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Abstract: Objective: To explore whether the pretreatment dynamic contrast enhancement magnetic
resonance imaging (DCE-MRI) and radiomics signatures were associated with pathologic complete
response (pCR) to neoadjuvant therapy (NAT) in breast cancer. Method: A retrospective review of
70 patients with breast invasive carcinomas proved by biopsy between June 2017 and October 2020
(26 patients were pathological complete response, and 44 patients were non-pathological complete
response). Within the pre-contrast and five post-contrast dynamic series, a total of 1037 quantitative
imaging features were extracted from in each phase. Additionally, the ∆features (the difference
between the features before and after the comparison) were used for subsequent analysis. The least
absolute shrinkage and selection operator (LASSO) regression method was used to select features
related to pCR, and then use these features to train multiple machine learning classifiers to predict
the probability of pCR for a given patient. The area under the curve (AUC), accuracy, sensitivity, and
specificity were calculated to assess the predictive performances of the radiomics model for each of
the five phases of time points. Result: Among the five phases, each individual phase performed with
AUCs ranging from 0.845 to 0.919 in predicting pCR. The best single phases performance was given
by the 3rd phase (AUC = 0.919, sensitivity 0.885, specificity 0.864). 5 of the features have significant
differences between pCR and non-pCR groups in each phase, most features reach their maximum or
minimum in the 2nd or 3rd phase. Conclusion: The radiomic features extracted from each phase of
pre-treatment DCE-MRI possess discriminatory power to predict tumor response.

Keywords: breast cancer; magnetic resonance imaging; radiomics; neoadjuvant treatment;
treatment response

1. Introduction

Neoadjuvant therapy (NAT) has been widely used in the treatment of local late breast
cancer and has become an important part of comprehensive treatment of breast cancer [1,2].
It can downstage tumor, reduce the extent of surgery, and provide opportunities for breast
conserving surgery [3]. Previous studies have shown that patients who underwent NAT
had similar overall survival as those who received conventional adjuvant chemotherapy,
even though the disease-free survival (DFS) and overall survival (OS) can be improved
when patients achieve complete response to pathology (pCR) after NAT [4–7]. However,
the effect of treatment varies from patient to patient due to the high heterogeneity of breast
cancer, about 80% of patients respond to NAT, but only 6% of them can achieve pCR [8,9].
Therefore, the prediction of treatment response and the identification of non-responding
patients may be conducive to the adjustment of treatment strategies in time to avoid
ineffective chemotherapy.
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Dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) is increas-
ingly being used to evaluate the NAC response because of its high sensitivity and accu-
racy [10,11]. It not only reflects the morphological characteristics of the lesion, determining
the size and boundary of the residual tumor, but also evaluates the changes in tissue
function, microenvironment characteristics and metabolism [11–14].

Radiomics is a new emerging non-invasive method that extracts high-dimensional
features of image to reflect the heterogeneity of the entire tumor [15,16]. Different from
traditional MR signs, the radiomics features not only reflect the signal intensity, shape,
size and volume of the lesion, but also provide texture and high-order features after
wavelet transformation, which can quantitatively evaluate the whole tumor area and its
surrounding regions [17–21]. Previous studies have proved the possibility and potential of
radiomics in treatment evaluation; Fan et al.’s [22] analyzed a total of 158 image features
representing the morphology, texture, and background enhancement of the tumor on the
pre-treatment MR images. The results showed the radiomics features could be a valuable
biomarker related to the treatment response. Braman et al. [23] demonstrated that the
combination used of intra-tumor and peritumoral radiomic features based on pretreatment
DCE-MRI could effectively detect the pCR to NAT. Comes et al. [24] have also shown
that low-level CNN features based on pre-treatment MRI have high efficacy in predicting
pCR. However, most of these studies only use the features extracted from the single-phase
of DCE-MRI, which only reflected the spatial heterogeneity of the tumor at that point in
time. As has been well established, the enhancement pattern of the tumor will change
with the scanning time; therefore, the radiomic features from the multi-phase of post-
contrast-enhanced MR images may provide more information about the changes in tumor
characteristics over time point.

In this study, we extracted the radiomics features from all phases of post enhance-
ment images in DCE-MRI, and aimed to evaluate the predictive performance of different
combinations of feature selection in different time points.

2. Materials and Methods
2.1. Study Patients

We conducted a retrospective review of 70 patients with breast-invasive carcinomas
proven by biopsy between June 2017 and October 2020. All the patients met the following
inclusion criteria: pathologically confirmed invasive carcinoma; underwent breast MRI
before NAT; received at least 6 cycles of NAT; surgical resection was performed after
neoadjuvant chemotherapy, and the final pathological results were obtained. Exclusion
criteria: images with poor quality or severe artifacts; distant metastasis during NAT. Finally,
70 patients were included in the data analysis. All cases were female, aged 28–69 years,
with an average age of 47.11 ± 9.59 years.

The clinical and histological data including age, menstrual status, histological grade,
the expression status of estrogen receptor (ER), progestogen receptor (PR), HER-2 and
Ki-67 were collected.

2.2. MR Examination

All the examinations were performed in SIEMENS Verio 3.0T MR imaging system
with the patient in a prone position using a 4-channel breast surface coil. The MR imaging
examination consisted of the following protocol: T2 turbo inversion recovery magnitude
(TR 4300 ms, TE 61.0 ms, section thickness 4 mm, FOV 340 mm × 340 mm); axial 3D FLASH
T1 (TR 6.05 ms, TE 2.46 ms, section thickness 1.3 mm, FOV 340 mm × 340 mm); T2-weighted
turbo spin-echo (TR 4500 ms, TE 79 ms, section thickness 4.0 mm, FOV 340 mm × 340 mm).
DCE imaging was performed with one pre-contrast and five post-contrast dynamic series
using axial 3D FLASH T1 with fat suppression (TR 4.67 ms, TE 1.66 ms, section thickness
1.3 mm, FOV 360 mm × 360 mm). A 0.1-mmol/kg bolus of Gadobenate (Multihance,
BRACCO, Milano) was injected using high pressure injector, then followed by a 15 mL
saline flush.
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2.3. Assessment Response to Treatment

According to Miller&Payne system patients were divided into pCR group (n = 26)
and non-pCR group (n = 44). pCR was defined as the absence of residual invasive cancer
with or without ductal carcinoma in situ in the breast tissue and the absence of any tumor
deposits in the sampled axillary nodes.

2.4. Radiomic Analysis
2.4.1. Tumor Segmentation

Segmentation was performed using ITK-snap (version 3.8.0-beta, Orlando, FL, USA;
http://www.itksnap.org; accessed on 21 May 2021) on axial fat suppression T1-weighted
images obtained in a 6-image series, including pre-contrast image and 5 phases after
contrast material injection. The region of interest was manually drawn on each slice along
the contour of the tumor on the first postcontrast of DCE images to get the 3D segmentation
of the whole tumor. The region of interest (ROI) should cover all the tumor, including
the areas of necrosis and hemorrhage, but avoid edema, blood vessels, and the normal
fibroglandular tissue. Then, the 3D segmented contouring based on the 1st postcontrast
phase images were propagated to pre-contrast and other four post-contrast phases of
DCE images. Finally, all ROIs were reviewed by another breast radiologist (with 15 years
of experience).

2.4.2. Feature Extraction

Before the feature extraction, isotropic voxel was resampled into 1 mm × 1 mm × 1 mm
with linear interpolation for the purpose of normalizing the geometry of MR images. The in-
house platform AK software (Artificial Intelligence Kit, version 3.3.0, GE Healthcare, Shanghai,
China) was used to calculate the MR image features of 6 phases (pre-contrast and five post-
contrast phases), with a total of 1037 quantitative imaging features in each phase. Additionally,
the bin width was set to 5 due to the characteristics of MR images according to the image
biomarker standardization initiative (IBSI). The features can be classified into four groups,
including shape- and size-based features, first-order statistical features, texture features and
wavelet features.

The shape-based features were independent from the gray level intensity distribution
in the image and were measured using the shape descriptors of three-dimensional size and
shape of the ROI. First-order statistical features were used to describe the distribution of
voxel intensities. Texture features used a matrix to represent the spatial heterogeneity of
the intensity level. To further investigate the intra-ROI heterogeneity, wavelet filters were
applied to the original images to convert original images to versions focused on information
at different scales. wavelet decompositions with all possible combinations of high (H)- or
low (L)-pass filter in each of the three dimensions (HHH, HHL, HLH, LHH, LLL, LLH,
LHL, and HLL) were applied. The delta-features were calculated to represent the feature
changes of each post-contrast phase and to subsequent modeling analysis (Figure 1). We
use ∆features for the next analysis; ∆features were defined as the difference between the
pre-contrast features and pos-contrast features, as follows:

∆feature n = (Feature phase n − Feature pre-contrast)/Feature pre-contrast (n = 1, 2, 3, 4, 5)

2.4.3. Feature Selection

As the reproducibility of radiomic features may be influenced by the manual de-
lineation of ROI, the 30 patients including 150 ROIs were randomly chosen to take the
secondly segmentation. Additionally, we calculated the interclass and intraclass correlation
coefficients (ICC) of each feature for inter-observers and intra-observers. Any features
with ICC < 0.8 was considered unreliable and discarded. The z-score method was used
to standardize the features to decrease the influence of dimension. To further eliminate
redundant features, the Max-Relevance and Min-Redundancy (mRMR) was performed.
The remaining radiomic features may still have a larger size than the sample size, which

http://www.itksnap.org
http://www.itksnap.org
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may bring the risk of overfitting. Thus, we used the least absolute shrinkage and selec-
tion operator (LASSO) to select the most predictive features, and the Akaike information
criterion (AIC) was applied in the step method. Finally, logistic regression was used to
construct the model which was built as the weighted sum of the selected radiomic features.

1 
 

 

Figure 1. The workflow of the research.

2.4.4. Model Evaluation and Statistical Analysis

Models were evaluated by the ten-fold cross-validation method, which has been
widely used as a reliable approach to evaluate a model’s true generalization performance.
The diagnostic performance of the models was quantified by the area under the receiver
operating characteristics (ROC) curve (AUC), and the 95%CI confidence interval (CI)
of AUC were calculated. The optimal cutoff value was selected as the point when the
sensitivity plus specificity was maximal. The sensitivity, specificity and prediction accuracy
(ACC) of each model were also calculated in the cohort.

Normal distribution data are presented as mean ± standard deviation, whereas
non-normally distributed data are presented as median (25–75th percentiles). The two-
sample t-test or Mann–Whitney U test was used to evaluate differences in the response.
A repeated measures analysis of variance was applied to assess the differences in the
selected parameters at different time points in the same group, followed by the Bonferroni
correlation for post hoc pairwise comparisons. All statistical analyses were performed
with R software (R Foundation for Statistical Computing, Vienna, Austria; https://www.R-
project.org; accessed on 16 March 2021). p < 0.05 was considered statistically significant.
The workflow of radiomic research is shown in Figure 1.

3. Results
3.1. Patient Characteristics

The clinical characteristics of patients were shown in Table 1. There was no significant
difference in age, menstrual status, histological grade, the expression status of HER-2 and
Ki-67 between pCR and non-pCR group (p > 0.05). The number of patients with estrogen
receptor (ER) positive/progesterone receptor (PR) positive in pCR group were significantly
less than that in non-pCR group, and there were statistically significant differences between
these two groups (p < 0.05). In pCR group, the largest proportion is triple negative type
(34.6%), while in non-pCR group, the largest proportion is type Luminal B (63.7%). The
molecular subtype distribution shows a significant difference between the two groups
(p = 0.016).

https://www.R-project.org
https://www.R-project.org
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Table 1. Patient Characteristics.

Variable pCR (n = 26) non-pCR (n = 44) p-Value

Age (Mean years ± SD) 47.55 ± 10.29 46.92 ± 9.36 0.801
Menstrual status 0.939
Postmenopausal 13 (50.0) 21 (49.0)
Premenopausal 13 (50.0) 23 (51.0)

Histological type 1.000
IDC 26 (100) 43 (98.0)
ILC 0 (0.0) 1 (2.0)

Histologic grade 0.097
2 9 (34.6) 16 (36.4)
3 17 (65.4) 28 (63.6)

Molecular subtype 0.016 *
Luminal A 2 (7.7) 7 (15.9)
Luminal B 7 (26.9) 28 (63.7)

HER-2 enriched 8 (30.8) 3 (6.8)
TNBC 9 (34.6) 6 (13.6)

ER 0.004 *
Positive 9 (34.6) 31 (70.5)

Negative 17 (65.4) 13 (29.5)
PR 0.001 *

Positive 5 (19.2) 29 (65.9)
Negative 21 (80.8) 15 (34.1)

HER-2 0.734
Positive 12 (46.2) 18 (40.9)

Negative 14 (53.8) 26 (59.1)
Ki 67 0.092
<14% 5 (19.2) 12 (27.3)
≥14% 21 (80.8) 32 (72.7)

* p < 0.05; estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2),
triple negative breast cancer (TNBC).

3.2. Radiomics Signature Building

A total of 1037 quantitative imaging ∆features in each contrast phase were included
in the intra-class correlation. Features with ICC < 0.8 were excluded; 485 features were
selected for further analysis. Before feature selection, the abnormal or missing values were
replaced by the median, and features standardization was applied. Next, the mRMR and
LASSO were used to select the most optimal features. After the redundant and irrelevant
features were removed by mRMR, 50 features from each ROI were retained. Then, the
LASSO was applied to decrease the feature redundancy with the Akaike information
criteria. After the number of features was determined, the most predictive subset of
features was chosen and the corresponding coefficients were calculated.

All the ∆features extracted from each phase were listed Table 2. After features selection,
six features on Phase_1 model, 4 features on Phase_2 model, ten features on Phase_3 model,
nine features on Phase_4 model and eight features on the Phase_5 model remained in the
training set independently. These features are significantly different between non-pCR and
pCR groups (all p < 0.05).

Table 2. Radiomic features for each time point.

Phase 1

wavelet.LLH_glszm_ZoneEntropy
log.sigma.3.0.mm.3D_gldm_SmallDependenceEmphasis

wavelet.HHL_glszm_ZoneEntropy
log.sigma.3.0.mm.3D_glszm_GrayLevelNonUniformity

wavelet.LHL_gldm_SmallDependenceLowGrayLevelEmphasis
original_gldm_LargeDependenceHighGrayLevelEmphasis
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Table 2. Cont.

Phase 2

wavelet.HHL_glszm_ZoneEntropy
log.sigma.3.0.mm.3D_gldm_SmallDependenceEmphasis

original_glszm_GrayLevelNonUniformity
wavelet.HLL_glrlm_LongRunHighGrayLevelEmphasis

Phase 3

original_shape_Maximum2DDiameterSlice
wavelet.LLH_glszm_ZoneEntropy
wavelet.HHL_glszm_ZoneEntropy

original_glszm_GrayLevelNonUniformity
log.sigma.2.0.mm.3D_glcm_ClusterShade

original_gldm_LargeDependenceHighGrayLevelEmphasis
log.sigma.3.0.mm.3D_gldm_SmallDependenceEmphasis
wavelet.HLL_glrlm_LongRunHighGrayLevelEmphasis

log.sigma.2.0.mm.3D_glrlm_LongRunHighGrayLevelEmphasis
wavelet.LLH_firstorder_Median

Phase 4

wavelet.LLH_glszm_ZoneEntropy
original_glszm_GrayLevelNonUniformity

wavelet.HLH_glszm_ZoneEntropy
wavelet.HHL_glszm_ZoneEntropy

log.sigma.2.0.mm.3D_glcm_ClusterShade
wavelet.LLL_glcm_Correlation

log.sigma.3.0.mm.3D_glszm_GrayLevelNonUniformity
wavelet.LLH_gldm_SmallDependenceLowGrayLevelEmphasis

original_gldm_LargeDependenceHighGrayLevelEmphasis

Phase 5

wavelet.LLH_glszm_ZoneEntropy
original_glszm_GrayLevelNonUniformity

wavelet.HHL_glszm_ZoneEntropy
wavelet.LLL_glcm_Correlation

wavelet.HLH_glszm_ZoneEntropy
log.sigma.2.0.mm.3D_glcm_ClusterShade

log.sigma.3.0.mm.3D_glszm_GrayLevelNonUniformity
log.sigma.2.0.mm.3D_glrlm_LongRunHighGrayLevelEmphasis

3.3. Model Performance Evaluation

The ROC analysis was used to calculate the prediction performance of different
combinations of feature selection for each of the five time point phases in radiomics. AUC
under ROCs for each phase were shown in Figure 2 and Table 3. The result showed
each individual phase has good performance in predicting pCR with AUCs ranging from
0.845 to 0.919. The features extracted from the 3rd phase images after injection of contrast
agent had the best performance among all the phases with AUC = 0.919 (sensitivity 0.885,
specificity 0.864, accuracy of 0.857). This analysis suggests that the features extracted from
each phase potentially possess discriminatory power to predict tumor response from the
pre-treatment images.

3.4. Analysis of Features in Different Phases

Of all 37 features in the 1st–5th phases, there was overlap in the features selection in
different phases, of which eight features were selected repeatedly in more than two phases.
All these features were texture features from GLSZM GLDM GLCM and GLRLM, and half
of the features underwent wavelet transformation.

Further analysis of these eight features, Table 4 showed the feature values between
pCR and non-pCR groups in different time points. The results showed that one feature has
different values at different time points, the feature value changes as the scanning time
progresses, and most features reach their maximum or minimum in the 2nd or 3rd phase.
Moreover, five of these features have significant differences between pCR and non-pCR
groups in each phase and three of them were ZoneEntropy-associated descriptors.
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Table 3. Comparison of predictive performance of six models in the cohort.

Model AUC (95%CI) Sensitivity Specificity Accuracy Youden Index

Phase 1 0.858(0.757–0.959) 0.886 0.808 0.786 0.694
Phase 2 0.845 (0.753–0.938) 0.614 0.923 0.771 0.537
Phase 3 0.919 (0.842–0.996) 0.864 0.885 0.857 0.748
Phase 4 0.906 (0.835–0.978) 0.841 0.885 0.843 0.726
Phase 5 0.892 (0.815–0.968) 0.773 0.923 0.786 0.696

Table 4. The selected ∆features in the non-pCR and pCR groups at each time point.

Time Point non-pCR (n = 26) pCR (n = 44) Statistics p-Value

wavelet.LLH_glszm_ZoneEntropy
Phase 1 0.19 (0.13, 0.24) 0.13 (0.08, 0.16) 3.257 0.001 *
Phase 2 0.19 (0.17, 0.26) 0.14 (0.10, 0.21) 3.124 0.002 *
Phase 3 0.20(0.17, 0.27) 0.13(0.10, 0.20) 3.343 0.001 *
Phase 4 0.19(0.17, 0.26) 0.13(0.09, 0.21) 3.367 0.001 *
Phase 5 0.20(0.16, 0.26) 0.13(0.10, 0.20) 3.379 0.001 *

original_glszm_GrayLevelNonUniformity
Phase 1 1.41(0.71, 2.55) 0.87(0.53, 1.69) 2.018 0.044 *
Phase 2 2.32 ± 1.20 1.60 ± 0.91 2.837 0.006 *
Phase 3 2.41 ± 1.09 1.64 ± 0.83 3.096 0.003 *
Phase 4 2.26 ± 0.99 1.60 ± 0.79 3.071 0.003 *
Phase 5 2.23 ± 0.91 1.55 ± 0.76 3.358 0.001 *

log.sigma.3.0.mm.3D_gldm_
SmallDependenceEmphasis

Phase 1 2.08 ± 1.19 1.44 ± 0.90 2.578 0.012 *
Phase 2 3.01(2.54, 3.62) 2.59(1.77, 2.84) 2.723 0.006 *
Phase 3 3.14(2.35, 3.57) 2.54(1.99, 2.93) 2.443 0.015 *
Phase 4 2.93(2.17, 3.58) 2.39(1.88, 2.90) 2.261 0.024 *
Phase 5 2.88 ± 1.02 2.31 ± 0.88 2.502 0.015 *
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Table 4. Cont.

Time Point non-pCR (n = 26) pCR (n = 44) Statistics p-Value

wavelet.LLL_glcm_Correlation
Phase 1 0.03 ± 0.07 0.05 ± 0.08 −1.033 0.305
Phase 2 0.01 ± 0.08 0.03 ± 0.08 −1.342 0.184
Phase 3 −0.02 ± 0.08 0.02 ± 0.09 −1.997 0.05 *
Phase 4 −0.01(−0.09, 0.05) 0.01(−0.01, 0.07) −1.92 0.055
Phase 5 −0.02(−0.09, 0.03) 0.02(−0.01, 0.05) −2.601 0.009 *

wavelet.HHL_glszm_ZoneEntropy
Phase 1 0.42(0.11, 0.71) 0.18(0.06, 0.33) 2.686 0.007 *
Phase 2 0.47(0.20, 0.80) 0.22(0.08, 0.39) 3.051 0.002 *
Phase 3 0.50(0.20, 0.87) 0.20(0.09, 0.36) 3.33 0.001 *
Phase 4 0.49(0.17, 0.70) 0.23(0.09, 0.35) 2.662 0.008 *
Phase 5 0.46(0.20, 0.78) 0.23(0.10, 0.33) 3.257 0.001 *

log.sigma.2.0.mm.3D_glcm_
ClusterShade

Phase 1 −5.36(−31.94, 0.52) 1.98(−2.03, 26.89) −3.233 0.001 *
Phase 2 −4.11(−33.18, 6.39) 3.39(−7.09, 60.64) −2.127 0.033 *
Phase 3 −5.72(−30.67, 7.14) 3.97(−6.00, 55.44) −2.37 0.018 *
Phase 4 0.25(−31.26, 9.41) 3.71(−5.23, 61.37) −1.993 0.046 *
Phase 5 0.02(−29.43, 11.50) 6.43(−3.48, 56.29) −1.872 0.061

log.sigma.2.0.mm.3D_glrlm_
LongRunHighGrayLevelEmphasis

Phase 1 0.20(−0.12, 0.45) −0.02(−0.23, 0.26) 1.155 0.248
Phase 2 0.27 ± 0.57 0.10 ± 0.44 1.378 0.173
Phase 3 0.33 ± 0.58 0.08 ± 0.43 2.102 0.039 *
Phase 4 0.34 ± 0.61 0.08 ± 0.42 1.935 0.06
Phase 5 0.28(−0.20, 0.68) 0.00(−0.30, 0.31) 1.69 0.091

wavelet.HLH_glszm_ZoneEntropy
Phase 1 0.37(0.19, 0.61) 0.16(0.06, 0.35) 2.565 0.01 *
Phase 2 0.39(0.26, 0.63) 0.24(0.12, 0.39) 2.82 0.005 *
Phase 3 0.41(0.25, 0.65) 0.23(0.12, 0.39) 2.929 0.003 *
Phase 4 0.43(0.23, 0.68) 0.23(0.13, 0.34) 2.808 0.005 *
Phase 5 0.42(0.22, 0.67) 0.24(0.11, 0.37) 2.893 0.004 *

* p < 0.05.

4. Discussion

This study investigated the ability of machine learning model based on pretreatment
multi-phase DCE-MRI to predict tumor treatment response of NAT. The results indicated
that the radiomics features of the images in each post-enhancement phases have good
performance for predicting pCR.

Most of the previous research on breast cancer radiomics only focused on the features
extracted from one single phase after enhancement [25,26]. The prediction performance
of other phases of DCE-MRI was still relatively unexplored. In this study, we made full
use of all the phase in DCE-MR imaging, and analyzed the predictive abilities of the
machine learning model in different phase. We found that each individual phase has good
performance in predicting pCR (AUC = 0.858, 0.845, 0.919, 0.906 and 0.892). The model
based on features extracted from 3rd phase image has the best prediction performance
with an AUC value of 0.919. One possible explanation for this result is that the most
aggressive tissue components of tumor appear to be enhanced in the early stage, while
the enhancement of relatively less aggressive components gradually increase. Therefore,
compared with the 90 s after the injection of the contrast agent, in the 3rd phase (about
150 s), the internal components of the tumor were enhanced more comprehensively and
showed higher heterogeneity. In our study, half of the features were wavelet-transformed
feature. This indicates that the wavelet transformed feature may have a high correlation
with pCR in each phase. The wavelet transformation can concentrate the intensity and
texture features of the original image in different frequency ranges within the tumor volume
and separate images into high frequency (heterogeneity) and low frequency (homogeneity);
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therefore, many studies on radiomics use wavelet transform features to build predictive
models. Mahrooghy et al. [27] found that the wavelet features extracted based on DCE-MRI
can reflect the heterogeneity of breast cancer, and the constructed breast cancer prognosis
classification model also has high predictive power. Zhou et al. [28] also indicated the
inclusion of wavelet features may improve the performance of the prediction model.

Additionally, the eight features repeatedly selected in multiple phases were all tex-
ture features. ZoneEntropy, GrayLevelNonUniformity and Small DependenceEmphasis
weretexture features quantifying uncertainty or randomness of the image value, and may
associated with tumor heterogeneity [29]. In this study, the result in Table 4 showed that
the level of texture features (e.g., ZoneEntropy, GrayLevelNonUniformity, Small Depen-
denceEmphasis) in pCR group was significantly lower than that in non-pCR group. Prior
studies demonstrated that tumors in the non-PCR group were found to contain necrosis,
neovascularization, and sclerosis in addition to intermingled tumor cells, which resulted in
mixed internal components of the lesion, so it was more likely to appear as heterogeneous
in the image [6,30,31]. Thus, the features which related to image heterogeneity expressed
more strongly within the region of non-responders during each enhancement phase in
pretreatment images, and may be associated with poor prognosis. Previous studies also
confirmed the utility of texture features in predicting the pathological response of breast
cancer to neoadjuvant chemotherapy. Braman et al. [23] analyzed pretreatment breast DCE-
MRI images and found that the combination use of intratumoral and peritumoral texture
features could predicting pCR to neoadjuvant chemotherapy. Chamming’S et al. [18] also
indicated that the texture features extracted from pretreatment MR image could distinguish
the molecular subtypes of breast cancer.

There are still deficiencies in this study. This study is based on a limited number of
patients. A larger sample size is needed to verify the validity and practicability of these
classifiers. Additionally, we only analyzed the T1-weighted image after contrast material
injection, T2-weighted image, DWI and other multiple sequences need to be analyzed in
the later stage of the study to construct a multimodal MR radiomics model.

5. Conclusions

The delta radiomic features extract from pre-treatment DCE-MRI could be the pre-
dictor of NAT response, and the radiomics model constructed in our study can effectively
predict pCR.
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