝ p( , )clean  is the Green function in the clean case.
Below we consider the Fourier transform of δN(r, ω), according to the usual experimental procedure:
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In this approximation, the QPI response function is considered as a sum over response functions of the qua-
siparticle scattering between pairs of the pockets. Therefore the problem can reduced to an effective two-pocket 
model. To illustrate the most essential effects, below we will use the Fermi surface containing two pockets 
(see, Fig. 1), one hole-like and one electron-like. Correspondingly we linearize the energy spectrum near the 
Fermi-level:

Figure 1.  The QPI response function I(ω, q) of the scattering between the electron and the hole bands, for the 
s++ and s± symmetry of the superconducting order parameter at various momentum values with parameters as, 
ε = 200, δμ = 300 and φ = 0 with β = −1 at T = 1 cm−1. The transition temperature is Tc = 28 cm−1. Inset in the 
upper panel: the spectral function of the electron-bosonic interaction B(Ω).

Figure 2.  Schematic plot of the band structure. The blue dashed circle represents the shift of the hole pocket at 
Γ by = + q Q q.



www.nature.com/scientificreports/

4SCIENTIFIC REPOrTs |  (2018) 8:11594  | DOI:10.1038/s41598-018-30045-0

ξ

ξ θ

ε θ

= −

+ = −

∼ − + .

Γ Γ Γ
v

v

v

p p p

p Q p p

p p

( ) ( )

( ) ( ( ) )

( ) cos2

F F

M F F

F F

M M

M M

Here Q is the vector that connects the centres of the pockets situated at Γ and the M points, respectively, ε char-
acterizes the ellipticity of the electron bands (as shown in Fig. 2) and θ is the angle between p and x -axis. This 
expansion is valid for the momenta p that lie close to the Fermi surface and the ellipticity parameter obeys the 
condition that ε| |  v pF F. To keep the generality we will use the notation for the pockets as a and b. It is pertinent 
to introduce the chemical potential difference between the two bands such as δμ = vFb(pFa − pFb). Next, we intro-
duce the parameter β = vFb/vFa for the electron-electron and hole-hole band scattering and β = −vFb/vFa for 
electron-hole band scattering. The above approximation yields

ξ βξ θ φ
ε θ δμ

+ ≈ + −

+ + .

v q cosp q p( ) ( ) ( )
cos2 (8)

b a Fb

Figure 3.  Momenta dependence of the QPI response function for the scattering between an electron and a hole 
band, with parameters chosen as, δμ = 300 and ε = 200,and β = −1 at certain energies (i.e. ω = Δb, ωΔ < < Δb a 
and ω = Δa). Here, the panels (a),(b),(c) correspond to the s± (left) and s++ (right), respectively.
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Here, = + q Q q and φ is the angle between momentum vectors q and Q. The general expression for the response 
function, considering a constant density of states, has the following form18

ω ω ω= −I
N N

Im K Fq q( , )
2

[ ( ) ( , )], (9)
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where K(ω) is the coherence factor as follows
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 is 
the quasiparticle energy spectrum. To find the single particle gap function ωΔ

∼
α( ) and the renormalization func-

tion Z(ω), we employ the Eliashberg approach21,27. The angle averaged F-function in Eq. (9) reads:

Figure 4.  Evolution of momenta dependence of the QPI response function with Fermi-energy mismatch 
δμ = (a) 100, (b) 200 and (c) 500; with ε = 200 and β = −1 at ω = Δb = 18. Here, the panels (a),(b),(c) 
correspond to the s± (left) and s++ (right), respectively.
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where we define ω β β= | | + | |− Z E Z E( ) a a b b
1  and φ θ ε θ δμ θ φ= + + −v qq( , , ) cos(2 ) cos( )b . In this 

paper, we are focussing completely on the inter-band scattering (at the vector = + q Q q) aspect of the phenome-
non and parameter dependence of the response function at temperature T = 1, near the smaller band gap energy Δb.

Results and Discussion
In this section, we study the evolution of the momentum and the energy dependence of the QPI response func-
tion I(ω, q), with the change of the band parameters viz., the ellipticity of electron-like bands ε, the Fermi energy 
mismatch δμ (only finite and large value) between the bands and momentum parameter v qb . The model under 
consideration is schematically shown in Fig. 2.

For the calculation of the superconducting gap function we use the Eliashberg procedure with the 
spin-fluctuation spectral function9 having a peak frequency of Ωsf = 144 cm−1. The energy gaps value for the largest 
gap is Δa(ω) = 83 cm−1 and the smallest gap is Δb(ω) = 18 cm−1 at zero temperature. We will use cm−1 as the units 
of energy throughout the text. The coupling λ -matrix has the elements defined as λaa = 3, λab = ±0.2, λba = ±0.1, 
λbb = 0.5, with “+” sign for the s++ and “−” sign for the s± symmetry case, for data obtained in all the figures.

In Fig. 2, we plot I(ω, q) as a function of ω at various momenta for the s++ and s± symmetry, respectively. The 
QPI response function for fixed q has two or three extrema. The first two are strong peaks/dips, which are located 
at the energy of the superconducting gaps Δa and Δb. The third one is rather weak, has a strong q dependence and 
resides at the energy larger than Δa. The last one has the same character for both gap symmetries, and therefore, 
cannot serve as an indicator of the symmetry of the superconducting order parameter.

Comparing the first two extrema for s++ and s± symmetry of the superconducting order parameters, one 
can make an interesting observation. While I(ω, q), at the energy of the largest gap, shows a maximum for both 
symmetries of the order parameter, at the energy of the smallest gap, it has a different character, i.e. for s++ it has 
a maximum, and for s±, a minimum. It makes the energy windows close to the smallest gap, an important tool for 
determination of the symmetry of the superconducting gap18. Further, the examination of the evolution of QPI 
function with momentum, shows that, it has non-monotonic character and demands a special consideration.

Figure 5.  The QPI response function I(ω, q) of the scattering between the electron and the hole bands, for the 
s++ and s± symmetry of the superconducting order parameter at various momentum values with parameters as, 
ε = 200, δμ = 300, and φ = 0 with β = 1, and at temperature T = 1 cm−1.



www.nature.com/scientificreports/

7SCIENTIFIC REPOrTs |  (2018) 8:11594  | DOI:10.1038/s41598-018-30045-0

In Fig. 3, we show the 3D plots depicting the momentum dependence of I(ω, q) taken at the energy of the small 
band gap, at the energy of the large gap and at the energy between the large and the small gaps. The momentum 
dependence of the QPI response function at the energy close to Δb is depicted in Fig. 3(a). The response function is 
positive for all momenta in the case of s++ symmetry and negative for all momenta for the s± symmetry. It confirms 
the conclusion of the work18 of the possibility to use the QPI response function at the energy of the small gap as an 
indicator of the symmetry of the superconducting order parameter. Further analysis of the momentum dependence 
of the QPI response function shows that the peaks in I(ω = Δb, q) correspond to certain momenta, i.e. the case, when 
shifted by vector q, the pocket at Γ point touches the Fermi surface pocket at M point, as is show in Fig. 1.

For intermediate energy at ω = 40 cm−1, as shown in Fig. 3(b), although, the distinguishing features of peaks 
and dips are still present, the absolute values of the response function are much smaller than at the energy of the 
small gap. In addition, sign change also occurs in the response function for some momenta in the case for s++ 
symmetry. The response function starts to lose its indicative character for symmetry of the superconductivity. 
At energies close to Δa, as shown in Fig. 3(c), the behaviour of QPI response function is indistinguishable (apart 
from the intensity of the response function) in any qualitative manner and hence gives support to our assertion 
that, only the region of Δb is useful for probing the response behaviour in order to ascertain the nature of gap 
symmetry in an unambiguous way.

Figure 6.  The momentum dependence of the QPI response function with parameters as δμ = 300 and ε = 200 
at certain energies, for β = 1. Here, the panels (a),(b),(c) correspond to the s± (left) and s++ (right), respectively.



www.nature.com/scientificreports/

8SCIENTIFIC REPOrTs |  (2018) 8:11594  | DOI:10.1038/s41598-018-30045-0

In Fig. 4 we present the effect of finite ellipticity on the response function in the presence of various chemical 
potentials. We choose three categories for Fermi surface mismatch i.e. δμ ε< , δμ = ε and δμ ε>  at fixed electron 
band ellipticity ε = 200. In Fig. 4(a) we observe a diffused dip/peak across the v qF  values for s++ and s±. When the 
value of δμ becomes equal to the ellipticity, as in Fig. 4(b), we can clearly observe the shifting of dips/peaks 
towards larger momenta along 

v qF x axis and also their sharpening. Moreover, at low v qF  values the appearance of 
a peak/dip in the s± and s++ case is a new feature. This becomes much prominent for the case δμ ε> , as in 
Fig. 4(c), where it covers a large region of momentum value.

Hence, for large Fermi surface mismatch, at a given band ellipticity, the response peaks are located at higher 
v qF  values. The distinction between s++ and s± symmetry cases is still a robust feature that helps to determine the 

nature of pairing symmetry.

The case of the Fermi-pockets with the same nature (e-e or h-h).  In the light of recent theoretical 
results obtained39–43 with only electron pockets, we study and present the variation in response function behav-
iour, when sgn(β) is +1, with the 2D plot given in Fig. 5. We observe that the response peak at Δb depends on the 
symmetry of the superconducting order parameter, while, at the energy of the large gap Δa the response function 
is the same for s++ and s± symmetry. In general, the behaviour of the response function for the scattering between 
two electron bands, and the two hole bands is very similar to those described above for the scattering between 
electron and hole bands.

The mentioned above similarity to the scattering between an electron and a hole bands one can be observed 
in momenta dependencies of the response function shown in Fig. 6. The comparison of the Figs 3 and 6 shows 
that the momenta dependence is similar for ω = Δb. A small difference for other energies are not universal and 
may disappear with the variation of energy. It confirms the conclusion of18 that the QPI at the smaller band gap 
is a universal feature and may be used as an indicator of the symmetry of the superconducting order parameter.

Conclusion
We have analyzed the momentum and energy dependence of the QPI response function in the multiband super-
conductors in the presence of various band parameters. Within an effective two band model it was shown that the 
more informative is a behavior of this function near the at energies close to the small gap. It has been demonstrated 
that these dependencies can be used for identification of the superconducting order parameter in FeBS. We have 
found some peculiarities in the momentum dependence, which are related to the geometry of the electron and 
hole bands. These features may be important for identifying the Fermi pockets in the experiment. We have shown 
that the QPI response functions for s± and s++ order parameters are very similar for the energies at the largest gap 
functions and higher, but different at the energy of the smallest gap function. The result lends support to the asser-
tion that QPI is indeed a useful phase-sensitive technique18, within a certain energy range and, hence, may help to 
determine pairing symmetry and the nature of superconducting order parameter in Fe-based superconductors.
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