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A machine learning model
based on ultrasound image
features to assess the risk
of sentinel lymph node
metastasis in breast cancer
patients: Applications of
scikit-learn and SHAP
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Xiang Li1, Qingyu Zhang4 and Zhen Zhang1*

1Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang, China,
2Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, China, 3Department of
Ultrasound Medicine, Peking University People’s Hospital, Beijing, China, 4College of Information
Science and Engineering, Northeastern University, Shenyang, China
Background: This study aimed to determine an optimal machine learning (ML)

model for evaluating the preoperative diagnostic value of ultrasound signs of

breast cancer lesions for sentinel lymph node (SLN) status.

Method: This study retrospectively analyzed the ultrasound images and

postoperative pathological findings of lesions in 952 breast cancer patients.

Firstly, the univariate analysis of the relationship between the ultrasonographic

features of breast cancer morphological features and SLN metastasis. Then,

based on the ultrasound signs of breast cancer lesions, we screened ten ML

models: support vector machine (SVM), extreme gradient boosting (XGBoost),

random forest (RF), linear discriminant analysis (LDA), logistic regression (LR),

naive bayesian model (NB), k-nearest neighbors (KNN), multilayer perceptron

(MLP), long short-term memory (LSTM), and convolutional neural network

(CNN). The diagnostic performance of the model was evaluated using the area

under the receiver operating characteristic (ROC) curve (AUC), Kappa value,

accuracy, F1-score, sensitivity, and specificity. Then we constructed a clinical

prediction model which was based on the ML algorithm with the best

diagnostic performance. Finally, we used SHapley Additive exPlanation

(SHAP) to visualize and analyze the diagnostic process of the ML model.

Results: Of 952 patients with breast cancer, 394 (41.4%) had SLN metastasis,

and 558 (58.6%) had no metastasis. Univariate analysis found that the shape,

orientation, margin, posterior features, calculations, architectural distortion,
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duct changes and suspicious lymph node of breast cancer lesions in ultrasound

signs were associated with SLN metastasis. Among the 10 ML algorithms,

XGBoost had the best comprehensive diagnostic performance for SLN

metastasis, with Average-AUC of 0.952, Average-Kappa of 0.763, and

Average-Accuracy of 0.891. The AUC of the XGBoost model in the validation

cohort was 0.916, the accuracy was 0.846, the sensitivity was 0.870, the

specificity was 0.862, and the F1-score was 0.826. The diagnostic

performance of the XGBoost model was significantly higher than that of

experienced radiologists in some cases (P<0.001). Using SHAP to visualize

the interpretation of the ML model screen, it was found that the ultrasonic

detection of suspicious lymph nodes, microcalcifications in the primary tumor,

burrs on the edge of the primary tumor, and distortion of the tissue structure

around the lesion contributed greatly to the diagnostic performance of the

XGBoost model.

Conclusions: The XGBoost model based on the ultrasound signs of the primary

breast tumor and its surrounding tissues and lymph nodes has a high diagnostic

performance for predicting SLN metastasis. Visual explanation using SHAP

made it an effective tool for guiding clinical courses preoperatively.
KEYWORDS

breast cancer, ultrasound signs, sentinel lymph node metastasis, XGBoost, SHAP
Introduction

Breast cancer is the most common malignancy in women,

and its incidence is increasing annually (1). Whether sentinel

lymph node (SLN) metastases have important clinical

significance for breast cancer staging, surgical selection, and

prognosis is still being determined. Sentinel lymph node biopsy

(SLNB) is the gold standard for diagnosing SLN metastasis of

breast cancer. An invasive method, SLNB may cause

complications such as infection at the puncture site and

hematoma (2). Moreover, SLNB has a false-positive rate of

5%–10% (3), which leads to the possibility of secondary

surgery. This urgently requires imaging to accurately

determine the status of SLNs, to avoid extensive lymph node

dissection and minimize the trauma to patients.

Ultrasonography has become the preferred method for

breast diseases due to its advantages of non-invasiveness, high

reproducibility, and good patient cooperation (4). Previous

studies (5) showed that the morphological characteristics of

the primary breast cancer have a certain relationship with the

activity (biological behavior) of the tumor, and its morphology

will change with the biological behavior such as lymph node

metastasis. This suggests that monitoring the morphological

features of breast cancer lesions is of great value in assessing

SLN status. Conventional ultrasound can provide macroscopic
02
features of lesions, but the weight of these macroscopic features

in relation to SLN status is unclear.

Machine learning (ML) algorithms have been applied in the

medical field for outcome prediction, diagnosis, and treatment

(6). For example, ML model has been used to differentiate

between benign breast nodules and breast cancer based on

ultrasound images (7). But the logic and complexity of various

ML algorithms are different (8), and there may also be

differences in clinical application. A study (9) compared the

diagnostic performance of different ML algorithms in the

diagnosis of benign and malignant thyroid nodules and found

that the random forest (RF) model achieved the best area under

the receiver operating characteristic (ROC) curve (AUC)

(0.924). Due to the complex nonlinear relationship of some

ML algorithms, the model results are difficult to interpret,

resulting in a “black-box” problem (10), which limits the

clinical application of predictive models. Therefore, the

interpretability algorithm of ML model results has become a

new research focus (11). SHapley Additive exPlanation (SHAP),

based on cooperative game theory, has global and local

interpretability, interpreting the predicted value of the model

as the sum of the contribution values of each input feature, that

is, the shapley value. Compared with other explanation methods

in previous literature, SHAP can visualize the prediction process

of complex ML prediction models. These advantages make it
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possible to solve the “black-box” problem of complex ML

models with SHAP. At present, SHAP has been successfully

applied to intraoperative hypoxemia risk prediction (12) and

COVID-19 prognosis assessment (13). Therefore, this study

aimed to develop a ML model based on the ultrasound signs

of breast cancer lesions and surrounding soft tissues and lymph

nodes to predict the risk of axillary lymph node metastasis in

breast cancer patients. Using SHAP to visually interpret the

prediction results of the ML model, so as to guide the clinical

formulation of personalized diagnosis and treatment plans. The

SHAP also can promote the clinical application of the

prediction model.
Materials and methods

Patients

As a retrospective study, this study was approved by the

Ethics Committee of the First Affiliated Hospital of China

Medical University (AF-SOP-07-1.1-07), which waived the

requirement for patient informed consent. All patients in this

study underwent ultrasonography of breast cancer lesions and

ipsilateral axillary lymph nodes in our department. The

inclusion criteria were as follows: (1) patients with primary

breast cancer who were first discovered and had no history of

other malignancies; (2) no axillary mass was found on physical

examination; (3) ultrasound examination within 2 weeks before

breast cancer surgery or percutaneous biopsy of the lesion; (4) no

other adjuvant therapy such as chemotherapy or radiotherapy

was performed before ultrasound examination; (5) and the

ultrasound image of the lesion was clear and complete. The

exclusion criteria were as follows: (1) non-single lesions; and (2)

absence of clinical data and pathology. Finally, we screened 902

consecutive female patients with breast cancer from June 2017 to

June 2021 as a primary cohort, constructed a predictive model,

and performed internal validation, with a mean age of 49.98 ±

9.81 years (range: 24–86 years). Following the same inclusion

and exclusion criteria, we screened another 50 female patients

with breast cancer from July 2021 to December 2021 as a

validation cohort, with a mean age of 49.82 ± 10.99 years

(range: 25–74 years). Pathological findings of all patients in

the primary cohort and validation cohort were confirmed

postoperatively or after percutaneous needle biopsy.
Ultrasound evaluation

In this study, three types of ultrasonic diagnostic

instruments including Hitachi HI VISION Ascendus (Hitachi

Medical Corp., Tokyo, Japan), Canon APLIO 500 (Canon

Medical Systems Corp., Otawara, Japan), and SuperSonic

Aixplorer (SuperSonic Imagine SA, Aix-en-Provence, France)
Frontiers in Oncology 03
were used for image acquisition, all of which were equipped with

superficial high-frequency linear array probes with a frequency

of 8–15MHz. Images were stored in the picture archiving and

communication system (PACS) workstation for further analysis.

Ultrasound signs of breast cancer lesions images in the PACS

workstation were evaluated by two experienced radiologists

without knowledge of the exact pathological findings. To

assess intra- and inter-observer reproducibility, radiologist A

assessed all ultrasound signs in the primary cohort and

reassessed these after 1 week to test for intra-observer

consistency. All ultrasound signs in the primary cohort were

also assessed by radiologist B and compared with those from

radiologist A to test for interobserver agreement. The evaluation

of ultrasound signs mainly included the shape of the original

lesion (oval, round, or irregular), orientation (parallel or not

parallel), margin (circumscribed, indistinct, angular,

microlobulated, or spiculated), echo pattern (hyperechoic,

isoechoic, hypoechoic, anechoic, or complex cystic and solid),

posterior features (no posterior features, enhancement, or

shadowing), calcifications (no calcification, macrocalcification,

microcalcification, or rim calcification), architectural distortion,

duct changes, hyperechoic halo, and suspicious lymph nodes.

Lymph node classification criteria (14) were evaluated, with

categories 1–3 considered benign, and categories 4–6

considered metastatic.
Data preprocessing

Firstly, we performed univariate analysis of all data from the

primary and validation cohorts to screen for ultrasound signs

associated with SLN metastasis. Then, it was found by statistics

that the number of samples in the SLN transfer group with a

small number of samples accounted for 41.4% (394/952) of the

total number of samples, which was a balanced sample.

Therefore, no relevant processing to deal with data imbalance,

such as over-sampled or under-sampled, is performed on the

dataset. Finally, in order to speed up the training and improve

the diagnostic performance of the model, we standardize and

normalize the dataset. For details of data preprocessing, see

Supplementary Material 1.
Screening and validation of machine
learning models

The 902 samples in the primary cohort were randomly

divided into ten parts, and 10-fold cross-validation were

performed on 10 ML algorithms such as support vector

machine (SVM), extreme gradient boosting (XGBoost), RF,

linear discriminant analysis (LDA), logistic regression (LR),

naive Bayesian model (NB), k-nearest neighbors (KNN),

multilayer perceptron (MLP), long short-term memory
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(LSTM) and convolutional neural network (CNN). The

diagnostic performance of all ML algorithms was adjusted by

grid search algorithm to optimize the performance of the ML

model and avoid overfitting of the model. We comprehensively

evaluated the diagnostic performance of 10 algorithms for

predicting breast cancer SLN metastasis using the Average-

AUC, Average-Kappa and Average-Accuracy derived from the

10-fold cross-validation. Then, the entire primary cohort was

used for 10 ML models for training. The diagnostic performance

of the ML model was verified through the validation set data,

and the diagnostic performance of all models were evaluated

using the ROC curve and the detection error trade-off (DET)

curve. Then we used the learning curve to verify the fit of the best

performing model. Finally, we compared the best performing

ML algorithm with experienced radiologist.
Visualizing machine learning models

SHAP measures feature importance by calculating the

contribution value, while describing whether the influence of

the feature is positive or negative (15). We also utilize SHAP for

the visual interpretation of the ML models both holistically and

individually (16), which facilitates the clinical applications of the

ML model (Figure 1).
Statistical analysis

SPSS (v. 26.0; IBM Corp., Armonk, NY, USA) statistical

software was used. Continuous variables were expressed as (x̄ ±

s) using independent samples t-tests and the F-test; categorical

variables were expressed as frequencies using the c2 test and

Fisher’s exact test. P<0.05 means the difference is statistically

significant. Kappa (K) analysis was used to assess intra- and

inter-observer agreement. Data analysis used 10 ML algorithms

from the Scikit-learn (https://scikit-learn.org/stable/) and

Pytorch (https://pytorch.org/) packages in Python (version

3.8). Among them, SVM, XGBoost, RF, LDA, LR, NB, KNN,

MLP are from Scikit-learn, and LSTM and CNN are from

Pytorch. SHAP (https://github.com/slundberg/shap) was

performed using the SHAP Python framework (version 0.40.0).
Results

Basic clinical features of breast cancer
patients

The pathological results of 902 patients in the primary

cohort are shown in Table 1, of which 305 were confirmed by

surgery, and 597 were confirmed by percutaneous needle biopsy.
Frontiers in Oncology 04
There were 372 cases in the SLN metastasis group, with an

average age of 49.53 ± 9.55 years (range: 26–86 years). There

were 530 patients in the SLN non-metastatic group, with an

average age of 50.29 ± 9.97 years (range: 24–82 years). There was

no significant difference in age between the two groups

(t=1.153, P=0.249).
Ultrasound signs of breast cancer lesions

Univariate analysis of ultrasound signs in the primary cohort

and validation cohort to screen for risk factors associated with

breast cancer SLN metastasis (Table 2). We found that the echo

pattern (P=0.613) and hyperechoic halo (P=0.855) of lesions

were not significantly different between the two groups and were

removed. The remaining eight key ultrasound signs, such as

shape, orientation, margin, posterior features, calculations,

architectural distortion, duct changes and suspicious lymph

node, were used for ML algorithms screening.
Choosing a machine learning model

The intra-observer K value of radiologist A was 0.887–0.938

in the two evaluations of the ultrasound signs of lesions, and the

inter-observer K value of radiologists A and B was 0.876–0.917.

This shows that the evaluation of ultrasound signs was stable and

reproducible. All results of this study are based on the

ultrasound features of the lesion as assessed by radiologist A.

Based on the screened eight key ultrasound signs, the ROC

curves of 10 ML models of SVM, XGBoost, RF, LDA, LR, NB,

KNN, MLP, LSTM and CNN were compared by 10-fold cross-

validation (Figure 2). And the models were screened by Average-

AUC, Average-Kappa and Average-Accuracy (Table 3). We

found that the XGBoost model had the best Average-AUC

(0.952), Average-Kappa (0.763) and Average-accuracy (0.891).

Subsequently, we used the entire data from the primary cohort to

train 10 ML models. Finally, external validation of the model

used validation cohort has showed that the diagnostic

performance of the XGBoost model was still the best

(Figure 3). The AUC of the model was 0.916, the accuracy was

0.846, the sensitivity was 0.870, the specificity was 0.862, and the

F1-score was 0.826 (Table 4). This further justifies the

correctness of our model selection and experimental

procedures. The DET curve shows that the false rejection rate

and false acceptance rate of the XGBoost model are lower than

other models (Figure 4). Additionally, we verified the fit of the

model using the learning curve, and the XGBoost model showed

a good fit (Figure 5). The Supplementary Material 2 shows the

modeling process of the XGBoost algorithm. Finally, we selected

the XGBoost algorithm, with the best diagnostic performance,

and compared it with the diagnoses from radiologist A.
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TABLE 1 Pathological types of breast cancer patients in the primary cohort.

Pathology No. (%) of patients

SLN non-metastasis SLN metastasis Total

invasive ductal carcinoma 403(76.0%) 356(95.7%) 759(84.2%)

ductal carcinoma in situ 106(20.0%) 14(3.8%) 120(13.3%)

mucinous carcinoma 7(1.3%) 0 7(0.8%)

mixed breast carcinoma 6(1.1%) 1(0.3%) 7(0.8%)

intraductal papillary carcinoma 4(0.8%) 0 4(0.4%)

invasive micropapillary carcinoma 2(0.4%) 1(0.3%) 3(0.3%)

invasive lobular carcinoma 1(0.2%) 0 1(0.1%)

malignant phyllodes tumor 1(0.2%) 0 1(0.1%)

Total 530 372 902
Frontiers in Oncology
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SLN, sentinel lymph node.
FIGURE 1

The flowchart of the study.
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TABLE 2 Univariate analysis of breast cancer SLN metastasis in primary and validation cohorts.

Variable Primary cohort (N=902) P-
Value

Validation cohort (N=50) P-
Value

SLN metastasis
(N=372)

SLN non-metastatic
(N=530)

SLN metastasis
(N=22)

SLN non-metastatic
(N=28)

shape <0.001 0.277

oval 0 0 0 0

round 4 (1.1%) 33 (6.2%) 5 (22.7%) 3 (10.7%)

Irregular 368 (98.9%) 497 (93.8%) 17 (77.3%) 25 (89.3%)

orientation <0.001 0.153

parallel 201 (54.0%) 368 (69.4%) 9 (40.9%) 18 (64.3%)

not parallel 171 (46.0%) 162 (30.6%) 13 (59.1%) 10 (35.7%)

margin <0.001 0.014

circumscribed 5 (1.3%) 20 (3.8%) 0 0

indistinct 24 (6.5%) 117 (22.1%) 0 4 (14.3%)

angular 56 (15.1%) 266 (50.2%) 2 (9.1%) 6 (21.4%)

micro lobulated 75 (20.2%) 93 (17.5%) 4 (18.2%) 10 (35.7%)

spiculated 212 (56.9%) 34 (6.4%) 16 (72.7%) 8 (28.6%)

echo pattern 0.613 0.262

anechoic 0 0 0 0

hyperechoic 0 0 0 0

isoechoic 76 (20.4%) 111 (20.9%) 3 (13.6%) 9 (32.1%)

complex cystic and solid 8 (2.2%) 17 (3.2%) 2 (9.1%) 1 (3.6%)

hypoechoic 288 (77.4%) 402 (75.9%) 17 (77.3%) 18 (64.3%)

posterior features <0.001 0.045

enhancement 59 (15.9%) 144 (27.2%) 0 6 (21.4%)

no posterior features 69 (18.5%) 164 (30.9%) 8 (36.4%) 11 (39.3%)

shadowing 244 (65.6%) 222 (41.9%) 14 (63.6%) 11 (39.3%)

calcifications <0.001 0.004

rim calcification 10 (2.7%) 7 (1.3%) 0 1 (3.6%)

no calcification 75 (20.2%) 275 (51.9%) 1 (4.5%) 12 (42.9%)

macrocalcification 66 (17.7%) 231 (43.6%) 8 (36.4%) 10 (35.7%)

microcalcification 221 (59.4%) 17 (3.2%) 13 (59.1%) 5 (17.8%)

architectural
distortion

<0.001 0.001

no 23 (6.2%) 319 (60.2%) 4 (18.2%) 19 (67.9%)

yes 349 (93.8%) 211 (39.8%) 18 (81.8%) 9 (32.1%)

suspicious lymph
node

<0.001 0.047

no 110 (29.6%) 487 (91.9%) 6 (27.3%) 16 (57.1%)

yes 262 (70.4%) 43 (8.1%) 16 (72.7%) 12 (42.9%)

duct changes 0.032 0.393

no 159 (42.7%) 264 (49.8%) 10 (45.5%) 17 (60.7%)

yes 213 (57.3%) 266 (50.2%) 12 (54.5%) 11 (39.3%)

hyperechoic halo 0.855 1.000

no 247 (66.4%) 355 (67.0%) 16 (72.7%) 20 (71.4%)

yes 125 (33.6%) 175 (33.0%) 6 (27.3%) 8 (28.6%)
Frontiers in Oncolog
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Factors affecting diagnostic performance
of XGBoost model

We utilized SHAP to visualize the XGBoost model results.

The SHAP bar graph (Figure 6) was obtained by analyzing the

mean value of the absolute SHAP values of eight ultrasound
Frontiers in Oncology 07
signs to show the degree of influence on the final predicted

probability. The SHAP scatterplot (Figure 7) shows the positive

or negative impact of each ultrasound sign on the predicted

probability through different colors. We found that suspicious

lymph nodes, with microcalcifications, spiculation at the edge of

the lesion, and distorted tissue structure around the lesion, had a
FIGURE 2

The 10-fold cross-validation of machine learning algorithms.
TABLE 3 Screening Evaluation Metrics for Machine Learning Algorithms Using 10-fold cross-validation.

Classifier LSTM CNN SVM KNN LDA LR NB RF MLP XGB

Average-AUC 0.910 0.864 0.880 0.871 0.886 0.891 0.874 0.881 0.883 0.952

Average-Kappa 0.717 0.652 0.672 0.656 0.691 0.702 0.624 0.706 0.698 0.763

Average- Accuracy 0.877 0.833 0.794 0.811 0.852 0.823 0.857 0.744 0.779 0.891
frontiers
AUC, area under curve; SVM, support vector machine; XGBoost, extreme gradient boosting; RF, random forest; LDA, linear discriminant analysis; LR, logistic regression; NB, naive
bayesian model; KNN, k-nearest neighbors; MLP, multilayer perceptron; LSTM, long short-term memory; CNN, convolutional neural network.
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greater positive impact on the diagnosis of SLN metastasis in the

XGBoost model. A Sankey diagram shows the distribution of key

ultrasound signs in the primary cohort (Figure 8). The SHAP

effort plot (Figure 9) demonstrates the cumulative effect of the

contribution of each ultrasound sign in the primary cohort on

the final decision. Figures 10, 11 show two examples of correctly
Frontiers in Oncology 08
predicted SLN transfer and no transfer, respectively. SHAP

waterfall plots (Figures 10C, 11C) demonstrate the positive

and negative effects of each ultrasound sign on the predicted

outcome in a single case. E[f(x)] represents the basic prediction

probability of the XGBoost model, and f(x) represents the final

prediction probability of the model.
FIGURE 3

ROC curves of the validation cohort.
TABLE 4 Externally validate the performance of machine learning models.

Classifier AUC Accuracy Sensitivity Specificity F1-score

LSTM 0.901 0.826 0.957 0.724 0.830

CNN 0.859 0.826 0.826 0.828 0.809

SVM 0.846 0.788 0.739 0.828 0.756

KNN 0.860 0.788 0.739 0.828 0.756

LDA 0.871 0.827 0.780 0.862 0.800

LR 0.889 0.800 0.826 0.759 0.800

NB 0.858 0.846 0.826 0.862 0.826

RF 0.893 0.711 0.913 0.552 0.737

MLP 0.826 0.750 0.696 0.793 0.711

XGB 0.916 0.846 0.870 0.862 0.826
fron
AUC, area under curve; SVM, support vector machine; XGBoost, extreme gradient boosting; RF, random forest; LDA, linear discriminant analysis; LR, logistic regression; NB, naive
bayesian model; KNN, k-nearest neighbors; MLP, multilayer perceptron; LSTM, long short-term memory; CNN, convolutional neural network.
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Comparison of diagnostic performance
of XGBoost model with radiologists

Radiologist A considered suspicious lymph nodes detected

by ultrasound as the presence of SLN metastasis based on the

lymph node ultrasound appearance and clinical experience, and

we compared the diagnostic performance of the radiologists and

the XGBoost model in the validation cohort. It was found that

the AUC of the XGBoost model was 0.916, while the AUC of the

radiologist was 0.758 (Figure 12). The difference was significant

as determined by the DeLong method (P<0.001).
Frontiers in Oncology 09
Discussion

This study retrospectively analyzed the ultrasound signs and

pathological findings of a total of 952 breast cancer lesions in

primary and validation cohorts. Using these data to screen ten

common ML algorithms, it was found that the comprehensive

diagnostic performance of the XGBoost model was the best and

was higher than that of experienced radiologists (P<0.001).

Suspicious lymph nodes, microcalcifications, spiculation signs

at the edge of the lesion, and structural distortion around the

lesion had a greater impact on the diagnostic performance of the
FIGURE 4

Validation cohort DET curves of 10 machine learning models.
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XGBoost model and are the key ultrasound signs for predicting

SLN status. We further used SHAP to reasonably explain the

prediction results of the XGBoost model, which provides a

reliable auxiliary tool for clinical decision-making.

Previous studies have mostly used logistic regression to

construct nomogram clinical prediction models by extracting

ultrasound image features (17). Logistic models have good
Frontiers in Oncology 10
interpretability, and their model coefficients represent the

importance of features to prediction results. A study (18)

compared the predictive ability of classification trees, random

forests, artificial neural networks, and support vector machines

in the ML algorithm with logistic regression and found that the

predictive ability of logistic regression was equally excellent.

However, this may not be statistically significant due to some
FIGURE 5

Learning curve of the XGBoost model.
FIGURE 6

The bar graph of the SHAP summary graph shows the effect of each ultrasound sign on the XGBoost model. “Suspicious lymph node” was the
factor that contributed the most to the prediction result, and margin, architectural distortion, and calculations also had a higher contribution to
the prediction result.
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factors that have a causal relationship to the output variable (19).

Excluding variables based solely on statistical assumptions

reduces available information and may miss features that

improve predictive power. In addition, the logistic regression

model has low accuracy and is limited in practical clinical
Frontiers in Oncology 11
application (20). This study found that the Average-AUC

(0.952), Average-Kappa (0.763) and Average-Accuracy (0.891)

of the XGBoost model in the 10-fold cross-validation were

higher than those of Logistic regression. The XGBoost model

in the validation cohort also performed well, with AUC of 0.916,
FIGURE 7

The scatter plot of the SHAP summary chart visually reflects the relationship between the feature value and the predicted probability through
color, including positive and negative prediction effects. The three signs of “suspicious lymph node,” “architectural distortion,” and “calculations”
are very clearly divided, and the margin is relatively clear. The higher the value (red), the greater the possibility of SLN transfer.
FIGURE 8

Sankey plot shows the distribution of ultrasound signs of breast cancer lesions in the primary cohort.
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accuracy of 0.846, sensitivity of 0.870, specificity of 0.862, and

F1-score of 0.826. We also compared eight other ML algorithms

(SVM, RF, LDA, NB, KNN, MLP, LSTM and CNN). The

comprehensive diagnostic performance of the XGBoost model

was still the best. Therefore, we chose to use the XGBoost

algorithm to build a clinical prediction model to achieve the

best diagnostic level. Next, we utilized SHAP to solve the

interpretability problem of the XGBoost model. Compared

with traditional ML model interpretation methods, SHAP not

only considers the influence of a single variable but also

considers the synergy between different variables and

distinguishes the positive or negative influence of variables by

color (21).

In this study, SHAP was used to find that suspicious lymph

nodes detected by ultrasound had a great impact on the

diagnostic performance of the XGBoost model. In addition,

ultrasonographic signs such as microcalcification in the lesion,

burr-like edges of the lesion, and disordered and distorted tissue

structure around the lesion had a significant positive effect on

the diagnosis of SLN metastasis by the XGBoost model. This

may be because tumor cells infiltrate the surrounding tissues,

invading the Cooper’s ligament and the lymph nodes through
Frontiers in Oncology 12
the lymphatic vessels (22). In this study, suspicious lymph nodes

were assigned the largest contribution value in the SHAP map,

which is consistent with previous studies (23) in which the

detection of suspicious lymph nodes by ultrasound improved

the diagnostic specificity of breast cancer SLN metastases. At the

same time, Drukker et al. (24, 25) also confirmed that the

analysis of ultrasound images of axillary lymph nodes can

effectively predict breast cancer metastasis, but the AUCs were

0.85 and 0.86, which were lower than our study (AUC=0.916). It

should be considered, however, that this may be because we also

included the ultrasound signs of the primary lesions of breast

cancer patients to train the ML model, which further increased

the diagnostic performance of the model. Li et al. (26) found that

breast cancer with calcification had a higher rate of lymph node

metastasis. Luo et al. (27, 28) found that the tumor pathological

type, tumor burr sign, and calcification characteristics were

related to axillary lymph node metastasis. These studies are

consistent with the findings of the present study. The tumor edge

spiculation sign is often the manifestation of the infiltration and

growth of the lesion to the surrounding tissue, suggesting that

the tumor is malignant, and its OR value is 14.68-10.45 (29).

Compared with coarse calcification, micro calcification is usually
FIGURE 9

The force plot of the SHAP summary plot reflects the positive or negative impact of the eigenvalues on the diagnosis of the XGBoost model in
red and blue.
FIGURE 10

Data from a female patient, 46 years old. (A). Right breast probing and hypoechoic lesions, not parallel to the skin, irregular in shape, burr-like
edges, and disordered echoes of surrounding structures; (B). Right axillary probing and echoes of suspicious lymph nodes. Pathological findings:
invasive ductal carcinoma, metastases in sentinel lymph nodes; (C). The waterfall chart of the XGBoost model predicted the process of SLN
metastasis in this case. For this patient, the predicted outcome was 77.2% (baseline: 44.5%), and high-risk factors for being diagnosed with SLN
metastasis included suspicious lymph nodes, spiculated lesion margins, and architectural distortion.
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one of the indicators of rapid proliferation of cancer cells, and it

is also a manifestation of high tumor malignancy (30), which

increases the risk of SLN metastasis in breast cancer. In this

study, the SHAP map also found that the contribution of

architectural distortion to predicting SLN metastasis was

second only to suspicious lymph nodes. Architectural
Frontiers in Oncology 13
distortion usually includes twisting of the ducts around the

mass, shortening and straightening of Cooper’s ligament, and

the mass breaching the anatomical plane to invade adipose tissue

(31). Paulinelli et al. (32) found that Cooper’s ligament

thickening is a characteristic of malignant tumors, and its

odds ratio value was 15.61. The studies of Woo (33) and Lee
FIGURE 11

Data from a female patient, 62 years old. (A). Right breast probing and mixed echogenic lesions, not parallel to the skin, irregular in shape,
lobulated at the edge, and echogenic in the rear; (B). No suspicious lymph node echo was detected in the right axilla. Pathological findings:
invasive ductal carcinoma, no metastases in sentinel lymph nodes; (C). The waterfall chart of the XGBoost model predicting the process of SLN
metastasis in this case. For this patient, the predicted outcome was 19.2% (the baseline was 44.5%), and the favorable factors mainly included
the margin of the lesion being lobulated, no suspicious lymph nodes being found, no obvious distortion of the tissue structure around the
lesion, and no calcification in the lesion.
FIGURE 12

Receiver operating characteristic (ROC) curves of XGBoost models and radiologists. The areas under the curve (AUCs) of the two methods
(0.916 vs. 0.758) were significantly different as determined by the DeLong method (P<0.001).
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(34) also confirmed that the combination of ultrasound images

of primary tumor and peritumoral tissue can more effectively

predict the status of axillary lymph nodes. We believe that

training the XGBoost model with the best diagnostic

performance by synthesizing the ultrasound signs of breast

cancer lesions, peritumoral tissues, and suspicious lymph

nodes is the key to improving the accuracy of SLN metastasis

prediction. At the same time, SHAP provides a personalized and

reasonable explanation for prediction, breaking the “black-box”

problem that has been hindering the development of complex

models and significantly improving the application value of

clinical models and the confidence of clinicians in the

prediction model.

This study also has certain limitations. First, it was a single-

center retrospective study, with limited sample size and

regionality. Some cases were eliminated due to the quality of

lesion images, thus reducing the sample size. Second, the

pathological types of breast cancer included in the samples

are not comprehensive, which may affect the results of the

study. Third, a more detailed classification of the ultrasound

signs of the lesion is also required. In the future, this study also

needs to incorporate the relevant features of radiomics, and

further analyze and study other ML algorithms involved

in medicine.

In conclusion, this study more comprehensively

incorporates the ultrasound signs of the primary breast

cancer and its surrounding soft tissues and lymph nodes,

and establishes an XGBoost model to predict the metastasis

of SLN and used SHAP to solve the “black-box” problem that

hinders the clinical application of ML algorithms. It provides

clinicians with a non-invasive, efficient, and convenient

method, assists clinicians to understand the state of SLN

before surgery, and guides the selection and treatment of

surgical methods.
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