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Abstract: Feature extraction is essential for chemical property estimation of molecules using machine
learning. Recently, graph neural networks have attracted attention for feature extraction from
molecules. However, existing methods focus only on specific structural information, such as node
relationship. In this paper, we propose a novel graph convolutional neural network that performs
feature extraction with simultaneously considering multiple structures. Specifically, we propose
feature extraction paths specialized in node, edge, and three-dimensional structures. Moreover, we
propose an attention mechanism to aggregate the features extracted by the paths. The attention
aggregation enables us to select useful features dynamically. The experimental results showed that
the proposed method outperformed previous methods.

Keywords: chemical property estimation; graph neural networks; molecular data; multiple fea-
ture extraction

1. Introduction

Each molecule has its unique chemical properties. Estimation of the chemical proper-
ties is the first step in the field of drug discovery. Reagent testing is a standard estimation
method. However, its process requires long time and equipment cost. Machine learning
methods have been widely studied to reduce time and cost.

Most machine learning methods transform molecules into feature vectors and estimate
chemical properties using a neural network. There is a high correlation between molecular
structure and chemical properties. For example, molecules with benzene rings have a
sweet aroma and flammability, and hydroxy groups (OH groups) are readily soluble in
water. Therefore, feature extraction of molecular structures is essential in the estimation
of chemical properties using machine learning. Since chemical properties depend on an
essential structure, a flexible feature extraction method is necessary. A general feature
extraction method is Molecular Fingerprints [1–4], which transform a molecular structure
into a one-hot vector of the presence or absence of specific structures designed by humans.
However, the specific structures are hard for modification according to chemical properties
since experts need to change the specific structure of Molecular Fingerprints.

Recently, feature extraction using graph convolutional neural networks [5] has been at-
tracting attention as a learnable feature extraction method. As shown in Figure 1, the graph
represents the molecule using nodes (atoms) and edges (bonds). Node features are extracted
by updating their features and neighboring node features. The node feature propagates
to further nodes by the number of update processes. Besides, the update is based on a
neural network. Thus, a feature extraction model can learn the essential substructures
in a molecule according to the chemical characteristics of the estimation target. Various
models using graph convolutional neural networks have been developed [6,7]. The weave
model [6] extracts edge features to consider relationships between nodes. The 3DGCN
model used relative coordinates between nodes to extract features of three-dimensional
structures [7].
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Figure 1. Graph convolutional neural network. Node features are updated with weights w (node
features after arrows in the figure). Then, the node of interest (orange) is updated with the features of
its neighbors.

Graph convolutional neural networks worked well in a classification problem, such as
active or inactive. However, there is room for improvement in the regression problem due
to its extensive estimation range. Furthermore, substructures can be different for target
properties. Thus, it is essential to consider multiple structural features simultaneously.

In this paper, we propose a method for chemical property estimation of molecules
using multiple structural features. Specifically, we integrate feature extraction paths that
consider nodes, edges, and three-dimensional structures, respectively. For more flexible
feature extraction, we utilize an attention mechanism to select useful features dynamically.

2. Related Work

In the estimation of chemical properties by machine learning, the estimator uses
feature vectors extracted from molecules. Molecular Fingerprint is a method for extracting
feature vectors from molecules [1–3]. This method uses a one-hot vector to represent the
presence or absence of human-designed molecular structures. An improved method is
Extended Connectivity Fingerprints, or ECFP [4]. ECFP extracts the presence or absence
of subgraphs within molecular radius as a feature vector. However, these methods only
consider pre-designed molecular structures and, thus, cannot extract features according to
the chemical properties of the target.

A flexible feature extraction method has been developed using machine learning.
Duvenaud et al. used neural networks to refine the features of ECFP [8]. Recently, the graph
convolutional neural network [5] has attracted much attention. Graph convolutional neural
networks sequentially update node features using the features of their neighborhood nodes.
Finally, all the node features are merged into a one-dimensional feature vector, resulting
in a feature vector of a molecule. In addition to estimating molecular properties, graph
convolutional neural networks are used in a wide range of fields, including language
processing [9–11], human motion estimation [12–14], graph similarity estimation [15,16],
and class identification [17,18].

For the estimation of chemical properties, various models exist [19–24]. Directed
graphs are used to reduce computation and update node features [22,23]. Edge features
are extracted in Reference [6,25]. Relative coordinates between nodes are used to extract
features of three-dimensional structures [7]. There are methods that learn the importance
of node features [26,27]. However, the aforementioned methods specialized in a specific
molecular structure, such as edge and three-dimensional structures. In this study, we
propose to integrate three feature extraction methods [5–7] to simultaneously extract
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multiple molecular structures. Furthermore, we dynamically select features using an
attention mechanism to improve the estimation performance.

3. Materials and Methods

We propose a graph convolutional neural network that integrates three different
approaches of feature extraction. Depending on the chemical properties of the estimation
target, we need to extract different features. Therefore, we simultaneously extract node
features, edge features, and three-dimensional features. Furthermore, we use attention to
calculate the importance of each feature dynamically. As shown in Figure 2, the proposed
method extracts features using multiple paths (node features, edge features, and three-
dimensional features) and aggregates each feature. Firstly, we extract features through
each path. Then, we form a molecular feature by aggregating the features. The proposed
method enables us to consider various structures of the molecule by extracting features
through multiple paths.

Figure 2. Overview of the proposed method. For simplicity, we illustrated the flow of feature
update for a single attention node (green circle). Firstly, we generate pair features (yellow triangles)
representing the relationship between the node and its neighbors. We use bond types and relative
coordinates to extract edge relationships and three-dimensional structures. Then, we update the
node features using the pair features (orange, yellow, and blue circles). Finally, we aggregate each
path’s features of the attention node to obtain the node features, which are the output of this layer
(purple circles). We repeat the above processes for feature updates.

3.1. Node Feature Extraction Path

This path extracts node features using relationships between nodes. Let Ht
i ∈ RM×1

represents a M-dimensional feature vector of node i at t-th update round. We produce
the pair feature Pij ∈ RM×1 between node i and j by Equation (1), where σ represents the
rectified linear unit, and ‖ is the concatenation operation. A weight Wnp ∈ RM×2M and a
bias Bnp ∈ RM×1 are learning parameters. Subsequently, we update the node features Hi
as Equation (2). N(i) is the set of neighboring nodes of node i. The weight is Wn ∈ RM×M,
and the bias is Bn ∈ RM×1.

Pij = σ(Wnp(Ht
i ‖ Ht

j ) + Bnp), (1)

Ht+1
i = σ( ∑

j∈N(i)
WnPij + Bn). (2)

3.2. Edge Feature Extraction Path

The extraction path of edge features takes into account the edge relationships between
nodes. The atoms in a molecule can have various bonds, such as single bonds and double
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bonds. We incorporate these bond types into the feature extraction to consider the molecular
structure’s connectivity.

We use the five bonds: single bonds, double bonds, triple bonds, aromatic bonds,
and bonds to themselves. Let N represent the number of atoms. We represent the bonds
using the edge parameter E ∈ RN×N to describe the connectivity types. A naive parameter
for E is using categorical values, such as 1 for the single bond. Inspired by Reference [25],
we learn parameters to represent the bonds rather than merely representing the bonds
using five categorical values. As shown in Figure 3, we create five adjacency matrices and
learn the edge parameters using convolutional filter. The convolution filter has a kernel
size of 1, and the number of channels is 5.

Figure 3. Edge parameters.

We obtain a pair feature Pij by Equation (3) using Eij, the (i, j)th element of E. Note
that Eij is a scalar value. Then, we update the feature Hi by Equation (4). The learning
parameters are weight Wep ∈ RM×2M, We ∈ RM×M, bias Bep, Be ∈ RM×1. We take the
molecular bonds into account by multiplying E and the paired features.

Pij = σ(EijWep(Ht
i ‖ Ht

j ) + Bep), (3)

Ht+1
i = σ( ∑

j∈N(i)
WePij + Be). (4)

3.3. Three-Dimensional Feature Extraction Path

We incorporate three-dimensional structural information into feature updates based
on Reference [7]. Let (xi, yi, zi) represent the absolute coordinate of node i, we calculate
the relative coordinate R(x)ij = xi − xj of the x-coordinate. Likewise, we obtain relative
coordinate in y and z, R(y)ij = yi − yj and R(z)ij = zi − zj.

We calculated the pair feature Pij using the relative coordinates R as defined in
Equation (5). Then, we obtain the intermediate feature Qi by accumulating the pair fea-
tures as in Equation (6). However, Qi exclude node feature Hi due to Rii = 0. Therefore,
as shown in Equation (7), we propose to concatenate Hi and Qi.

Pij = σ( ∑
k∈(x,y,z)

R(k)ijWtp(Ht
i ‖ Ht

j ) + Btp), (5)

Qi = σ( ∑
j∈N(i)

WtqPij + Btq), (6)

Ht+1
i = σ(Wt(Ht

i ‖ Qi)). (7)

There is a drawback in relative coordinates. The difference of relative coordinates
is affected by translation and rotation. For further improvements, it is promising to use
distance between atoms.
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3.4. Feature Aggregation

We propose to extract more useful features by merging the features extracted through
the paths. We integrate the three features using attention to dynamically select important
features for each node. We integrate the features as Equation (8), where Hnode, Hedge,
and H3d represent features extracted by the paths. Where αnode

i represents an attention for
Hnode

i at node i, which is defined in Equation (9). We used the softmax function to obtain α.

Inspired by Reference [26], we calculate enode
i , eedge

i , e3d
i for each feature by Equation (10).

We use the initial feature Hinit
i of the node i and Hp, p ∈ {node, edge, 3d}.

Hi = σ(Wagg ∑
p∈{node,edge,3d}

α
p
i Hp

i ), (8)

α
p
i = softmax(ep

i ) =
exp(ep

i )

∑k∈{node,edge,3d} exp(ek
i )

, (9)

ek
i = Watt(σ(Hinit

i Winit) ‖ σ(Hk
i Wk)). (10)

3.5. Details of the Proposed Model

We illustrated the structure of the proposed model in Figure 4. The proposed model
extracts features using the paths and aggregation, which are composed of graph convolu-
tional neural networks. Then, we sum up the features along to each dimension to produce
a molecular feature vector. Finally, we estimate chemical properties by applying a fully
connected layer.

We adopted two-stage training. Specifically, we independently trained each path.
Then, we fixed the paths and trained the aggregation layer and the fully connected layer.
We used the mean square error (MSE) loss for training. We followed Reference [7] to
determine initial features, resulting in 60 dimensions feature vectors. The batch size was
set to 16.

Figure 4. The structure of the model. The initial features are the 60-dimensional features.

3.6. Datasets and Metrics

We mainly used two datasets in the experiments: Freesolv and ESOL. Each of these
datasets has been compiled in Reference [28] and is widely used as a dataset to evaluate
methods for estimating chemical properties. Freesolv is a dataset for estimating the free
energy of hydration of molecules and contains 1128 molecules. ESOL is a dataset for
estimating solubility and contains 643 molecules. Overall, Freesolv and ESOL are regression
task, which directly predicts the values. Besides, we used four datasets for verification of
the proposed method. We summarized the datasets in Table 1. QM8 has four excited state
properties calculated by three different methods. Thus, 12 properties in total.
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Table 1. Summary of the dataset used in the experiments.

Dataset #Mols Category Task

Freesolv 1128 Physical chemistry Regression for water solubility
ESOL 643 Physical chemistry Regression for hydration free energy
QM7 7160 Quantum mechanism Regression for Atomization energy
QM8 21,786 Quantum mechanism Regression for excited state properties
BACE 1513 Biophysics Classification for inhibitors of β-secretase 1
BBBP 2039 Physiology Classification for blood-brain barrier penetration

We randomly split the dataset to 8:1:1 for training data, validation data, and test
data. We evaluated the proposed method and the comparison methods for 10 trials. We
calculated the average of the metrics over the trials. The evaluation metrics is Mean
Absolute Error (MAE). The smaller MAE is better.

4. Results
4.1. Comparison Methods

As comparison methods, we used the graph convolutional neural network (GCN) [5],
the Weave model [6], and the 3DGCN [7]. Broadly, the comparison methods extract
node features (GCN), edge features (Weave), and three-dimensional features (3DGCN),
respectively. We set the number of updating layers to two in the proposed method and
the comparison methods for equivalent comparison. In addition, the summation is used
for producing molecular features as same as the proposed method. The main difference
between the comparison methods and the proposed method is the number of feature extrac-
tion paths. The comparison methods have a single path. In contrast, the proposed method
has multiple paths to consider node, edge, and three-dimensional structure simultaneously.

4.2. Main Results

We trained models until they converged. We stopped training if the loss is no longer
improving for ten successive epochs. We defined no improvement if improvements are
less than 0.0001. Figure 5 shows typical loss curves of the proposed method in training and
validation. The loss curves of the validation also converged. Thus, there was no overfitting.
The models successfully converged. The proposed model has 143,286 parameters. Com-
pared to 135 M and 11.4 M parameters in VGG-16 and ResNet-18 models, the number of
parameters is significantly small. Therefore, the numbers of data points in Freesolv and
ESOL are satisfactory for the proposed method.

We showed the numerical results in Table 2. GCN was better among the comparison
method. Moreover, the proposed method outperformed the comparison methods on all
datasets. The proposed method successfully learned the essential features. Thus, the results
showed the effectiveness of the multiple feature extraction for chemical property regression.

Table 2. Averages of MAE over 10 trials (Bold and underline are the best and the second-best,
respectively).

GCN Weave 3DGCN Proposed

Freesolv 0.764 0.817 0.743 0.717
ESOL 0.503 0.665 0.531 0.498
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(a) Freesolv

(b) ESOL

Figure 5. Loss curves of the proposed model.

4.3. Results on Quantum Mechanism

We conducted experiments using QM7 and QM8 datasets. We trained models until
they converged. The results are shown in Table 3. The results show that the proposed
method outperformed the comparison methods at ten tasks. In addition, the proposed
method was the second-best on the rest tasks. Thus, we verified the effectiveness of the
proposed method in various tasks.

Table 3. Averages of MAE over 10 trials on quantum mechanism datasets (Bold and underline are
the best and the second-best, respectively).

GCN Weave 3DGCN Proposed

QM7 10.75 12.22 12.89 9.13
QM8 (E1-CC2) 0.00846 0.00608 0.00651 0.00611
QM8 (E2-CC2) 0.0099 0.0080 0.0081 0.0077
QM8 (f1-CC2) 0.0180 0.0161 0.0148 0.0141
QM8 (f2-CC2) 0.0346 0.0327 0.0324 0.0303

QM8 (E1-PBE0) 0.0082 0.0064 0.0071 0.0066
QM8 (E2-PBE0) 0.00945 0.00705 0.00822 0.00712
QM8 (f1-PBE0) 0.0154 0.0120 0.0124 0.0114
QM8 (f2-PBE0) 0.0291 0.0259 0.0261 0.0247
QM8 (E1-CAM) 0.0074 0.0061 0.0065 0.0058
QM8 (E2-CAM) 0.0084 0.0065 0.0071 0.0063
QM8 (f1-CAM) 0.0166 0.0132 0.0127 0.0123
QM8 (f2-CAM) 0.0308 0.0268 0.0275 0.0259
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4.4. Evaluation on Aggregation Approaches

We carried out experiments to discuss the effectiveness of the feature aggregation.
Besides the attention, there can be various aggregation approaches, such as concatenation,
summing, and maximum. We define them in Equations (11)–(13).

Hi = σ(Wconcat(Hnode
i ‖ Hedge

i ‖ H3d
i )), (11)

Hi = σ(Wsum(Hnode
i + Hedge

i + H3d
i )), (12)

Hi = σ(Wmax max(Hnode
i , Hedge

i , H3d
i )). (13)

Table 4 shows the results. The attention and the concatenation aggregations were the
best on Freesolv and ESOL, respectively. All the aggregations achieved accurate estimation
results. Thus, the proposed method has capability to aggregate different features using
various approaches.

Table 4. Averages of MAE for aggregation approaches.

Concat Sum Max Attention

Freesolv 0.666 0.663 0.703 0.639
ESOL 0.472 0.478 0.488 0.484

4.5. Impacts of Feature Extraction Paths

We conducted experiments to clarify the impacts of feature extraction paths on the
datasets. We built models with one-, and two-paths. Specifically, one-path models have
a single path of node, edge, and three-dimensional features, respectively. The two-path
models have node and edge paths, node and three-dimensional paths, and edge and three-
dimensional paths, respectively. We used the attention aggregation in the two-path models.

The results are shown in Table 5. In Freesolv, the two-path models outperformed
the one-path models. Furthermore, the proposed model was the best at 0.639. Likewise,
two-path models were superior to the one-path models on ESOL. Overall, multiple features
were significant in chemical property estimation.

Table 5. Average of MAE for path combinations.

Path Combinations

Node X X X X
Edge X X X X
3D X X X X

Freesolv 0.710 0.702 0.864 0.640 0.676 0.685 0.639
ESOL 0.483 0.498 0.538 0.477 0.476 0.482 0.484

4.6. Results in Classification Tasks

We conducted classification experiments on BACE and BBBP. In addition, we trained
models until they converged. We used four metrics: Accuracy, Recall, Precision, and F-score.
Tables 6 and 7 show the results. The two path model of the proposed method achieved
the best results on BACE at all metrics. In addition, the proposed method was the best at
precision and the second-best at the other metrics on BBBP. The ROC curves in Figure 6
shows the significant performance of the proposed method. These results show that the
effectiveness of the proposed method in a classification task.
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Table 6. Classification results on BACE (Bold and underline are the best and the second-best,
respectively).

GCN Weave 3DGCN Proposed Proposed
(Node & Edge)

Accuracy 0.807 0.751 0.774 0.799 0.811
Recall 0.779 0.714 0.726 0.782 0.782

Precision 0.777 0.739 0.749 0.763 0.783
F-score 0.778 0.726 0.737 0.773 0.782

Table 7. Classification results on BBBP (Bold and underline are the best and the second-best, respectively).

GCN Weave 3DGCN Proposed Proposed
(Edge)

Accuracy 0.886 0.871 0.873 0.874 0.884
Recall 0.942 0.915 0.923 0.922 0.928

Precision 0.912 0.917 0.912 0.915 0.922
F-score 0.927 0.916 0.918 0.918 0.925

Figure 6. ROC curves.

4.7. Verification of Edge Parameters

We carried out experiments to verify the effect of edge parameter E, a learning param-
eter in Equation (3). We compared two modes on the basis of the edge path model. One
used edge parameters learned by convolution with kernel sizes. The other adopted the
fixed edge parameter, e.g., categorical values, one for the self node, 2 for single bonds, 3 for
double bonds, 4 for triple bonds, 5 for aromatic bonds. We adopted 50 epochs for training.
The results are shown in Table 8. The model using the learned edge parameters improved
on all the datasets. Therefore, the proposed method learned an optimal representation of
edge types.

Table 8. Averages of MAE using fixed and learned edge parameters.

Fixed Conv-1 Conv-3 Conv-5 Conv-7

Freesolv 1.181 0.799 0.872 0.957 0.927
ESOL 0.706 0.525 0.598 0.585 0.654

4.8. Effect of the Self Node in Three-Dimensional Features

We evaluated the effect of the self node in the three-dimensional feature. We used the
model of the extraction path of three-dimensional features. Then, we compared the model
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with and without the self node. Specifically, we defined the model without self node as
Equation (14) instead of Equation (7).

H3d
i = σ(WtqQi). (14)

If we omit the self nodes, the self nodes were not considered when aggregating the pair
features and updating the node features. The experimental results are shown in Table 9.
There were specific improvements by the self node. Therefore, we confirmed that the
performance could improve by incorporating the self nodes into three-dimensional features.

Table 9. Aberage of MAE with and without self node features.

w/o Self w/ Self

Freesolv 1.525 0.864
ESOL 0.726 0.538

4.9. Attention Visualization

We conducted experiments to confirm the capability of dynamic determination for
the attention values in the proposed method by visualizing each node’s attentions αi.
According to Equation (9), the summation of αi among the paths is normalized to one.
Thus, we directly illustrated α using bar charts. The visualization results are shown in
Figure 7. The various attention values were assigned to each node. The result shows that
the proposed method flexibly determined attention for each node.

Figure 7. Visualization results of attention values.

5. Conclusions

In this study, we proposed a method for chemical property estimation in molecules.
The proposed method uses multiple paths to extract features focusing on specific structures,
such as node relationship, edge relationship, and three-dimensional structure in a molecule.
Furthermore, we proposed to obtain more useful features by aggregating multiple features
by selecting essential features dynamically. Compared to existing methods that focus on
only one structure, the experimental results showed that the proposed method outper-
formed the comparison methods in regression tasks. Therefore, multiple feature extraction
can improve the performance of chemical property estimation in molecules.
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