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ABSTRACT: All-in-one systems integrating solar cells and supercapacitors
have recently received significant attention because of their high efficiency
and portability. Unlike conventional solar photovoltaics, which require
external wiring to connect to a battery for energy storage, integrated devices
with solar cells and supercapacitors share one electrode, eliminating wiring
resistance and facilitating charge transfer. In this work, we designed and
fabricated all-in-one devices by combining a silicon solar cell and a
supercapacitor with polymer gel electrolytes. Our all-in-one devices
incorporating H3PO4/PVA and [BMIm]Cl/PVA exhibited areal capaci-
tances of 452.5 and 550 mF·cm −2 at 0.1 mA·cm−2, respectively, following
100 s of photocharging. Notably, the [BMIm]Cl/PVA-based all-in-one
device demonstrated significantly higher maximum energy density and
power density compared to both the H3PO4/PVA-based all-in-one device
and the values reported in literature. In addition, the cyclic photocharge/
galvanostatic discharge process for the [BMIm]Cl/PVA-based all-in-one device represented consistent retention of areal capacitance,
affirming its stability across charge−discharge cycles. After 100 s of photocharging, the [BMIm]Cl/PVA-based all-in-one device
achieved a total energy efficiency of 1.85%, surpassing the 1.45% efficiency observed in the device using H3PO4/PVA. These results
provide valuable insights for the design of self-charging all-in-one devices for portable and wearable applications.

1. INTRODUCTION
Efficient energy storage generated by solar photovoltaics (PV)
is critical for compact and portable electronic devices in the
solar cell market.1−6 To date, solar panels must be connected
to batteries via external cables to store the energy, which
reduces storage efficiency due to the long external circuit.1

Furthermore, PV often faces significant uncertain intraday
fluctuations, requiring fast charging of energy-storage devices.
Integrating PV and a fast-charging device into a single unit can
optimize energy efficiency through self-charging, cell volume,
and flexibility, thereby opening up new markets for portable
and wearable devices.7−17 There are various all-in-one devices
that integrate PV and energy storage.2 In the case of an all-in-
one device combining an N-type solar cell with an energy-
storage component, the P−N junction enables electrons to
move toward the n-type semiconductor when exposed to light,
generating electron−hole pairs and establishing the n-type
semiconductor as the anode of the battery. Simultaneously, the
P-type semiconductor functions as the cathode, with holes (+)
moving in the opposite direction, as depicted in Figure 1a. This
configuration enables the rapid charging of energy-storage
devices.

The integration of a PV device with energy storage faces
challenges in efficiency and stability, prompting a focused
effort among researchers to address these issues. In the initial
stages, all-in-one devices combined silicon PV with super-

capacitors, exhibiting storage capacity and conversion
efficiency below 2%.18,19 Despite this initial limitation, these
early devices showed the potential for future enhancements.
Notably, integration of a perovskite solar cell with lithium-ion
batteries has demonstrated increased energy density. For
instance, the incorporation of perovskite solar cells involved
stacking four CH3NH3PbI3 layers in series for direct
photocharging of lithium-ion batteries assembled with a
LiFePO4 cathode and a Li4Ti5O12 anode, achieving an overall
photoelectric conversion and storage efficiency of 7.8% along
with exceptional cycling stability.20 Additionally, combining
perovskite solar cells with lithium-ion batteries using a
Li4Ti5O12 anode and a LiCoO2 cathode achieved an overall
efficiency of 9.36% supported by a DC-DC voltage boost
converter.21

Supercapacitors function as fast-charging energy-storage
devices by utilizing the electrical double layer on electrode
surfaces, storing energy through electrolyte physical adsorption
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and exhibiting extended cycle life and rapid charging times.22,23

However, challenges persist in integrating solar cells with
rapid-charging supercapacitors, primarily concerning their
relatively low energy density.14 Overcoming this, challenge
necessitates advancements in electrolytes due to the low ionic
conductivity of current electrolytes, which limits the capacity of
supercapacitors and consequently their energy density.
Furthermore, conventional electrolytes often degrade under
harsh conditions. To address these challenges, our study
focuses on enhancing the electrochemical performance and
thermal stability by employing polymer gel electrolytes
(PGEs). PGEs offer low vapor pressure, high ionic
conductivity, and broad working potential window, making
them well-suited for efficient energy conversion and storage.24

To prevent the risks associated with liquid electrolyte leakage,
we synthesized quasi-solid electrolytes through gelation,
combining poly(vinyl alcohol) (PVA) with proton-conducting
H3PO4 and the aprotic ionic liquid 1-n-butyl-3-methylimida-
zolium chloride [BMIm]Cl.25 This PVA matrix serves as the
foundation of the electrolyte. A schematic representation of the
integrated device is illustrated in Figure 1. Our all-in-one
devices, incorporating H3PO4/PVA and [BMIm]Cl/PVA,
exhibited areal capacitances of 452.5 and 550 mF·cm−2 at
0.1 mA·cm−2, respectively, following 100 s of photocharging.
In particular, the [BMIm]Cl/PVA-based all-in-one device
demonstrated notably higher maximum energy density and
power density in comparison with the H3PO4/PVA-based all-
in-one device. Therefore, this suggests the suitability of the
aprotic ionic liquid as an electrolyte for the integrated device.
Significantly, the [BMIm]Cl/PVA-based all-in-one device
exhibited substantial enhancements in energy density and a
sustained cycle life when contrasted with values reported in the
existing literature. The cyclic photocharge/galvanostatic
discharge process for the [BMIm]Cl/PVA-based all-in-one
device demonstrated consistent retention of areal capacitance,
thus confirming its stability throughout charge−discharge
cycles.

2. EXPERIMENTAL SECTION
2.1. Fabrication of All-in-One Device. The n-type slide

of the solar cell (1.5 × 1.5 cm2) was sputtered with Ti metal
(approximately 100 nm thickness) to serve as the anode
current collector. A Ti metal plate (1.5 × 1.5 cm2) with a
thickness of 1.5 mm was used as the cathode current collector.
As depicted in Figure 1b, three electrodes (p-type slide, n-type
Ti anode, and Ti plate cathode) were connected by a Cu wire
and bonded with Ag paste as an adhesive. The assembly was
then dried at 55 °C for 2 h. Both Ti current collectors were

coated with the electrode slurry (comprising YP50-F active
material:super-P conductive material:PVDF binder in a ratio of
80:10:10). Subsequently, they were dried at 70 °C for 4 h and
then subjected to vacuum drying at 110 °C for 4 h. To prepare
the gel electrolyte with [BMIM]Cl/PVA, a mixture of 0.921 g
of [BMIM]Cl and 1.0 g of PVA was added to 10 mL of
deionized water, and the mixture was stirred at 85 °C for 1 h. A
glass microfiber separator (1.5 × 1.5 cm2) was immersed in the
[BMIM]Cl/PVA gel electrolyte solution for 24 h, facilitating
the impregnation of the separator with the gel electrolyte.26

For comparison, we prepared an alternative gel electrolyte
using H3PO4/PVA. To achieve this, 5.0 g of H3PO4 and 5.0 g
of PVA were added to 50 mL of deionized water and stirred at
85 °C for 1 h. Subsequently, a glass microfiber separator (1.5 ×
1.5 cm2) was immersed in the H3PO4/PVA gel electrolyte for
24 h to prepare the separator impregnated with the gel
electrolyte. Then, as shown in Figure 1b, we assembled the
electrodes and the separator to fabricate an all-in-one device
integrating a solar cell and a supercapacitor (Figure S1). To
prevent electrolyte leakage, we completely sealed the cell
periphery with the ethylene vinyl acetate adhesive.

2.2. Electrochemical Analysis. Cyclic voltammetry (CV),
galvanostatic charge−discharge (GCD), and current voltage
(IV) studies were conducted by using a BioLogic VSP
potentiostat and EC-Lab software within the specified voltage
range. Photocharging experiments were performed under AM
1.5G 1 sun illumination using a solar simulator (QTH Light
Source; Oriel Instruments). The AM 1.5G spectrum was
calibrated and normalized to 1 kW/m2. The specific
capacitances of the electrodes (Cs, mF·cm−2) were calculated
from the discharge curves using eq 1 excluding the effects of
the Ohmic drop. To assess the long-term stability, areal
capacitance was measured over the course of 1 week. Ten
measurements of areal capacitance were taken to establish the
average values (Figure 4b). The energy density (E, W h·cm−2)
and power density (P, W·cm−2) were calculated using eqs 2
and 3, respectively.3 Here, I (A) is the constant current, Δt (s)
is the discharge time, ΔV (V) represents the absolute discharge
potential window, A (cm2) corresponds to the electrode area,
and Cs (mF·cm−2) denotes the specific capacitance.

=C I t
A Vs (1)

=E
C V

2

2

(2)

Figure 1. (a) Scheme of an integrated device combining PV and supercapacitor and (b) design of the all-in-one device in the work.
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=P
E

t (3)

The power conversion efficiency (PCE) was calculated by
using eq 4, where VOC represents the open-circuit voltage, ISC
stands for the short-circuit current, and FF denotes the fill
factor of the solar cell. The value of Pin corresponds to the solar
radiation power (100 mW·cm−2 for 1 sun).

= × ×I V
P

PCE
FFsc oc

in (4)

The total conversion efficiency (ηtotal) of the integrated
device was calculated using eq 5. In this equation, Ein (W h)
stands for the total input energy obtained from light, Pin
denotes the illuminated light density (100 mW·cm−2), tdischaring
(h) represents the discharge time, and A (cm2) corresponds to
the electrode area.

=
· ·

E
P A ttotal

in

in discharging (5)

3. RESULTS AND DISCUSSION
An integrated all-in-one device was developed by combining an
n-type silicon solar cell with a supercapacitor. To fabricate a
shared anode for both components, a 100 nm-thick titanium
thin film was deposited onto the rear surface of the n-type Si
solar cell. YP50-F activated carbon was uniformly coated on
both Ti current collectors, resulting in the formation of
symmetrical electrodes. To enhance the electrochemical
performance and stability, polymer gel electrolytes of
H3PO4/PVA and [BMIm]Cl/PVA were utilized. The electro-
chemical performance of the all-in-one devices was investigated
by CV and GCD analyses (Figures S2 and S3). CV curves of

the all-in-one devices were compared by measuring at a scan
rate of 3.0 mV·s−1 in the voltage range from 0 to 1.0 V (Figure
2a). The CV profiles obtained for both devices showed a
rectangle-like shape similar to that observed in electric double-
layer capacitors (EDLCs), suggesting the physical adhesion of
electrolytes to the activated carbon surface.3 With increasing
scan rates, higher current values were obtained. The GCD
curves of the all-in-one devices are depicted in Figure 2b. For
these curves, the cutoff voltage was set at 1.0, and the charge
and discharge times were measured at a current density of 1.0
mA·cm−2. The GCD curves exhibit a symmetrical triangular
shape, consistent with the characteristic behavior of EDLCs.
This shape demonstrates electrochemical reversibility attrib-
uted to the efficient adsorption and desorption of activated
carbon and electrolyte ions. In solid-state and gel electrolytes,
the transition from charging to discharging often leads to an
Ohmic drop.27 As depicted in Figure 2b, both H3PO4/PVA
and [BMIm]Cl/PVA-based all-in-one devices display notice-
able Ohmic drops. A closer analysis of the GCD curves
highlights a slightly lower voltage drop in the [BMIm]Cl/PVA-
based device compared to the H3PO4/PVA-based device. This
characteristic extends the discharging time, consequently
enhancing the discharge capacity. As the current density
increases, the discharge capacity decreases proportionally. The
relationship between the areal discharge capacity and the
current density is illustrated in Figure 2c. The discharge
capacities for the all-in-one devices incorporating H3PO4/PVA
and [BMIm]Cl/PVA electrolytes are 599 and 750.8 mF·cm−2

at a current density of 0.1 mA·cm−2, respectively. Notably, the
all-in-one device with [BMIm]Cl/PVA demonstrated signifi-
cantly higher areal capacitances than those with H3PO4/PVA
across all current densities. IV curves were obtained for the all-
in-one devices under simulated AM 1.5G 1 sun illumination, as

Figure 2. Electrochemical properties of the all-in-one devices: (a) CV curves at a scan of 3.0 mV/s, (b) GCD curves taken at a current density of
1.0 mA·cm−2, (c) areal capacitances on discharge current densities, and (d) IV-curve at 5.0 mV·s−1.
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depicted in Figure 2d. When considering the ratio of the
maximum power (Pmax) to the input power (Pin), the PCEs
were calculated to be 12% for all-in-one devices with H3PO4/
PVA and 13.0% for the one with [BMIm]Cl/PVA.

To investigate photocharging and galvanostatic discharging
in H3PO4/PVA and [BMIm]Cl/PVA-based all-in-one devices,
discharging curves were measured at various current densities
following exposure to 1 sun illumination. H3PO4/PVA- and
[BMIm]Cl/PVA-based all-in-one devices have linear discharge
curves, which is characteristic of an electrical double-layer
capacitor, proving that the incident light energy is converted
and stored in the supercapacitor. The internal resistances,
calculated from the voltage drop, for the H3PO4/PVA and
[BMIm]Cl/PVA-based all-in-one devices are 64 and 27 Ω,
respectively, representing a significant decrease compared to

the literature values (Figure 3a).28 At a current density of 0.1
mA·cm−2, the areal discharge capacitance for H3PO4/PVA and
[BMIm]Cl/PVA-based all-in-one devices reaches 452.5 and
550 mF·cm−2, respectively (Figure 3a). The [BMIm]Cl/PVA-
based all-in-one device exhibited significantly higher areal
capacitances than the H3PO4/PVA-based all-in-one device
across various current densities. This enhancement is
attributed to a markedly lower IR drop in the [BMIm]Cl/
PVA-based device (Figure 3a). To elucidate this disparity, the
self-discharge measurement was conducted following photo-
charging (Figure S7). The self-discharge was monitored for 1 h
after 100 s photocharging. While the H3PO4/PVA-based
device exhibited rapid self-discharge, the [BMIm]Cl/PVA-
based device sustained 0.43 V after 1 h of monitoring,
indicating superior stability. As the current density increases,

Figure 3. Photocharging and galvanostatic discharging properties of all-in-one devices: (a) discharge curves at 0.1 mA·cm−2 after a photocharging
time of 100 s (IR drop for H3PO4/PVA and [BMIm]Cl/PVA device: 0.1 and 0.04 V, respectively), (b) areal capacities at different current densities,
(c) discharge curves of H3PO4/PVA (dotted line) and [BMIm]Cl/PVA-based (solid line) all-in-one devices after 50 s (green), 100 s (blue), and
200 s (red) of photocharging, and (d) areal capacitance at various photocharging times of 50, 100, and 200 s under 1 sun illumination.

Figure 4. (a) Areal capacitance cycles of the [BMIm]Cl/PVA-based all-in-one device at 0.1 mA·cm−2 following a 100 s photocharging time and (b)
average areal capacitance after the period (areal capacitance was measured 10 times).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c09812
ACS Omega 2024, 9, 7255−7261

7258

https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c09812/suppl_file/ao3c09812_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09812?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09812?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09812?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09812?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09812?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09812?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09812?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09812?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c09812?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the areal capacitance decreases (Figure 3b). To determine the
optimal photocharging time, we measured the discharge curves
for H3PO4/PVA and [BMIm]Cl/PVA-based all-in-one devices
after photocharging for 50, 100, and 200 s under 1 sun
illumination (Figure 3c). Figure 3d highlights that photo-
charging time of 100 s is sufficient to charge the all-in-one
device.

To demonstrate the stability of cyclic photocharging and
galvanostatic discharging for the [BMIm]Cl/PVA-based all-in-
one device, consecutive experiments were performed. As
shown in Figure 4a, the areal discharge capacity is 443 mF·
cm−2 after 50 times charge−discharge cycling consecutively
and reached 81% of the initial value of 550 mF·cm−2.
Furthermore, after 1 week, the average areal discharge capacity
was still 443 mF·cm−2, indicating the stable performance of the
all-in-one device (Figure 4b). The H3PO4/PVA-based all-in-
one device also showed stable cyclic photocharging and
galvanostatic discharging (Figure S6). The Ragone plot in
Figure 5 shows the energy density and power density

calculated at various discharge and charge and discharge
rates. The maximum areal energy density of the [BMIm]Cl/
PVA-based all-in-one device reached 31.65 μW h·cm−2, which
is significantly higher than those reported in the literature for
other integrated devices with supercapacitors (Figure 5 and
Table S1).29−35 As the areal power density increased from
0.0644 to 9.6 mW·cm−2, the areal energy density monotoni-
cally decreased from 31.65 to 18.67 μW h·cm−2, which is
characteristic for energy-storage devices.36 The total energy
efficiency of a photoelectrochemical capacitor was determined
by dividing the stored energy in the supercapacitor by the total
input energy from light, indicating the photoelectric con-
version-to-storage efficiency. As listed in Table S2, the total
energy efficiencies of all-in-one devices with H3PO4/PVA and
[BMIm]Cl/PVA are 1.45 and 1.85% after a photocharging
time of 100 s, which are comparable to other devices in the
literature.

4. CONCLUSIONS
In conclusion, we have successfully fabricated an all-in-one
device combining an N-type silicon solar cell and a
supercapacitor, effectively addressing the challenge of efficient
energy storage in photovoltaic systems. The device features a
titanium thin film coated with activated carbon, serving as a
shared anode for both the solar cell and supercapacitor
components. The incorporation of polymer gel electrolytes,
such as [BMIm]Cl/PVA or H3PO4/PVA, further enhances the
electrochemical performance. With photocharging for 100 s,

the H3PO4/PVA and [BMIm]Cl/PVA-based all-in-one devices
exhibited an excellent areal capacitance of 452.5 and 550 mF·
cm−2 at a current density of 0.1 mA·cm−2, respectively.
Notably, the [BMIm]Cl/PVA-based all-in-one device achieved
a remarkable maximum energy density of 31.65 μW h·cm−2

and a maximum power density of 9.6 mW·cm−2, both
significantly surpassing values reported in the existing
literature. Furthermore, the all-in-one device demonstrated
exceptional cyclic stability, retaining 81% of its initial areal
capacitance following 50 cycles and maintaining an average
areal capacitance of 443 mF·cm−2 even after a week. Our
results highlight the immense potential of integrating n-type
solar cells and supercapacitors to lead high-performance all-in-
one devices characterized by outstanding cyclic stability and
remakable energy density. This achievement presents a
promising avenue for advancing efficient solar energy
conversion and storage technologies.
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