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Abstract
Integrating the information coming from biological samples with digital data, such as medical images, has gained prominence 
with the advent of precision medicine. Research in this field faces an ever-increasing amount of data to manage and, as a 
consequence, the need to structure these data in a functional and standardized fashion to promote and facilitate cooperation 
among institutions. Inspired by the Minimum Information About BIobank data Sharing (MIABIS), we propose an extended 
data model which aims to standardize data collections where both biological and digital samples are involved. In the proposed 
model, strong emphasis is given to the cause-effect relationships among factors as these are frequently encountered in clini-
cal workflows. To test the data model in a realistic context, we consider the Continuous Observation of SMOking Subjects 
(COSMOS) dataset as case study, consisting of 10 consecutive years of lung cancer screening and follow-up on more than 
5000 subjects. The structure of the COSMOS database, implemented to facilitate the process of data retrieval, is therefore 
presented along with a description of data that we hope to share in a public repository for lung cancer screening research.
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Introduction

The term “biomarker” [1, 2] has become a central concept 
in the era of precision medicine, with a broad definition 
encompassing information from molecular, histologic or 
physiologic characteristics, as well as quantitative param-
eters extracted from medical imaging. In large part however, 
these fields have evolved independently leading to heteroge-
neity of data and isolation of datasets. Integrating so-called 

-omics data across types and sources in order to facilitate 
clinical trials [3, 4] and support discovery and validation of 
findings, argues strongly for the establishment of structured 
repositories.

Progress has been made in the area of non-digital biologi-
cal samples through initiatives such as the BBMRI-ERIC 
(“Biobanking and BioMolecular Re-sources Research Infra-
structure-European Research Infra- structure Consortium”) 
dedicated to support European biobanks [5]. BBMRI-ERIC 
have created guidelines to facilitate biological data exchange 
among institutions, which have resulted in the Minimum 
Information About BIobank data Sharing (MIABIS) [6]. 
In its most recent extension, MIABIS generalizes the con-
cept of biobanks to provide recommendations on how to 
describe a wider range of datasets in terms of the nature of 
the samples, the sample donors, scientific research on sam-
ples, and the associated data [7]. These recommendations 
cover a wide range of fields, distinguishing MIABIS from 
other more focus-specific initiatives such as the International 
Classification of Disease for Oncology [8], which proposed 
an ontology of oncologic pathologies, or the Systematized 
Nomenclature of Medicine Clinical Terms (SNOMED CT) 
[9], which is aimed at standardizing clinical terms to report 
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findings, symptoms, diagnoses and procedures. These initia-
tives tend to focus on a lower-level description of the data 
with respect to the general view provided by the MIABIS 
data model. In addition, MIABIS is moving to accommodate 
the concept of digital biological imaging samples and data-
driven biobanks, according to the need for data integration 
in structured repositories.

In parallel with the growing use of biological and clinical 
imaging is their quantitative analysis via computer assisted 
diagnosis (CAD) systems exploiting radiomics [10, 11] 
and artificial intelligence (AI) [12] approaches to support 
time-consuming and error-prone research and clinical pro-
cedures [13, 14]. A critical component in developing appli-
cations based on these new technologies is the availability 
of labelled data in sufficiently large cohorts to identify and 
validate correlations between radiological imaging and the 
pathological substrate or patient prognosis [15, 16]. In this 
context, a small number of public imaging archives have 
been established to allow sharing imaging data among insti-
tutions [17], that are often used to externally validate derived 
imaging biomarkers.

Data sharing, therefore, has a fundamental role in advanc-
ing both research and clinical analyses [18–20]. Apart 
from some indications reported by Castro et al. [16] and 
Finke et al. [21] however, there are limited guidelines in 
the literature [21] on documenting imaging acquisitions 
and associating images to other clinical information. Thus, 
the possible definition of queries remains limited, and the 
transition between datasets is not straightforward. These 
limits on sharing data are even more evident when deal-
ing with large datasets where thousands of images are col-
lected, such as the case of lung cancer screening studies 
[22]. With lung cancer being one of the leading causes of 
cancer-related death, multiple institutions have carried out 
screening programs [23–25] based on low-dose Computer-
ized Tomography (LDCT) to understand the potential of the 
prevention program, and subsequently define strategies for 
pulmonary nodule management. Among the different lung 
cancer screening programs, the Continuous observation of 
SMOking Subjects (COSMOS) study conducted at the Euro-
pean Institute of Oncology (IEO, Milano, Italy) is one of the 
largest for number of patients involved (> 5000) and length 
of follow-up period (10 years)[26].

In this work, we propose an extension of the MIABIS to 
digital imaging samples with the aim to integrate heteroge-
neous data, such as biological samples and digital imaging 
samples, in a structured database in favour of multicentric 
studies in precision medicine. To demonstrate the feasibil-
ity of this extension, we adopted the COSMOS lung cancer 
screening program as a case study, where radiological imag-
ing and biological findings were collected. The structured 
database designed, here connects longitudinal LDCT imag-
ing data to lesion-specific radiological features as well as 

to pathological results coming from non-digital biological 
samples. Following a general overview of the COSMOS 
database, the implementation of the proposed extension 
of MIABIS is put forward as a model for similar image-
based datasets to foster research studies on lung cancer 
management.

Materials and Methods

The proposed extension of MIABIS data model to digital 
imaging samples was defined through clarifications on pre-
existing MIABIS relationships but especially reducing the 
minimum list of attributes needed to describe a Sample com-
ponent. This allows for a generalizable Sample component to 
non-digital biological samples and digital imaging samples 
of different nature (e.g., biological imaging samples and/or 
radiological imaging samples). Implication and Sub-event 
components are also introduced as solutions to connect het-
erogeneous data. The extended data model was then applied 
to the COSMOS study.

MIABIS Extension to Digital Imaging Samples

The extension of MIABIS proposed in this section retains 
the definitions of Sample, Sample Donor and Event given by 
Eklund N. (2020), which are the fundamental components 
considered by MIABIS:

• Sample Donor is a person who is a source of either a bio-
logical material or a digital representation of a biological 
entity such as an image.

• A Sample is a portion or quantity of biological material 
that is collected from a Sample Donor, or which is a 
digital representation of a biological entity of the Sample 
Donor, such as an image.

• An Event is something that happens in a given place and 
time and is related to the Sample and/or Sample Donor.

The link between Sample and Event is defined through an 
explicit connection represented as:

• a many − zero (Sample – Event) relation or,
• a one − zero (Sample -Event) relation.

since multiple samples can be acquired through the same 
event and, consistent with the above definition of Event 
(“and/or”), the existence of an event can also be independent 
from a sample and a Sample may or may not be associated 
with an Event.

With respect to the original attributes associated to MIA-
BIS data model components, a change introduced for the 
extension of the MIABIS data model, was to reduce the 
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number of attributes of the Sample component, making 
it generalizable to both non-digital biological and digital 
imaging samples. To make feasible the inclusion of radio-
logical imaging samples, we removed attributes that were 
relevant exclusively to biological samples (e.g. the storage 
temperature). Such modality-specific attributes of samples 
can be contained in characteristics of specific sample vari-
ants (Fig. 1).

Two components were also introduced in the extension, 
specifically the Implication and the Sub-event components, 
defined respectively as follows:

• An Implication is a supportive component, which con-
nects Events that are linked by a cause-effect relation-
ship; this component indicates the presence of two Events 
where the first has a causal function towards the second 
Event, i.e. the Event is an effect.

• A Sub-event is an event that can be considered as part or 
product of a parent Event.

As both, Implications and Sub-events, depend on the 
Event component, the proposed extension of MIABIS 

impacts most on the place of events in the data model. Spe-
cifically, Events and Implications can be linked through.

• a many − one (Event-Implication) relation or,
• a many − zero (Event-Implication) relation

since the presence of an Implication has to assume the 
existence of at least one causal and one effect Event, but 
an Event can also not be associated to an Implication (an 
Event has not necessarily the property of being a cause or 
an effect).

As a generic example of the extended MIABIS data 
model, Fig. 1 illustrates two Sample components that are 
members of a biological (red) and digital imaging (blue) 
collection (Example A), respectively. Similarly, a connection 
between two Events mediated by an Implication is shown 
(Example B subfigure), wherein the Imaging Analysis Event 
(e.g. suspicion of disease based on the evidence of a radio-
logical digital image) represents the cause that motivates 
the Biological Sample Event as effect (e.g. a more advanced 
clinical investigation).

Fig. 1  Illustration of the 
extended MIABIS data model 
components and relation 
structure. As per the diagram 
defined by Eklund et al. (2020), 
relations between Sample, 
Sample Donor and Event are 
maintained, while the Implica-
tion and Sub-event components 
are here introduced. In example 
A, the reduction of core charac-
teristics of the samples permits 
generalization of sample types, 
with the type specific charac-
teristics being deferred to the 
sub-collections of the biobank. 
Apart from relying implicitly 
on the chronology of events, 
the implication component 
(Example B) captures the causal 
relationship between events. 
Symbols used for connect-
ing components represent the 
cardinality of the relation; refer 
to Supplementary Materials 
(section C) for more details 
about their meaning
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COSMOS as Case Study

The COSMOS Study Protocol

Between 2004 and 2015 a total of 5206 patients were 
recruited for the Continuous Observation of SMOking Sub-
jects (COSMOS) non-randomized Lung Cancer Screening 
Study carried out at the European Institute of Oncology 
(IEO). The local ethical committee approved the study, and 
all participants provided signed informed consent for the 
study. The volunteers underwent annual LDCT scan for ten 
years [25, 26]. Eligibility criteria were to be at high risk of 
lung cancer occurrence: current or former heavy smokers 
(> = 20 pack years), and to be at least 50 years of age. The 
management of indeterminate pulmonary nodules through 
non-invasive procedures was one of the major aims of the 
protocol tested during the COSMOS study. Specifically, 
pulmonary nodules in the range 5–8 mm were scheduled 
to repeat LDCT after 3 or 6 months, whereas lesions above 
8 mm or fast-growing lesions (i.e. volume doubling time 
between 30 and 400 days) were scheduled for a combined 
CT- positron emission tomography (CT-PET). Lesions with 
high probability of malignancy according to PET or growth 
rate, were further analysed through biopsies or other invasive 
procedures which, according to the adopted protocol, were 
minimized in favour of further diagnostic imaging acquisi-
tions. In this study, only the LDCT images were incorpo-
rated as imaging samples into the structured database along 
with events of biological sampling, because the latter were 
collected without any form of digitalization.

Description of Deidentification and Annotation Collection 
Procedure

Prior to creation of the imaging repository with the extended 
MIABIS structure, radiological LDCT data were subjected 
to “pseudonymization” according to the European general 
data protection regulation (GDPR) [27], to facilitate research 
use within our institution and in collaboration with other 
institutions [28]. The LDCT scans were transferred from 
the hospital PACS (Picture Archiving and Communication 
System), into an Orthanc PACS [29]. Inside the Orthanc 
PACS a de-identification procedure was applied creating for 
each image an instance pseudonymized copy. Specifically, 
the institutional patient ID as well as the patient’s name were 
replaced with a pseudonym specific to the subject; the date 
of birth was indirectly masked including a patient age range 
while private tags were removed. Screenshots, dose reports 
and other DICOM files containing "burned-in" data were 
removed from the dataset. The entire procedure was man-
aged through a python script.

The pseudonymized images were exported to patient- 
specific folders separated into subfolders for each study date, 

and sub-subfolders specific for each DICOM series. Each 
series was therefore associated with a specific path, which 
was then recorded into the structured database, along with  
the related DICOM fields as an instance of the table related  
to digital sample collection.

As the segmentation of the lesion is necessary for many 
analyses and for validation of CAD systems, we considered 
the availability and storage of labelled data fundamental in 
the creation of the repository. Once exams exportation was 
finalized, for annotation of lung nodules, a customized GUI 
was used for semi-automatic lesion segmentation with the 
possibility of a manual adjustment of the contour [30]. Each 
segmentation was stored as a DICOM structured reporting 
(DICOM-SR) file which allows encoding measurements 
referred to in the region of interest as well as information 
related to the DICOM series used to create the contours, 
where the latter are defined through a DICOM segmenta-
tion object (DICOM-SEG) linked to the DICOM-SR [31]. 
The DICOM-SR files were created taking advantage of an 
open source library implemented to store post-processed 
information of lesions (i.e. texture information) as DICOM 
tags [32]. As for the DICOM series, tags of the DICOM-SR 
were mapped in the structured database as attributes of the 
Sub-event.

COSMOS Structured Database Architecture

The structured database for the COSMOS data was defined 
following the proposed extension of the MIABIS data 
model reported in “MIABIS Extension to Digital Imaging  
Samples”. The simplified relational diagram shown in Fig. 2 
gives an overview of the relations among Sample Donors, 
Samples and Events for the COSMOS case study.

Two sample collections were defined: a Biological Sam-
ple Collection, which includes non-digital biological sam-
ples acquired through invasive procedures, and an Imaging 
Sample Collection consisting of LDCT scans. The two col-
lections share the Sample Donor (Table S9, Supplementary 
Material, section A) from the patients recruited for the COS-
MOS study.

In defining the samples in the Imaging Sample Collec-
tion, we adopted the DICOM Series Sample, built upon the 
DICOM format [33], which is the international standard to 
transmit, store, retrieve, print, process, and display medi-
cal imaging information; as such, most of the well-defined 
DICOM fields were considered as attributes to define the 
imaging sample component (Table S1, supplementary mate-
rials, section A).

For the COSMOS case study, two events were directly 
connected to the DICOM Series Sample:

• the Image Acquisition Event (Table S2, supplementary mate-
rials, section A), which holds the information needed to con-
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textualize the radiological imaging sample into the medical 
history of the Sample Donor, e.g. whether the acquisition is the 
first (“baseline”) of the longitudinal series or if it is located at 
a subsequent time-point (“routine or monitoring follow-up”).

• the Imaging Analysis Event, which represents the products 
derived from the radiological imaging sample, consisting of 
clinical findings or reports as well as digital data obtained 
by processing the imaging sample. Products of the same cat-
egory were grouped into the same Sub-event of the Imaging 
Analysis Event. Specifically, the following three Sub-events 
were defined as products of the Imaging Analysis Event:

• the Pulmonary Nodule Identification Sub-event 
(Table S3, supplementary materials, section A), to  
collect radiological findings specific for pulmonary 
nodules. For this Sub-event, attributes were established 
according to Lung-RADS [34], i.e. clinical guidelines  
defined by the American College of Radiology  
(ACR) to manage indeterminate pulmonary nodules. 
Additional attributes were included to allow localizing  
the referenced lesion, i.e. the Lesion coordinates  
considering the patient position as reference frame.

• the Other Finding Identification Sub-event (Table S4, 
supplementary materials, section A), to include radio-
logical findings that cannot be categorized as pulmo-
nary nodules. This component contributed to docu-
menting the presence of inflammatory conditions such 
as densifications, emphysema, lymph nodes abnormal-
ities or others collateral pathological conditions.

• The Post-processing Sub-event (Table S5, supple-
mentary materials, section A), to describe a spe-
cific anatomical part whose contours are defined 
by a DICOM-SEG object. The attributes of this 
Sub-event, are mapped to a structured report file 
(DICOM-SR).

As per the schema in Fig. 2, an Image Acquisition Event, 
can be an effect of two different Implications represented by 
the following causal Events, respectively: the Recruitment 
Event, which holds information related to the eligibility of 
the Sample Donor into the COSMOS study (Table S11, sup-
plementary materials, section A), or an Imaging Analysis 
Event, defined above. When connected only to the Recruit-
ment Event, an Image Acquisition Event is simply due to the 
adopted protocol (baseline LDCT exam or routine annual 
follow-up) in case of no suspected clinical findings in an 
earlier Imaging Analysis Event. Conversely, due to the pro-
tocol rules that suspected clinical findings lead to additional 
medical imaging investigations (monitoring follow-up), in 
this case an Imaging Analysis Event is the causal event that 
leads via an Implication to an Image Acquisition Event.

A suspected clinical finding in an Imaging Analysis 
Event can also form the causal event of an Implication 
that leads to a Biological Sampling Event with resulting  
Biological Sample. The particulars of the Biological  
Sampling Event, includes attributes related to the  
invasive procedure applied to collect the biological 
sample (Table S7, supplementary materials, section A), 

Fig. 2  Simplified Schematic Relational Diagram describing the main 
components identified in the COSMOS database along with the main 
relationships among them. Relationships with the Sample Donor are 
explicitly shown only for the Biological Sample and the DICOM 
Series Sample, but the same connections exist between Sample Donor 

and the various Events contained in the diagram. Symbols used for 
connecting components represent the cardinality of the relation for 
the case study considered; refer to Supplementary Materials (section 
C) for more details about their meaning
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whilst the Biological Sample Analysis Event, contains the 
Pathological result derived from the sample (Table S8, 
supplementary materials). Currently, the COSMOS  
dataset does not include digital biological imaging  
samples as DICOM pathology image, but if these would 
have been available, the Biological Sampling Event and 
Biological Sample Analysis Event would be replaced  
or integrated with an Image Acquisition Event and an 
Imaging Analysis Event respectively, where the latter 
would store the Pathological result.

In addition to the Recruitment Event, two Events were 
defined that are directly connected to the Sample Donor, yet 
independent from specific sample collections:

• The Patient History Event (Table S10, supplementary  
materials, section A), which involves information  
related to Sample Donor’s life-style (e.g. smoking  
exposure), symptoms (e.g. respiratory disorders) as well 
as pre-existing or past-pathologies (e.g. past oncologic 
pathologies); since many of these factors were considered  
among the eligibility criteria of the COSMOS study, we 
considered the Recruitment Event as an Implication of 
the Patient History Event.

• The Diagnosis Event, which aims at integrating findings 
derived from the Imaging Analysis Event with those of 
the Biological Sample Analysis Event to reach a unified 
diagnosis; indeed, in our case study, evidence derived 
from a digital radiological imaging can be confirmed 
through the analysis of a biological sample. In case of 
malignant lesion diagnosis, the Grade of the disease was 
documented and considered as a Diagnosis Event attrib-
ute (Table S12, supplementary materials, section A).

In supplementary materials, a full example of the possible 
clinical workflow (Figures S1 and S2, section B) in the lung 
cancer screening context is reported to clearly demonstrate 
some of relationships described in this section and to sup-
port a step-by-step evaluation of the structured database.

Results

We have created a structured database in which specific and 
unambiguous queries are feasible and should allow for a 
comprehensive description of the COSMOS repository to 
be exploited for research in image processing and analysis, 
including radiomics and artificial intelligence, and generally, 
in fostering research on lung cancer management. In this 
section, we provide an overview of the data documented 
in the COSMOS structured database, considering both the 
biological sample and the radiological imaging sample 
collection.

Imaging Sample Collection and Patient History 
Event

DICOM Series Samples in the COSMOS cohort were 
directly associated with two main events: an acquisition 
(Image Acquisition Event) and an analysis (Imaging Analy-
sis Event) event.

All the DICOM Series Samples consisted of LDCT scans, 
with the most frequent combination of acquisition param-
eters being a 30 mA X-ray tube current and 120 or 140 
kVp of voltage (Fig. 3a) [35]. From 43,000 patient studies, 
73,000 DICOM series (scans) were found (Fig. 3b) due to 
reconstructions with both standard and lung Convolution 
kernels being performed in the early years of the COSMOS 
study (Fig. 3c). In the later years of the study, only the stand-
ard kernel was used. Similarly, during the first year of the 
study, all reconstructions were performed with 2.5 mm slice 
thickness, whereas LDCT with a reduced slice thickness 
(1.25 mm) were also reconstructed from year 2007 (Fig. 3d).

Events Connected Directly and Indirectly 
to the DICOM Series Sample

Of the main events connected to the DICOM Series Sam-
ple, the Image Acquisition Event aims to contextualize 
the screening exam via an Exam Type attribute defined to 
express the role of each exam, distinguishing baseline exams 
(i.e. first LDCT scan acquisition of the longitudinal series) 
from routine or monitoring follow-ups. Specifically, routine 
follow-ups correspond to the annual acquisitions foreseen 
by the prevention program in case of absence of suspicious 
lesions, whereas monitoring follow-ups correspond to aux-
iliary acquisitions scheduled 3–6 months after a baseline or 
a routine follow-up where an abnormality was noted. Some 
1463 of the 5206 patients underwent one or more monitor-
ing follow-up. Thus, this Exam Type represents 5.3% of the 
DICOM studies, whereas 82.4% were routine follow-ups.

As already mentioned, the Image Acquisition Event can 
be an effect of a Recruitment Event. This depends itself on 
the Patient History Events component, where several habits 
and medical history factors that can influence the occur-
rence of lung cancer were included. To distinguish different 
risk factors, the Risk Type attribute was included (Table S6, 
Supplementary Materials, section A). Specifically, respira-
tory disorders and oncologic history were included as Risk 
Types related to the patient’s medical history, while smoking 
history and chemical exposure were included as external 
risk factors. Particular attention was given to smoking his-
tory, which was the main eligibility criteria of the COSMOS 
study along with patient age. The mean (std) of the Dura-
tion of the smoking exposure attribute was 37.9 (6.1) and 
39.9 (6.4) years for women and men, respectively. As an 
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Exposure Entity attribute, the number of cigarettes smoked 
per day was of 24.9 (10.29).

The second main event directly connected to the DICOM 
Series Sample is the Imaging Analysis Event which includes 
the products derived from the imaging samples grouped into 
the following three Sub-events: Pulmonary Nodule Identifi-
cation, Post-processing Sub-event and Other Finding Iden-
tification Sub-event.

The Pulmonary Nodule Identification Sub-event was dedi- 
cated to findings annotated by radiologists according to the 
Lung-RADS guidelines. Among its main attributes, lesion 
Type – texture related (solid, part-solid and non-solid) as 
well as the lesion Diameter are defined. To document the 
nodule location, image number and the lung lobe recorded 
during the COSMOS study were documented as Lobe attrib- 
ute. Further attributes related to lesion localization (Lesion 

coordinates, Type – Location related) have been included 
only for a subset COSMOS so far, as the integration of this 
information is on-going.

Among the 5206 Sample Donors involved in the study, 
those associated with a Pulmonary Nodule identifica-
tion Sub-event gave rise to a set of 15,879 lesions, which 
appear in multiple exams. The distribution of nodules sizes 
according to Diameter attribute (Fig. 4a) showed most of 
the lesions (50.7%) to be below 4 mm, followed by 45.3% 
of lesions in the range 4–10 mm. As recorded in the Type 
– texture related attribute, solid nodules were more frequent 
(82.5%) than part-solid (11.9%) or non-solid nodules (5.6%), 
in agreement with published reports that solid lesions tend 
to be more frequent (Fig. 4b). The distribution of nodules 
between the lobes of the lungs (Lobe attribute), was rela-
tively homogeneous (Fig. 4c), with the superior part of the 

Fig. 3  Distribution of acquisition and reconstruction parameters 
among the LDCT DICOM series in the COSMOS dataset. Panel (a) 
shows distributions of X-ray Tube current and voltage, Reconstruc-
tion Convolution Kernel and Slice Thickness for the entire set of 
LDCT scan collected during the ten years of study. The number of 

studies versus the number of reconstructed LDCT series; the number 
of series for standard and lung reconstruction kernels, and the used 
slice thickness (“2.5” versus “1.25” mm), by the year of the study, are 
shown in panels b, c, and d, respectively
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right lobe being slightly predominant with respect to other 
locations.

The Post-processing Sub-event holds information derived 
from a DICOM-SEG object which defines the mask of a 
specific pulmonary nodule; therefore, it coexists with Pul-
monary Nodules Identification Sub-event. The ROI Genera-
tion Algorithm within this component allows documenting 
whether segmentations were performed through manual or 
automatic contouring. The lesion Volume, present among 
Lung-RADS features, was included as attribute of the 

Post-processing Sub-event. Table 1 shows the main charac-
teristics (Volume, ROI Generation Algorithm and numeros-
ity) of the collected lesions’ contours subdivided by Type 
– texture related and Lobe attributes. Of 2008 lesions con-
toured to date, 472 were manually segmented, whereas 2747 
were collected through a semi-automatic segmentation tool.

Finally, the Other Finding Identification Sub-event was 
defined to annotate radiological findings that are not pul-
monary nodules and hence not covered by the Pulmonary 
Nodule Identification Sub-event. Specifically, the possible 

Fig. 4  Summary of the main radiologic features regarding nodule 
characteristics annotated in the Pulmonary Nodule Identification 
Sub-event. On panel (a), the number of documented nodules over the 
course of the ten years of the COSMOS study is reported, subdivid-
ing them in four groups according to Diameter size (mm). Panel (b) 

shows lesion distribution according to Type – texture related attrib-
ute, whereas panel (c) lesion distribution according to Lobe attribute 
(RUL = Right Upper Lung, RML = Right Middle Lung, RLL = Right 
Low Lung, LUL = Left Upper Lung, LLL = Left Low Lung)
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documented findings are: emphysema, lymphadenopathy, 
apical scar, pleural thickening, pneumothorax and pneu-
monia. Findings related to lesions localized in proximity of 
the lungs, e.g. thymus, were also recorded as Other Finding 
Identification Sub-event.

Biological Sample Collection and Diagnosis Event

In the current repository, events connected to biological 
samples are available only, as particulars of the biologi-
cal samples themselves or digital data through DICOM 
pathology samples have not yet been included in the COS-
MOS repository. Considering the Biological Sampling 
Events, 391 samples were recorded across 350 subjects 
(Sample Donors) with some having undergone two (33 
subjects) or more (4 subjects) invasive procedures. As 
can be noted from Fig. 5a, Biological Sampling Event 
was more common during the first five years of the COS-
MOS study (2005–2010). The Collection procedure attrib-
ute was available for 380 samples (Fig. 5b). For almost 
all samples (386), the Pathological result attribute was 
known. As can be seen in Fig. 5c, 16% of the analysed 
samples were associated to a benign lesion.

Among the 386 Diagnosis Events generated as effect of 
the Biological Sample Analysis Event and from the Imaging 
Analysis Event, 300 were associated with lung lesions con-
sidered as pulmonary nodules (Pulmonary Nodule Identifi-
cation Sub-event) and are therefore associated to radiologi-
cal features according to Lung-RADS standards. Fifty-six 
cases were instead associated to inflammatory status of the 
lung or other abnormal conditions (Other Finding Identi-
fication Event). Because of a lack of reported radiological 

characteristics the remaining result derived just from the 
Biological Sample Analysis Event.

Discussions

The standardization of information, well established for 
biobank data sharing, is becoming an important considera-
tion in the field of medical imaging, driven by its role in 
precision medicine and CAD applications. The main aim 
of MIABIS lays in the definition of a standard data struc-
ture, which can facilitate both data collection and sharing. 
Although MIABIS has mainly referred to biological sam-
ples data, in their recent publication Eklund and colleagues 
(2020) stated their intent to extend the data model to bio-
logical imaging samples. In preparation for the creation of a 
public repository of longitudinal observations LDCT scans 
acquired during the COSMOS study, we have proposed an 
extension to MIABIS and demonstrated its use in defining a 
standard database structure in which to include radiological 
imaging data along with biological information.

Starting from the last published version of the MIABIS 
data model, we have proposed a series of changes to improve 
its generalizability. For this purpose, the list of attributes 
needed to define a Sample component was limited enlarging 
its field of inclusion to non-digital biological samples and 
digital imaging samples of a different nature (e.g. biologi-
cal imaging samples and/or radiological imaging samples). 
While the proposed data model keeps Sample Donor, Sam-
ple and Event as the three main components of a data col-
lection, we introduced the need of having multiple events 
with the possibility to define intra-collection links as well 

Table 1  Summary of the Post-processing Sub-events. For the two 
segmentation Modality (Manual and Automatic), the number of 
cases, as well as the mean and standard deviation, the minimum and 

maximum Volumes, are reported for the overall set of nodules as well 
as according to Type-Texture and Lobe attributes

Manual Modality Automatic Modality

Nodule size Volume  [mm3] Number of 
cases

Nodule size Volume  [mm3] Number of cases

Overall 2419 (7418) [17—82122] 472 328 (1496) [2—57975] 2747
Nodule Type-Texture related
  Solid 2352 (6065) [17—57975] 265 323 (1744) [2—57975] 1795
  Part-solid 3467 (12,470) [34—82122] 101 259 (831) [2—12540] 585
  Non-solid 1588 (2120) [60—12277] 106 464 (874) [12—7197] 367

Nodule position Lobe
  RUL 1872 (2811) [17—17699] 197 414 (1184) [2—15295] 765
  RML 4365 (11,981) [26—57975] 28 356 (3169) [3—57975] 350
  RLL 4902 (14,978) [21 -82122] 68 308 (1086) [2—17294] 537
  LUL 1994 (6040) [19—40130] 120 265 (1046) [3—20795] 655
  LLL 1325 (2765) [26—19915] 59 273 (700) [5—9790] 440
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as inter-connections between heterogeneous Events. Specifi-
cally, we defined an Implication component, which estab-
lishes the role of one event in relation to another event (i.e. 
whether the event is a cause or effect of the implication). 
In our case-study, such relationships can be found within 
the Diagnosis Event where non-digital pathological and 
digital radiological outcomes are integrated. We believe the 
inclusion of such relationships strengthens the usability and 
interpretability of the repository. Indeed, among the most 
common aims of artificial intelligence applications, there 
is the prediction, from non-invasive diagnostic imaging, of 
target outcomes that are typically obtained through invasive 
procedures.

We have also proposed the possibility to have child com-
ponents, i.e. Sub-events, of Events. For example, according 
to the presented case-study, the Imaging Analysis Event was 
associated with the Pulmonary Nodule Identification Sub-
event, the Post-processing Sub-event and the Other Finding 
Identification Sub-event components, that are different prod-
ucts derived from the CT image. The inclusion of multiple 
Sub-events components linked to a parent Event makes the 
inclusion of lesions contours or other type of annotations 

more tractable. As such, the main advantage of the presented 
data model can be addressed to the consequent simplifica-
tion of data retrieve procedure despite the large number of 
queryable attributes.

We used the COSMOS study as a case study consist-
ing of patient history, LDCT imaging scans acquired over 
ten consecutive years, non-digital pathology results and 
a substantial set of labelled data that is in the process of 
preparation. As suggested by Eklund (2020), already exist-
ent well-defined standards were considered when available. 
Specifically, a subset of standard DICOM fields was adopted 
as attributes associated to radiological LDCT imaging sam-
ples. In this regard, the compatibility of the general data 
model to other imaging standards (e.g. the Brain Imaging 
Data Structure, BIDS, increasingly used in the field of neu-
roimaging experiments) needs to be evaluated in the future. 
Currently, digital biological samples have not yet been col-
lected in the COSMOS study which just include Biological 
Sample Analysis events; if and when digital biological data 
in the form of DICOM pathology images will be available, 
these can be treated as non-invasive radiological DICOM 
images and thus considered as Imaging Acquisition Event. 

Fig. 5  The distributions of a) Biological Sampling Events by year. 
b) sample collection procedure attribute, included in the Biological 
Sample Event (Table S2), and c) the Pathological result attribute of 

the Biological Sample Analysis Event (Table S8) for the subjects over 
the course of the COSMOS study
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We do not expect difficulties with attributes definition as 
differences in DICOM tags are present also between differ-
ent imaging modalities (e.g. Computerized Tomography vs. 
Positron Emission Tomography).

As part of the COSMOS study, pulmonary nodules were 
documented referring to Lung-RADS [34], which aimed to 
standardize the framework of lung cancer screening CT data 
management. Therefore, all radiological features mentioned 
in the Lung-RADS were included as queryable attributes in 
the Pulmonary Nodule Identification Sub-event (Table S3), 
with exception of Volume, which was included as an attrib-
ute of the Post-processing Sub-event being dependent on 
the contoured region defined by the DICOM-SEG object. 
Lesion coordinates were also included among the fundamen-
tal attributes of the Pulmonary Nodule Identification Sub-
event to account for lesion description as pointed out also 
by Kostopoulos et al. (2017). As mentioned in the method 
section, the DICOM-SEG object was linked to a DICOM-
SR with the aim of defining a structured repository where 
additional products related to the segmentation object can 
be collected, as products of radiomics-based or AI studies 
[31, 32]. Regarding DICOM-SEG object, DICOM RT-struct 
files which describe a region of interest as a list of points can 
be considered as an alternative way to encode segmentations 
despite it is considered specific to the radiotherapy field.

Comparing our data model with the information reported 
by Clark et al. (2009) for the NLST data collection, a larger 
set of queryable attributes is now available for the COSMOS 
data model (Supplementary Material, section D), and across 
a wider span of the data (imaging parameters, implications, 
pathological findings, lesion locations etc.). A further exten-
sion is foreseen for the COSMOS repository, consisting in the 
inclusion of PET-CT scans acquired according to the protocol 
reported in the dedicated section “The COSMOS Study Proto-
col”. Additionally, to allow database sharing, the deidentifica-
tion process will be repeated to reach an anonymous state of 
the database which satisfies the GDPR definition. The radio-
logical and biological findings associated to the COSMOS 
dataset had already been collected in a spreadsheet and data-
base structures that were relatively straightforward to trans-
late to the unified database in the demonstrated test case. Both 
the DICOM images, which required export from our hospital 
PACS, and the lesion contours being generated via dedicated 
software [30] are held in files that are referenced from the data-
base. In other study contexts, it will likely be useful to integrate 
data from procedural reports and other clinical records, neces-
sitating their extraction from hospital information systems and 
likely further refinement in order to be incorporated into the 
database. Our results suggest that such preparation is feasible 
and should not impinge the ability to integrate the derived data 
into the data model, though considerable initial effort may be 
required to ensure data integrity, completeness and appropriate 
definition of Implications between events. The transition to 

structured reporting and the storage of content, rather than doc-
ument storage, will mark a step towards more efficient incor-
poration of clinical data. The growing list of imaging reporting 
standards for multiple anatomical sites, such as those promoted 
by the American College of Radiology (BI-RADS for breast 
cancer [36], PI-RADS for prostate cancer [37] and so on), are 
well-suited for incorporation into the proposed data model, and 
should allow easy translation to planned medical image-based 
studies in precision medicine. For demonstrative purposes, a 
second scenario related to prostate cancer diagnosis is reported 
in supplementary materials (section E).

Conclusions

We proposed an extension of the MIABIS data model, pre-
viously defined to standardize biobanks description. With 
this work we aim to encourage the integration of different 
sources of data in a structured fashion driven by well-defined 
cause-effect relationships that reflect real clinical workflows. 
Adopting this structure should facilitate the research pro-
gress on precision medicine, which is often limited by the 
differences in database description.

As case study, the COSMOS database was considered and 
from the reported results an overview of the information that 
can be retrieved was given.
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