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Abstract

Phylogenetics is a powerful tool for understanding the diversification dynamics of viral pathogens. Here we present an ex-
tension of the spectral density profile of the modified graph Laplacian, which facilitates the characterization of within-host
molecular evolution of viruses and the direct comparison of diversification dynamics between hosts. This approach is non-
parametric and therefore fast and model-free. We used simulations of within-host evolutionary scenarios to evaluate the
efficiency of our approach and to demonstrate the significance of interpreting a viral phylogeny by its spectral density pro-
file in terms of diversification dynamics. The key features that are captured by the profile are positive selection on the viral
gene (or genome), temporal changes in substitution rates, mutational fitness, and time between sampling. Using sequences
from individuals infected with HIV-1, we showed the utility of this approach for characterizing within-host diversification
dynamics, for comparing dynamics between hosts, and for charting disease progression in infected individuals sampled
over multiple years. We furthermore propose a heuristic test for assessing founder heterogeneity, which allows us to clas-
sify infections with single and multiple HIV-1 founder viruses. This non-parametric approach can be a valuable comple-
ment to existing parametric approaches.
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1. Introduction

Molecular rates of evolution impact patterns of virulence and
viral transmission (Duffy, Shackelton, and Holmes 2008; Ho
et al. 2011). High mutation rates, large population sizes, and
small genomes typical of viruses lead to heterochronous rates
of evolution (Peck and Lauring 2018), often characterized as
diminishing returns on strong purifying selection (Sharp et al.
2001; Holmes 2003). Approaches to detecting these patterns of
selection comprise pairwise diversity estimates (Sánchez-
DelBarrio et al. 2003), model-based inferences of substitution
rates (Pond and Frost 2005; Lemey et al. 2007), and illustrative
measures, such as codon frequencies (Kumar, Tamura, and Nei

1994). Although these form much of the foundation of our un-
derstanding of viral evolution, they nonetheless present some
limitations for inferring and comparing within-host diversifica-
tion dynamics (Ratmann et al. 2017; Mitov and Stadler 2018).
These limitations frequently stem from the general drawbacks
of applying model-based approaches to complex data and from
inherent difficulties in directly comparing incompatible models
across individuals (Duchêne, Ho, and Holmes 2015).

We present the spectral density profile of the modified graph
Laplacian (MGL) as a framework for characterizing and comparing
virus evolution within and across hosts (Lewitus and Morlon
2016a). This approach allows the user to directly interpret the
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within-host diversification dynamics of a virus through interpret-
able evolutionary parameters and to compare those parameters
between hosts. As such, it relates the molecular evolution of a vi-
rus at the nucleotide level to its diversification dynamics through-
out a population and therefore provides a framework for realizing
and interpreting diversification trends, clusters, and deviants
across a set of sampled individuals or cohorts. Importantly, this
approach is non-parametric and therefore is fast and does not rely
on model assumptions. When compared with some previous
methods (Robinson and Foulds 1981; Amenta and Klingner 2002;
Hillis, Heath, and John 2005; Kendall and Colijn 2016), the MGL ap-
proach allows for direct comparisons of entire trees, even when
there are different tip numbers and labels. We showed how the
spectral density profile of the MGL may be interpreted in terms of
viral diversification dynamics using simulated alignments and
phylogenetic tree reconstruction. To demonstrate the utility of the
approach for hypothesis-testing and unbiased data exploration,
we analyzed HIV-1 sequences sampled from participants infected
during the RV144 trial (Rerks-Ngarm et al. 2009), developed a heu-
ristic test for classifying founder pool heterogeneity in HIV-1 env
sequences obtained from acutely infected individuals (Keele et al.
2008), and charted the diversification dynamics associated with
HIV-1 evolution over several years (Shankarappa et al. 1999) with
time-stepped profiles.

2. Results
2.1 Formulating the MGL for a viral phylogeny

The spectral density profile of the MGL allows for direct compar-
isons of patterns of phylogenetic diversification (Lewitus and
Morlon 2016a,b). The Laplacian graph, D, is computed for the
distance matrix of the reconstructed phylogeny of within-host
sampled viral sequences,

Dði; jÞ ¼
P

wði; jÞ; if i ¼ j:
�wði; jÞ; otherwise:

�
(1)

where each off-diagonal cell is the negative of the distance be-
tween nodes i, j and each diagonal cell is the sum of distances in
row i. The eigenvalues, k, calculated from the graph define the
connectivity of the phylogeny, such that larger k indicate sparse
connectivity and smaller k indicate dense connectivity (Noh and
Rieger 2004; Banerjee and Jost 2009). Here the definition of con-
nectivity is contingent on the phylogeny—for example, an ultra-
metric tree will define connectivity in terms of time, whereas a
non-ultrametric tree may define connectivity in terms of number
of nucleotide substitutions (Fig. 1A). The spectral density profile
is then constructed by convolving k with a smoothing function,

f ðxÞ ¼
Xn

i¼1
ð2pr2Þ�1=2e

�jx�ki j
2

2r2

� �
(2)

so that the profile is plotted for f ðxÞ=
Ð

f ðyÞdy as a function of k.
Profiles for different sets of viral sequences (or different phylo-
genetic builds of the same sequences) can then be clustered
based on their Jensen-Shannon distances (Endres and
Schindelin 2003) and an optimal number of supported clusters
determined by, for example, partitioning around medoids
(Reynolds et al. 2006) (Fig. 1B, see Section 5). The spectral den-
sity profile can be sufficiently summarized using statistics that
represent different aspects of the topology of the phylogeny: the
principal eigenvalue (k�) is a measure of the longest path
through the phylogeny and so estimates the upper-bound of

evolutionary change present in the sample; skewness (w)
reflects the proportion of long versus short branching-events,
where long and short are relative to the distribution of branch-
lengths in the phylogeny; and peak height (g) indicates the het-
erogeneity of branching-events, where lower g means more het-
erogeneity (Lewitus and Morlon 2016a). The eigengap, which is
defined as the position of the largest discrepancy between two
eigenvalues when the eigenvalues are ranked in descending or-
der, is a unique feature of the Laplacian graph and is a signifier
of the number of disconnected sets of branches (due, e.g., to a
shift in diversification rate) in the phylogeny (Von Luxburg 2007;
Shen and Cheng 2010; Lewitus and Morlon 2016a). Each statistic
can be interpreted in terms of the diversification dynamics of
the virus, as we demonstrate below; and therefore, individual
and clusters of phylogenies can be characterized by their sum-
mary statistics, including a classification scheme for founder
heterogeneity.

Code for computing the spectral density profile of the MGL
of phylogenies can be found in RPANDA (Morlon et al. 2016)
and R code for applying a test of founder heterogeneity is avail-
able at https://www.hivresearch.org/publication-supplements.
Alignments from Keele et al. (2008), Rolland et al. (2012) and
Shankarappa et al. (1999) can be found at https://www.hiv.lanl.
gov/content/sequence/HIV/SI_alignments/datasets.html.

2.2 Interpreting the MGL at the molecular level

The significance of the spectral density profile was validated by
constructing phylogenies from sequences simulated under vari-
ous scenarios of molecular evolution. We predicted that each
summary statistic would be sensitive to a particular generative
mechanism, as each of these generative mechanisms would
have a particular effect on the phylogeny. We found that trees
simulated under different non-synonymous/synonymous sub-
stitution rates (dN/dS) could be distinguished by their k�

(Fig. 2A). Higher levels of variance in the distribution of rates,
ranging from different rates at a few discrete sites (strong rate
heterogeneity) to similar rates across all sites (weak rate hetero-
geneity) (Nielsen and Yang 1998), produced trees with higher w

values (Fig. 2B). In addition, we observed that higher transition/
transversion (ti/tv) rates, which typify fewer substitutions detri-
mental to fitness and signifies mutational fitness in HIV-1
(Lyons and Lauring 2017), produced trees with lower g values
(Fig. 2C). We also compared maximum pairwise genetic dissimi-
larity between simulated sequences in each scenario; this was
less effective than k� and w, respectively, in distinguishing
between samples simulated under different dN/dS and rate het-
erogeneity and ineffective in distinguishing differences in ti/tv
rates (Supplementary Fig. S1).

We compared spectral density profiles for trees simulated
under permutations of all three parameters: dN/dS ¼ 0.1, 0.7; c

distribution ¼ discrete, invariant; and ti/tv ¼ 1/50, 50/1. Using
Jensen-Shannon distances between profiles, we identified three
clusters with average silhouette widths > 0.7 (where widths
> 0.5 indicate robust cluster assignment; Rousseeuw 1987) by
partitioning around medoids, each of which could be further
broken up into two clusters with bootstrap probability > 0.9
(Fig. 3A). By comparing spectral density profile summary statis-
tics (Fig. 3B) and plotting the three clusters into a multidimen-
sional space (Fig. 3C), we found that the trees were primarily
distinguished by a combination of differences in w and g, reflect-
ing the simulated differences in the c distribution and ti/tv
rates, whereas differences in dN/dS proved a less influential
distinction.
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We found the above processes could also be distinguished
with time-scaled trees constructed using a Bayesian approach
(Drummond and Rambaut 2007). The scale of inferred spectral
density profiles was positively shifted with respect to the
maximum-likelihood trees, underscoring the importance of
comparing trees of similar build.

2.3 Interpreting the MGL for longitudinal samples

Within-host viral phylogenies are often sampled at multiple
times post-infection. High mutation rates and frequent
selective sweeps result in phylogenies that present with
distinctly ladderized topologies (Fig. 1A; Shankarappa et al.
1999; Rambaut et al. 2004). We tested the effect of (1) elapsed
time and (2) changes in diversification rate between sampling
on the spectral density profile using simulated time-scaled
trees.

(1) We found that the eigengap consistently identified two
clusters when the simulated time between sampling was �3
weeks (Fig. 4A). The value of the eigengap was positively cor-
related with the time between sampling (Fig. 4B). Maximum
pairwise genetic dissimilarity was unaffected by changes in
the time between sampling (Fig. 4C). (2) When we held the
time between sampling constant (10 weeks) and increased
the difference in diversification rate between the first and
second sampling, we found this was positively correlated

with w (y � 0:5x;R2 ¼ 0:99; P < 6e� 5) (Fig. 5). There were mi-
nor positive effects on k� (y � 0:003x;R2 ¼ 0:89; P < 0:01), and g

(y � 0:0002x;R2 ¼ 0:91; P < 0:01) and no effect on maximum
pairwise genetic dissimilarity (P ¼ 0.87; Fig. 5).

2.3.1 Example 1: Hypothesis-testing and exploration of within-host
phylogenetic diversification in the RV144 cohort
To illustrate the utility of comparing and characterizing
within-host viral diversification, we analyzed HIV-1 sequences
sampled at diagnosis from individuals infected with HIV-1
CRF01 AE during the RV144 vaccine efficacy trial. We previ-
ously showed that HIV-1 genomes did not differ between indi-
viduals who were administered the vaccine or a placebo in
terms of sequence diversity, divergence from the vaccine, or
regarding the proportion of infections with multiple founders;
however, there were significant amino acid differences be-
tween the groups at sites known to be targeted by antibodies
elicited by the RV144 vaccine (Rolland et al. 2012). We con-
structed phylogenies for each sample based on nucleotide di-
vergence and computed spectral density profiles from their
MGLs. Using the metadata associated with the cohort, we
tested for effects of sex, treatment, as well as the relationship
between spectral density profile summary statistics and differ-
ent infection factors. Using one-sample t-tests, we found no
significant effect of sex (T < 1; P > 0:1; Fig. 6A) or treatment
(T < 1; P > 0:1; Fig. 6B); nor of any of the infection factors on

A

B

Figure 1. Schematic of the spectral density profile for (A) an individual-level phylogeny and (B) population-level phylogeny. In (A), a phylogeny is constructed from viral

sequences sampled from a participant at three time-points; the MGL of the phylogeny captures the topology generated from genetic dissimilarity sampled from the

same time-point (within-variance) and the genetic dissimilarity between time-points (between-variance); the eigenvalues, k, computed from the MGL used to plot the

spectral density profile represent the cumulative pattern of between- and within-variance of genetic dissimilarity of the individual phylogeny. In (B), spectral density

profiles computed from multiple participants can be represented on a population-level phylogeny according to the genetic dissimilarity of consensus sequences for

each participant. Spectral density profiles can be clustered across participants based on the amount of divergence between profiles.
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spectral density profile summary statistics (R < 0:01;P > 0:1;
Fig. 6C).

We clustered the phylogenies based on Jensen-Shannon dis-
tances between their spectral density profiles. We identified
three clusters (Fig. 6D) with an average silhouette width of 0.52.
The composition of the clusters in terms of the infection factors
associated with individuals in each differed slightly from the
population mean for sex and treatment, but was most dramati-
cally different for founder heterogeneity: in Cluster 1, partici-
pants with a heterogeneous founder pool constituted 16% of

phylogenies; in Cluster 2, it constituted 23%; and in Cluster 3, it
constituted 75% (Fig. 6E).

2.3.2 Example 2: A heuristic test for founder pool heterogeneity
We used sequence data from Keele et al. (2008) to test the effect
of founder pool heterogeneity on spectral density profile sum-
mary statistics. We constructed maximum-likelihood trees with
env alignments from fifty-three participants with low-diversity
sequences that conform to infections established by a single
HIV-1 founder variant (i.e. homogeneous founder populations)

A

B

C

D

Figure 2. Interpreting the MGL at the molecular level. (A) Representative phylogenies and spectral density profiles of the parameters in (B–D). (B-D) boxplots for k� , w,

and g for alignments simulated under various (left) dN/dS, (middle) c distributions, and (right) ti/tv. Dashed red boxes indicate significant differences (P < 0.01) between

all three parameter values.
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and nineteen participants with more diverse sequences that
correspond to infections established by multiple, related
founder variants (i.e. heterogeneous founder populations; Keele
et al. 2008). We found distinguishable patterns of diversification
for the two groups. There were significant differences in mean
values for k� (T ¼ 12:69; P ¼ 1:12e� 11; Fig. 7A). Significantly dif-
ferent distributions for homogeneous and heterogeneous
groups for k� (D ¼ 0:95; P ¼ 6:44e� 15) resulted in disproportion-
ate representation of participants with homogeneous founders
in the left tail and heterogeneous founders in the right tail of
the distribution of all participants (Fig. 7B). Specifically, 70 and
96% of homogeneous founders were to the left of the median
and þr2=2 of the median of the distribution, respectively; and
100% of heterogeneous founders were to the right of the median
of the distribution. The ‘jump‘ and ‘partition’ methods identi-
fied thresholds within þr2=2 of the median (Fig. 7C). We found
that k� was likewise effective when analyzing time-scaled trees,
wherein 67 and 89% of homogeneous founders were to the left
of the median and þr2=2 of the median of the distribution, re-
spectively; and 92 and 100% of heterogeneous founders were to
the right of the median and �r2=2 of the median of the distribu-
tion, respectively (Supplementary Fig. S2). We therefore can de-
fine a heuristic test for founder heterogeneity, wherein

phylogenies with lnk� < lnk�medianþnr2 are classified as homoge-
neous/single founders and phylogenies with lnk� > lnk�medianþnr2

are classified as heterogeneous/multiple founders.
Alternatively, homogeneous and heterogeneous founders can
be distinguished using the ‘jump‘ or ‘partition‘ method, which
identify thresholds consistent with the median technique.
Perhaps more valuably, the distribution of k� can be used to de-
fine the spectrum of founder heterogeneity within a sample,
where medial assignation can be given to participants that fall
between 6nr2 of the median (Fig. 7C and Supplementary Table
S1). Notably, there were no significant differences in mean phy-
logeny size (here defined by the number of tips) between homo-
geneous and heterogeneous groups (T ¼ 1:68; P > 0:10).

2.3.3 Example 3: Charting phylogenetic diversification of HIV-1 dis-
ease progression
Phylogenetic diversification is a cumulative process: the diversi-
fication of an infection at time t ¼ tn is measured as the sum of
diversification events at t � tn. We may, therefore, understand
something about the progression of disease if we look at how di-
versification of an infection accumulates over time. We ex-
plored this using sequences from nine HIV-1-infected males
who were sampled over 6–12 years as part of the Multicenter

A B

C

Figure 3. Unbiased clustering of spectral density profiles. (A) Heatmap and hierarchical clustering of spectral density profiles for trees simulated under eight evolution-

ary scenarios. Stars indicate bootstrap support �0.9. The color scheme (cyan, blue, and violet) distinguish the three clusters determined by partitioning around

medoids. Shades of the same color further distinguish clusters with divisions identified by hierarchical clustering using bootstrap probability support. Hierarchical

clustering is not shown below a threshold value of 2. (B) Boxplot of spectral density profile summary statistics for trees belonging to each cluster based on medoid parti-

tioning. (C) Simulated trees within each cluster plotted into multidimensional space defined by spectral density profile summary statistics.
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AIDS Cohort Study (Kaslow et al. 1987; Shankarappa et al. 1999).
We constructed phylogenies for each individual. We then sliced
each phylogeny at equally spaced time-points from the stem
and computed the spectral density profile for each slice. For all
individuals, k� increased with each slice (Fig. 8A); w increased,
too, although it oscillated from slice to slice (Fig. 8B); and g de-
creased exponentially, with an elbow roughly halfway between
the stem and the present (Fig. 8C). Notably, the rate at which
each summary statistic, particularly k�, changed through time
was different for each individual, which is indicative of idiosyn-
cratic disease progression between individuals. Likewise, the
relationships between summary statistics at each slice was
unique to each individual: w tended to increase as a function of
k�, although not monotonically for each individual (Fig. 8D): g

decreased as a monotonic function of k� for all individuals
(Fig. 8E), suggestive of a governing dynamic; and the relation-
ship between g and w was inconsistent across individuals and,

with one exception (Participant 9: R2 ¼ 0:98; P < 0:01), uncorre-
lated (Fig. 8F).

Given these differences in the accumulation of diversifica-
tion patterns between individuals, the spectral density profile
of within-host phylogenies reconstructed for different time-
slices can be used to understand disease progression in individ-
uals. Participant 1, for example, shows a sharp increase in k�

halfway between the stem and the present (Fig. 8G and H), in-
dicative of an increase in positive selection in the virus. This is
followed by a drop in w at the next time-slice, showing that the
increase in k� is succeeded by a slowing down in diversification
rate, a pattern that is repeated leading to the present (Fig. 8H).

A

B

C

D

Figure 4. Interpreting the MGL for longitudinal samples: elapsed time. (A)

Representative phylogenies and spectral density profiles for sequence data sam-

pled at two time-points for increasing elapsed time between samples. Boxplot of

the (B) eigengap position (i.e. inferred number of clusters), (B, inset) eigengap po-

sition for weeks 0.1–4.1, (C) the eigengap value (i.e. ki � kiþ1), and (D) the maxi-

mum pairwise genetic dissimilarity over simulations of sequence data sampled

at two time-points with increasing elapsed time between samples.

A

B

C

D

E

Figure 5. Interpreting the MGL for longitudinal samples: speciation rate differen-

ces. (A) Representative phylogenies and spectral density profiles for sequence

data sampled at two time-points with increasing speciation rate differences be-

tween samples. Boxplot of (B) k� , (C) w, (D) g, and (E) maximum pairwise genetic

dissimilarity over simulations of sequence data sampled at two time-points

with increasing differences in speciation rate between samples. The dashed red

box indicates significant pairwise differences in mean values (P < 0.01) between

all groups.
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The immediate decrease in g between the first two time-slices
shows a sharp rise in mutational fitness following the initial
sampling. This rise is expected, but its extent (i.e. difference in
g) appears to be idiosyncratic to each individual and therefore
may be diagnostic of the initial diversification of the infection.
We furthermore tested for any differences in phylogenetic di-
versification among the HIV-1 sequences which were predicted
to use the CXCR4 coreceptor for viral entry (Shankarappa et al.
1999). We found that X4 variants typically had larger k� and
lower g values at each timepoint (Supplementary Fig. S3), but

that this was not significant, possibly due to restrictively small
effect sizes (Cohen’s D ¼ 0:1860:07).

3. Discussion

We presented the spectral density profile of the MGL as a new
tool for clustering and characterizing viral phylogenies. It ena-
bles the user to survey population-wide patterns of within-host
viral diversification and test the effects of epidemiological fac-
tors on those patterns, thereby providing an additional option

A

B

C

D

E

Figure 6. Hypothesis-testing on RV144 participants. Boxplot of spectral density profile summary statistics for (A) female and male infected individuals and (B) infected

individuals administered a vaccine or a placebo in the RV144 trial. Outliers removed. (C) Pairwise plots and loess fits for different infection factors as functions of spec-

tral density profile summary statistics for all infected individuals in the RV144 trial. (D) Multidimensional plot of phylogenies for all subtype CRF01_AE infected individ-

uals from the RV144 trial. Points are shaded according to unbiased partitioning around medoids. (E) Barplot showing the % deviation of composition of infection factors

of each cluster from the population mean (shades correspond to (D)).
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to help overcome some of the difficulties of using parametric
approaches for inferring viral evolution (Suzuki and Nei 2004;
Duchêne et al. 2015). We used three examples to illustrate some
of the features of the MGL.

The spectral density profile of the MGL can characterize di-
versification dynamics within hosts and compare them be-
tween hosts under a multidimensional framework with a
rigorous theoretical basis. It can be computed rapidly for rea-
sonably sized phylogenies (9 seconds for a tree with 1,000 tips),
which is valuable for initial probes into the structure of big data
that can then be integrated with existing metrics (e.g. genetic
divergence, dN/dS, and codon frequencies). One key contribu-
tion of this approach to the phylodynamics toolbox is its ability
to identify clusters of individuals based on their viral

diversification dynamics. Once identified, these clusters can be
characterized by spectral density summary statistics, which
represent distinct aspects of phylogenetic diversification: k� is
an estimate of the maximum evolutionary change in a phylog-
eny, which is distinct from estimates of total diversity; w is the
proportion of shorter versus longer branches, which is a mea-
sure of the extent of rate heterogeneity through time and across
lineages; g operates as a complement to k�, as it accounts for the
degree of mutational fitness in the evolutionary change in a
phylogeny, where A$ G and C$ T transitions are more fit than
A$ C;A$ T;C$ G, and G$ T transversions; and the eigengap,
a measure of disconnectedness in a network, reflects the
elapsed time between sampling in longitudinal data. Because
no virus evolves under a single selection pressure, different

A B

C

Figure 7. A heuristic test of founder heterogeneity.(A) Boxplot of spectral density profile summary statistics for acutely infected participants with founder homogeneity

(green) and heterogeneity (brown) (Keele et al. 2008). (B) Density plot of lnk� for all participants, nominally colored to show which tails of the distribution are predomi-

nantly occupied by participants with founder homogeneity and heterogeneity (see Supplementary Table S1). (B, inset) Histogram of lnk� for individuals with founder

homogeneity and heterogeneity. (C) Barplot of ranked lnk�, adjusted so that the minimum value is zero. Filled colors represent the inferred classification based on the

principal eigenvalue test of founder heterogeneity using the median method (and inferred thresholds for the jump and partition methods are indicated with arrows);

border colors represent the classification given in (Keele et al. 2008). 6r2=2 of the median are shown with dashed lines on (B and C).
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A

B

C

D

E

F

G H

Figure 8. Tracking disease progression with the spectral density profile. Spectral density profile summary statistics for time-slices of HIV-1 phylogenies from nine indi-

viduals. (A–C) Summary statistics computed at each time-slice and (D–F) pairwise plots of summary statistics for each individual. Colors are coordinated with time-sli-

ces: 20% of time from root to present (dark blue); 100% time from root to present (lightest grey). Estimated diversity and divergence peaks from (Shankarappa et al.

1999) are shown as dashed and dotted lines, respectively, in (A–C). (G) The reconstructed HIV-1 phylogeny for Participant 1 showing the portion of the tree encapsulated

by each time-slice. (H) Summary statistics through time and pairwise plots of summary statistics for Participant 1.
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selection pressures are expected to have different effects. Using
hypothesis-based comparisons of spectral density profile sum-
mary statistics on data from the RV144 trial (Rolland et al. 2012),
we identified no effect of sex, treatment, days since infection, or
RNA copies/ml, whereas, using unbiased clustering on spectral
density profiles, we found that founder heterogeneity distin-
guished diversification patterns among participants. Hence, the
MGL approach is a rapid approach to evaluate phylogenies in
light of a variety of attributes, both discrete (e.g. co-infection,
risk group, geography) and continuous (e.g. neutralization
breadth, CD4þ T-cell count).

Contemporary sequences from the transmitter are typically
not available when analyzing sequences from newly infected
individuals. Yet, identifying whether the new infection was
established with a single variant or multiple variants from the
transmitter remains important. Traditionally, in the absence of
sequences from the transmitter, founder heterogeneity has
been determined using a combination of qualitative measures
(visual inspections of highlighter plots and tree topologies),
quantitative measures of diversity (intra-host pairwise; number
of shared versus private mutations), and by testing the
goodness-of-fit to a Poisson-model (Keele et al. 2008; Abrahams
et al. 2009; Haaland et al. 2009; Herbeck et al. 2011; Rolland et al.
2011, 2012; Janes et al. 2015; Tully et al. 2016). In the Keele et al.
(2008) dataset, which we analyzed here, the authors define
founder heterogeneity by a best-fitting Poisson distribution of
Hamming distances determined by a model parameterized by
assumptions on phylogenetic topology, HIV-1 generation time,
reproductive ratio, reverse transcriptase point mutation rate,
and infection rate. Here we define a heuristic test for classifying
founder heterogeneity based on the principal eigenvalue, k�, of
the MGL. We show that this can efficiently distinguish homoge-
neous/single from heterogeneous/multiple founders in the
Keele et al. (2008) dataset. We propose a threshold for heteroge-
neous founders at the median þnr2 of k�, for n ¼ 1/2. However,
given the flexibility of the test to define the threshold within a
confidence interval, the user is free to consider a different value
for n or implement one of the other techniques (the jump or
partition) for establishing a threshold. By giving a confidence in-
terval (defined by 6nr2) to the threshold between homogeneous
and heterogeneous founders, we can consider founder hetero-
geneity along a continuum, rather than as a binary trait.

How a viral infection evolves in an individual over time may
be demonstrative of how predictably a disease typically pro-
gresses, but may also reveal differences in disease progression
between individuals. Using sequences from HIV-1-infected
males sampled from the time of seroconversion to the develop-
ment of advanced disease, we charted the progressive change
in phylogenetic diversification of the virus in each participant.
We showed that it is possible to identify both general patterns
of disease progression over time using the spectral density pro-
file, as well as deviations from those general patterns particular
to each participant. For example, in all participants, k� increased
at each time-step, but the rate at which it increased was unique
to each participant. Likewise, g followed a negative logarithmic
trend towards the present for all participants, although the
slope parameter defining when the value reached its minimum
(i.e. the elbow) varied between participants. This elbow gener-
ally corresponded to the first major w peak in participants. As g

is an inverse measure of mutational fitness and w corresponds
to increases in rate heterogeneity between samples, these pat-
terns—the first w peak and elbow of g—suggest the time at
which the virus in each participant underwent a shift in diversi-
fication. This is consistent with the original analysis of these

data (Shankarappa et al. 1999), which showed that peak within-
timepoint diversity coincides with the first w peak and elbow of
g. Thus, the spectral density profiles of time-sliced within-host
phylogenies can help measure complex patterns of disease pro-
gression in individuals and across populations (and diseases)
that are typically not captured (Hill et al. 2018).

4. Conclusions

We have described how the spectral density profile of the MGL
can be applied to viral phylogenies. We show that important
features of molecular evolution and phylogenetic diversification
are retained in the profiles of viral trees and that this is an effi-
cient approach for analyzing within-host evolution and for clas-
sifying founder multiplicity of infections. Of course, there are
limitations to our approach and critical aspects of viral evolu-
tion and diversification that the spectral density profile does
not capture. First, our approach is sensitive to phylogenetic re-
construction, as evidenced by the differences in spectral density
profile summary statistics in phylogenies constructed with a
Bayesian versus a maximum-likelihood framework. Therefore, it
is important that tree construction is consistent across samples
and that comparison between individuals and cohorts be ex-
plicit about how trees are constructed. Second, while k� captures
evidence of a signature of positive selection, it cannot identify
which regions of the gene are specifically being targeted for se-
lection (although, comparisons between phylogenies con-
structed for different genes could reveal differences in selection
pressures; Lewitus and Morlon 2016a). Further to this point, it is
important that users follow general guidelines of good practice
when using the spectral density profile: the MGL of a phylogeny
is necessarily sensitive to effects of recombination and time
since infection; we advise that users test for recombination
(Kosakovsky Pond et al. 2006). Finally, clustering spectral den-
sity profiles of viral phylogenies from individuals does not ac-
count for the transmission chain of the virus, which, if
molecular aspects of the virus are heritable, may have an im-
pact on diversification dynamics within each individual
(Felsenstein 1973; Mitov and Stadler 2018).

Although this article has focused on HIV-1 datasets and
applications, we present it as a general approach that is valid
for analyzing other viruses. We think that the spectral density
profile of the MGL is an important addition to the increasingly
accessible set of analytic and programmatic tools for investigat-
ing viral diversification dynamics.

5. Materials and methods
5.1 Simulating molecular evolution and longitudinal
trees

We simulated samples of 10 sequences under a GY94 codon
substitution model for 600 nucleotides. We simulated three sce-
narios (200 samples each) with one changing parameter: a non-
synonymous to synonymous substitution rate ratio (dN/dS) set
to 0.1, 0.7, or 1.3; a normal, discrete, or invariantgeneralised
time-reversible (GTR) nucleotide substitution model (c distribu-
tion); and a Hasegawa–Kishino–Yano (HKY) nucleotide substitu-
tion model with a transition-to-transversion rate ratio (ti/tv) set
to 50/1, 25/25, or 1/50. We also simulated permutations of all
three parameters combined (200 samples each): dN/dS ¼ 0.1,
0.7; c distribution ¼ discrete, invariant; and ti/tv ¼ 1/50, 50/1.
Simulations were run with a Monte Carlo sequence simulator
adapted from an exact stochastic model (Gillespie 1977; Sipos
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et al. 2011). Each sample of sequences was aligned using an iter-
ative refinement method in MAFFT v.7 (Katoh and Standley
2013) that incorporates local pairwise alignment information;
and phylogenetic trees were constructed from the aligned
sequences using IQ-TREE (Nguyen et al. 2015). We computed the
spectral density profiles for the trees from the weighted modi-
fied graph Laplacian of their distance matrices, the so-called
MGL (Lewitus and Morlon, 2016a; Morlon et al. 2016). Summary
statistics of the spectral density profiles were measured as the
principal eigenvalue (k�), skewness of the profile (w), and the
peak height of the profile (g). For the multiple parameter trees,
we clustered profiles based on Jensen-Shannon distances
(Endres and Schindelin 2003) using hierarchical clustering with
bootstrap probabilities calculated at each node and an optimal
number of supported clusters determined by partitioning
around medoids (Reynolds et al. 2006).

We simulated pure-birth trees with two sampling time-
points and a constant speciation rate (0.1). We simulated 200
trees each with a sampling time of 1–29 days at 7-day intervals
and at 5–40 weeks at 5-week intervals (for a total of 2,800 trees).
The sampling fraction for each simulated tree was 0.1. We com-
puted the spectral density profile for each tree. We ranked the k

of the MGL for each tree from largest to smallest and deter-
mined the position of the so-called eigengap, which is defined
as the largest difference between two ranked eigenvalues, ki

and kiþ1 (Von Luxburg 2007). Because each k is a measure of the
connectivity of a graph (i.e. tree), disproportionately large k rep-
resent a near-disconnection between cells in the graph (i.e.
branches in the tree). Therefore, the eigengap is an indicator of
the number of disconnected groups of branches in the tree
(Shen and Cheng 2010), where an eigengap between ki and kiþ1

indicates i near-disconnected groups of branches (i.e. clusters).
We calculated the value of the eigengap for each tree as the dis-
tance between ki and kiþ1. We additionally estimated the maxi-
mum pairwise genetic dissimilarity for each tree.

We simulated pure-birth trees with two sampling time-
points. We simulated 200 trees with a constant speciation rate
(0.1) at the first time-point and a speciation rate increase of 0.01,
0.2, 0.4, 0.6, 0.8 at the second time-point (for a total of 1,000
trees). The time between sampling was set to 10 weeks. We
computed the spectral density profile summary statistics and
the maximum pairwise genetic similarity for each tree.

Trees were simulated using the R package TESS (Höhna, May,
and Moore 2015). Sequence data were simulated on trees using
the simSeq function in the R package phangorn (Schliep 2011;
Benidt and Nettleton 2015; Schliep et al. 2017) for sequence
lengths of 600, uniform base frequencies, and a GTR rate matrix.

5.2 Hypothesis-testing and unbiased clustering with
participants from the RV144 cohort

We downloaded 936 HIV-1 env sequences sampled at diagnosis
from individuals in the RV144 trial with CRF01_AE (Rolland et al.
2012). We aligned sequences with an iterative refinement algo-
rithm in MAFFT v.7 (Katoh and Standley 2013) that incorporates
local pairwise alignment information for individuals with at
least 10 samples, resulting in multiple alignments for 110 indi-
viduals. We constructed phylogenies for each individual with
IQ-TREE (Nguyen et al. 2015), using ModelFinder to infer the
model with the smallest Bayesian information criterion score
(Kalyaanamoorthy et al. 2017), and assessed node support by
1,000 ultrafast bootstrap replicates (Minh, Nguyen, and von
Haeseler 2013). We computed spectral density profiles for phy-
logenies as above.

We subset the 110 individuals by sex, treatment, and
founder heterogeneity according to accompanying metadata
and compared subsets using one-sample t-tests. We estimated
the effect of each summary statistic on different infection fac-
tors (days since last negative test, days since Day 0, and RNA
copies/ml) by fitting ordinary least squares (OLS) regressions.
We additionally clustered the phylogenies using Jensen-
Shannon distances of their spectral density profiles by parti-
tioning around medoids and determined the optimal number of
clusters based on Duda-Hart tests (Duda, Hart, and Stork 1973).

5.3 A heuristic test for founder heterogeneity with env
sequences from participants acutely infected with HIV-1

We downloaded aligned per-individual fasta files from the Los
Alamos National Laboratory HIV sequence database (www.hiv.
lanl.gov) for seventy-two individuals with acute HIV-1 infec-
tions, including fifty-three with low-diversity env sequences
that conformed to a model of random evolution in early infec-
tion and nineteen with high-diversity env sequences that did
not conform to a model of random evolution in acute infection
due to infection by more than one divergent strain (Keele et al.
2008). We did not include participants that contained hypermu-
tated sequences or more than one related founder strain. We re-
moved the consensus sequence from each file and then
realigned them before constructing trees with IQ-TREE as above.
In total, we constructed trees and spectral density profiles for
env sequences sampled from seventy-two HIV-1-infected indi-
viduals and compared summary statistics for individuals with
an acute infection from one (homogeneous) or more than one
(heterogeneous) virus. We furthermore constructed trees from
env sequences for the same samples using BEAST v2.5.2
(Bouckaert et al. 2014) with a HKY substitution model, an uncor-
related log-normal relaxed clock, the substitution rate prior set
with a mean per-day rate of 2:24e� 5 and a uniform prior for ef-
fective population size between 1� 1e10 (Lemey, Rambaut, and
Pybus 2006). For each tree, we ran 1e7 generations and a burn-in
rate of 10%. Only trees that converged within 1e7 generations
were analyzed. Analyses on BEAST trees were conducted on
majority rule consensus trees estimated with TreeAnnotator
(Bouckaert et al. 2014). Spectral density profiles were computed
for BEAST trees as above.

We designed three tests for distinguishing participants with
homogeneous and heterogeneous founder pools based on ln-
transformed k�. (1) We defined a threshold based on the median
value þnr2 of k�. Here, the value of n determines the confidence
we can assign to participants above the median as having het-
erogeneous founder pools. (2) We define the threshold at the
largest distance (or ‘jump‘) between ranked k�. (3) We partition
spectral density profiles around medoids, which minimizes a
sum of dissimilarities, assuming two clusters (Reynolds et al.
2006; Schubert and Rousseeuw 2019; Maechler et al. 2019).

5.4 Time-slicing phylogenies from participants in the
multicenter AIDS Cohort Study

We downloaded the 1,300 aligned sequences sampled from
nine participants as part of the Multicenter AIDS Cohort Study
(Kaslow et al. 1987; Shankarappa et al. 1999) from the Los
Alamos National Laboratory HIV sequence database (www.hiv.
lanl.gov). We separated the sequences by participant, realigned
them using an iterative refinement algorithm in MAFFT v.7
(Katoh and Standley 2013) that incorporates local pairwise
alignment information, and constructed phylogenies for the
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new alignments using IQ-TREE (Nguyen et al. 2015). We then
sliced each phylogeny at nine time-points beginning at 20% of
the distance between the root and the present, where 100% is
the entire phylogeny. We decided on nine time-points, because
it was the largest number of slices wherein each slice had a dif-
ferent number of lineages for all phylogenies. We then com-
puted spectral density profile summary statistics for each slice
of each phylogeny as outlined above.
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Duchêne, S., Ho, S. Y., and Holmes, E. C. (2015) ‘Declining

Transition/Transversion Ratios through Time Reveal
Limitations to the Accuracy of Nucleotide Substitution
Models’, BMC Evolutionary Biology, 15: 36.

et al. (2016) ‘Cross-Validation to Select Bayesian
Hierarchical Models in Phylogenetics’, BMC Evolutionary
Biology, 16: 115.

Duda, R. O., Hart, P. E., and Stork, D. G. (1973) Pattern Classification
and Scene Analysis. New York: A Wiley interscience Publication.

Duffy, S., Shackelton, L. A., and Holmes, E. C. (2008) ‘Rates of
Evolutionary Change in Viruses: Patterns and Determinants’,
Nature Reviews Genetics, 9: 267.

Endres, D. M., and Schindelin, J. E. (2003) ‘A New Metric for
Probability Distributions’, IEEE Transactions on Information
Theory, 49: 1858.

Felsenstein, J. (1973) ‘Maximum-Likelihood Estimation of
Evolutionary Trees from Continuous Characters’, American
Journal of Human Genetics, 25: 471.

Gillespie, D. T. (1977) ‘Exact Stochastic Simulation of Coupled
Chemical Reactions’, The Journal of Physical Chemistry, 81:
2340–61.

Haaland, R. E. et al. (2009) ‘Inflammatory Genital Infections
Mitigate a Severe Genetic Bottleneck in Heterosexual
Transmission of Subtype A and C HIV-1’, PLoS Pathogens, 5:
e1000274.

Herbeck, J. T. et al. (2011) ‘Demographic Processes Affect HIV-1
Evolution in Primary Infection before the Onset of Selective
Processes’, Journal of Virology, 85: 7523–34.

Hill, A. L. et al. (2018) ‘Insight into Treatment of HIV
Infection from Viral Dynamics Models’, Immunological Reviews,
285: 9–25.

Hillis, D. M., Heath, T. A., and John, K. S. (2005) ‘Analysis and
Visualization of Tree Space’, Systematic Biology, 54: 471–82.

Ho, S. Y. et al. (2011) ‘Time-Dependent Rates of Molecular
Evolution’, Molecular Ecology, 20: 3087–101.

Höhna, S., May, M. R., and Moore, B. R. (2016) ‘Tess: An r Package
for Efficiently Simulating Phylogenetic Trees and Performing
Bayesian Inference of Lineage Diversification Rates’,
Bioinformatics, 32: 789–91.

Holmes, E. C. (2003) ‘Patterns of Intra-and Interhost
Nonsynonymous Variation Reveal Strong Purifying Selection
in Dengue Virus’, Journal of Virology, 77: 11296–8.

Janes, H. et al. (2015) ‘HIV-1 Infections with Multiple Founders
Are Associated with Higher Viral Loads than Infections with
Single Founders’, Nature Medicine, 21: 1139–41.

Kalyaanamoorthy, S. et al. (2017) ‘Modelfinder: Fast Model
Selection for Accurate Phylogenetic Estimates’, Nature Methods,
14: 587.

Kaslow, R. A. et al. (1987) ‘The Multicenter Aids Cohort Study:
Rationale, Organization, and Selected Characteristics of the
Participants’, American Journal of Epidemiology, 126: 310–8.

Katoh, K., and Standley, D. M. (2013) ‘Mafft Multiple Sequence
Alignment Software Version 7: Improvements in Performance
and Usability’, Molecular Biology and Evolution, 30: 772–80.

Keele, B. F. et al. (2008) ‘Identification and Characterization of
Transmitted and Early Founder Virus Envelopes in Primary
HIV-1 Infection’, Proceedings of the National Academy of Sciences,
105: 7552–7.

Kendall, M., and Colijn, C. (2016) ‘Mapping Phylogenetic Trees to
Reveal Distinct Patterns of Evolution’, Molecular Biology and
Evolution, 33: 2735–43.

Kosakovsky Pond, S. L. et al. (2006) ‘Automated Phylogenetic
Detection of Recombination Using a Genetic Algorithm’,
Molecular Biology and Evolution, 23: 1891–901.

Kumar, S., Tamura, K., and Nei, M. (1994) ‘Mega: Molecular
Evolutionary Genetics Analysis Software for Microcomputers’,
Bioinformatics, 10: 189–91.

12 | Virus Evolution, 2019, Vol. 5, No. 2

https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vez044#supplementary-data


Lemey, P., Rambaut, A., and Pybus, O. G. (2006) ‘HIV Evolutionary
Dynamics within and among Hosts’, AIDS Reviews, 8: 125–40.

et al. (2007) ‘Synonymous Substitution Rates Predict HIV
Disease Progression as a Result of Underlying Replication
Dynamics’, PLoS Computational Biology, 3: e29.

Lewitus, E., and Morlon, H. (2016a) ‘Characterizing and
Comparing Phylogenies from Their Laplacian Spectrum’,
Systematic Biology, 65: 495–507.

, and (2016b) ‘Natural Constraints to Species
Diversification’, PLoS Biology, 14: e1002532–18.

Lyons, D. M., and Lauring, A. S. (2017) ‘Evidence for the Selective
Basis of Transition-to-Transversion Substitution Bias in Two
RNA Viruses’, Molecular Biology and Evolution, 34: 3205–15.

Maechler, M. et al. (2019) cluster: Cluster Analysis Basics and
Extensions. R package version 2.1.0.

Minh, B. Q., Nguyen, M. A. T., and von Haeseler, A. (2013)
‘Ultrafast Approximation for Phylogenetic Bootstrap’,
Molecular Biology and Evolution, 30: 1188–95.

Mitov, V., and Stadler, T. (2018) ‘A Practical Guide to Estimating
the Heritability of Pathogen Traits’, Molecular Biology and
Evolution, 35: 756–72.

Morlon, H. et al. (2016) ‘RPANDA: An R Package for
Macroevolutionary Analyses on Phylogenetic Trees’, Methods
in Ecology and Evolution, 7: 589–97.

Nguyen, L.-T. et al. (2015) ‘IQ-Tree: A Fast and Effective
Stochastic Algorithm for Estimating Maximum-Likelihood
Phylogenies’, Molecular Biology and Evolution, 32: 268–74.

Nielsen, R., and Yang, Z. (1998) ‘Likelihood Models for Detecting
Positively Selected Amino Acid Sites and Applications to the
HIV-1 Envelope Gene’, Genetics, 148: 929–36.

Noh, J. D., and Rieger, H. (2004) ‘Random Walks on Complex
Networks’, Physical Review Letters, 92: 118701.

Peck, K. M., and Lauring, A. S. (2018) ‘The Complexities of Viral
Mutation Rates’, Journal of Virology, 92: e01031–17.

Pond, S. L. K., and Frost, S. D. (2005) ‘Datamonkey: Rapid
Detection of Selective Pressure on Individual Sites of Codon
Alignments’, Bioinformatics, 21: 2531–3.

Rambaut, A. et al. (2004) ‘The Causes and Consequences of HIV
Evolution’, Nature Reviews Genetics, 5: 52.

Ratmann, O. et al. (2017) ‘Phylogenetic Tools for Generalized
HIV-1 Epidemics: Findings from the PANGEA-HIV Methods
Comparison’, Molecular Biology and Evolution, 34: 185–203.

Rerks-Ngarm, S. et al. (2009) ‘Vaccination with ALVAC and
AIDSVAX to Prevent HIV-1 Infection in Thailand’, New England
Journal of Medicine, 361: 2209–20.PMID: 19843557.

Reynolds, A. P. et al. (2006) ‘Clustering Rules: A Comparison of
Partitioning and Hierarchical Clustering Algorithms’, Journal of
Mathematical Modelling and Algorithms, 5: 475–504.

Robinson, D. F., and Foulds, L. R. (1981) ‘Comparison of
Phylogenetic Trees’, Mathematical Biosciences, 53: 131–47.

Rolland, M. et al. (2011) ‘Genetic Impact of Vaccination on
Breakthrough HIV-1 Sequences from the Step Trial’, Nature
Medicine, 17: 366.

et al. (2012) ‘Increased HIV-1 Vaccine Efficacy against
Viruses with Genetic Signatures in env v2’, Nature, 490: 417–20.

Rousseeuw, P. J. (1987) ‘Silhouettes: A Graphical Aid to the
Interpretation and Validation of Cluster Analysis’, Journal of
Computational and Applied Mathematics, 20: 53–65.

Sánchez-DelBarrio, J. C. et al. (2003) ‘DnaSP, DNA Polymorphism
Analyses by the Coalescent and Other Methods’, Bioinformatics,
19: 2496–7.

Schliep, K. et al. (2017) ‘Intertwining Phylogenetic Trees and
Networks’, Methods in Ecology and Evolution, 8: 1212–20.

Schliep, K. P. (2011) ‘Phangorn: Phylogenetic Analysis in R’,
Bioinformatics, 27: 592–3.

Schubert, E., and Rousseeuw, P. J. (2019) ‘Faster k-Medoids
Clustering: Improving the PAM, CLARA, and CLARANS
Algorithms’, in Amato, G., Gennaro, C., Oria, V., and
Radovanovi�c M. (eds) Similarity Search and Applications. SISAP
2019. Lecture Notes in Computer Science, vol 11807. Cham: Springer.

Shankarappa, R. et al. (1999) ‘Consistent Viral Evolutionary
Changes Associated with the Progression of Human
Immunodeficiency Virus Type 1 Infection’, Journal of Virology,
73: 10489–502.

Sharp, P. M. et al. (2001) ‘The Origins of Acquired Immune
Deficiency Syndrome Viruses: Where and When?’, Philosophical
Transactions of the Royal Society of London. Series B: Biological
Sciences, 356: 867–76.

Shen, H.-W., and Cheng, X.-Q. (2010) ‘Spectral Methods for the
Detection of Network Community Structure: A Comparative
Analysis’, Journal of Statistical Mechanics: Theory and Experiment,
2010: P10020.

Sipos, B. et al. (2011) ‘Phylosim-Monte Carlo Simulation of
Sequence Evolution in the R Statistical Computing
Environment’, BMC Bioinformatics, 12: 104.

Suzuki, Y., and Nei, M. (2004) ‘False-Positive Selection Identified
by ML-Based Methods: Examples from the Sig1 Gene of the
Diatom Thalassiosira weissflogii and the Tax Gene of a Human
T-Cell Lymphotropic Virus’, Molecular Biology and Evolution, 21:
914–21.

Tully, D. C. et al. (2016) ‘Differences in the Selection Bottleneck
between Modes of Sexual Transmission Influence the Genetic
Composition of the HIV-1 Founder Virus’, PLoS Pathogens, 12:
e1005619.

Von Luxburg, U. (2007) ‘A Tutorial on Spectral Clustering’,
Statistics and Computing, 17: 395–416.

E. Lewitus and M. Rolland | 13


