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Acute hepatopancreatic necrosis disease (AHPND) is a lethal disease in marine shrimp
that has caused large-scale mortalities in shrimp aquaculture in Asia and the Americas.
The etiologic agent is a pathogenic Vibrio sp. carrying binary toxin genes, pirA and pirB in
plasmid DNA. Developing AHPND tolerant shrimp lines is one of the prophylactic
approaches to combat this disease. A selected genetic line of Penaeus vannamei was
found to be tolerant to AHPND during screening for disease resistance. The mRNA
expression of twelve immune and metabolic genes known to be involved in bacterial
pathogenesis were measured by quantitative RT-PCR in two populations of shrimp,
namely P1 that showed susceptibility to AHPND, and P2 that showed tolerance to
AHPND. Among these genes, the mRNA expression of chymotrypsin A (ChyA) and serine
protease (SP), genes that are involved in metabolism, and crustin-P (CRSTP) and
prophenol oxidase activation system 2 (PPAE2), genes involved in bacterial
pathogenesis in shrimp, showed differential expression between the two populations.
The differential expression of these genes shed light on the mechanism of tolerance
against AHPND and these genes can potentially serve as candidate markers for tolerance/
susceptibility to AHPND in P. vannamei. This is the first report of a comparison of the
mRNA expression profiles of AHPND tolerant and susceptible lines of P. vannamei.

Keywords: AHPND, Penaeus vannamei, AHPND tolerant P vannamei, shrimp immunity, immune genes
INTRODUCTION

Acute hepatopancreatic necrosis disease (AHPND) is a lethal disease of marine shrimp that
emerged in China in 2009. Since then it was reported in other countries including Vietnam,
Thailand, Mexico, Philippines, Bangladesh, US and South-Korea (1–7). The etiologic agent was
initially identified as Vibrio parahaemolyticus carrying plasmid-borne binary toxin genes, pirA and
pirB (8, 9). Subsequently other species of Vibrio including V. harveyi and V. owensii have been
reported to cause AHPND (10, 11). The clinical signs of AHPND include atrophy and pale
org May 2021 | Volume 12 | Article 6341521
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discoloration of hepatopancreas, soft shell, gut with
discontinuous or no content, and often 100% of mortality
occurs in shrimp farms experiencing AHPND outbreaks
(12–14). Histopathology of the hepatopancreas tissue from
AHPND affected shrimp reveals three different stages of
disease development, namely initial, acute/terminal and
chronic phases. In the initial phase, elongation of epithelial
cells in hepatopancreas is common, whereas during the acute/
terminal phase necrosis of tubular epithelial cells and
inflammatory responses are observed (13). The chronic phase
of AHPND is characterized by the epithelial necrosis and
bacterial inflammation in the tubules which is similar to septic
hepatopancreatic necrosis (SHPN) (15).

It has widely been accepted that shrimp protect themselves
from microbial pathogens by innate immunity that encompass
humoral and cellular responses. Recently, it has been reported
that the PirAVP- and PirBVP binary toxin encoded by V.
parahaemolyticus can be neutralized by either hemocyanin or
anti-lipopolysaccharide factor (16). In addition, the interaction
between immune and metabolism appears to play a role in
AHPND response in hepatopancrease in shrimp (17, 18). Until
now, due to the lack of AHPND- tolerant lines of shrimp, no
effort could be made to examine the gene expression profiles of
AHPND- susceptible and tolerant lines of shrimp.

Recently, a line of P. vannamei shrimp has been identified
that displays tolerance to AHPND (15). In this study, we initially
compared the mRNA expression of twelve metabolic/immune
related genes between AHPND-tolerant and-susceptible lines of
P. vannamei by reverse transcriptase quantitative PCR (RT-
qPCR). These genes are known to be involved in bacterial
pathogenesis (19–24). The expression of seven genes that
showed statistically significant differences between the tolerant
and susceptible lines were validated. The results showed that
there is a significant difference in the expression of these genes
between AHPND-tolerant and-susceptible lines of P. vannamei.
The potential implications of differential expression of these
genes are discussed in the context of immunity and pathogenesis.
MATERIALS AND METHODS

Bioassay 1- Assessing AHPND Tolerance
in P. vannamei
Vibrio parahemolyticus (Strain 13-028A/3) (VpAHPND) was used
for the experimental challenges following a previously published
protocol (15). Three P. vannamei family lines were obtained
from a commercial supplier as a part of an on-going family line
screening for AHPND-tolerance. Each line was stocked
separately into a total of nine 1000 L tanks in triplicate. From
each of these three lines, we screened 56, 57 and 78 organisms
from lines one, two and three respectively. A Specific Pathogen
Free (SPF) P. vannamei (N=60, average weight 3 g) (AHPND
susceptible line, population P1, were obtained from a
commercial supplier in the USA and stocked into two 90L
tanks and used as positive controls for AHPND challenge. A
third tank containing SPF shrimps of the same genetic line
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(N=64) was used as negative control. An immersion challenge
was performed using an inoculum load of 106 cfu/ml (15). The
experiment was terminated at 7 days post-inoculation. The
mortality in each tank was recorded daily, and a subset of
moribund and surviving animals was examined by routine
H&E histology.

Histopathology
Moribund P. vannamei were fixed in Davidson’s alcohol-
formalin-acetic acid (AFA) fixative. The samples were
processed, embedded in paraffin, sectioned (4 mm thick) and
analyzed in accordance with standard methods (25).

Bioassay 2- Initial Gene
Expression Analyses
To evaluate gene expression in the AHPND-tolerant and-
susceptible lines, a second challenge was conducted. A total of 46
animals were utilized from P1 (n= 42, average weight 5g) with 21
animals challenged with VPAHPND, 21 animals utilized as negative
controls and 4 animals sampled for gene expression analysis prior
to challenge. The tolerant line was named population P2 (n=20,
average weight 9g), with 9 animals challenged with VPAHPND, 9
unchallenged as negative controls and 2 animals sampled for gene
expression analysis prior to challenge. All shrimp from each family
were tagged in the 4th abdominal segment with uniquely colored
elastomer tags to allow visual identification. Both families were
then held in a single 1000L tank and challenged by immersion, as
described above. The negative controls were held in a single 1000L
tank but were not challenged.

Twenty-four hours after challenge, animals were collected for
gene expression analysis. Limited numbers (N=4) of the
susceptible P1 line were available for sampling due to the
typically high mortality rates observed in AHPND challenges
in the first 24 hours. Two shrimp were collected from the tolerant
population P2 at 24 hours post-infection to leave enough animals
in the tank for a survival comparison at termination. In order to
keep the sample numbers equal, a pool of 10 challenged animals
from P2 group in the initial family line challenge were pooled as
2 samples for a total of 4 samples.

Measuring the Expression Levels of
Candidate Immune and Metabolic Genes
in AHPND Challenged P. vannamei
Four shrimp samples per population were collected from each
treatment for RNA extraction using RNAzol following the
manufacturer’s protocol (MRC, Ohio, USA). The RNA was
treated with DNase 1 (Invitrogen, USA). One µg of DNase
treated RNA was used for cDNA synthesis using Superscript
IV and following the manufacturer’s recommendation
(Invitrogen, USA). After that, cDNA was subjected to gene
expression analysis.

The mRNA expression of b-glucan binding protein (BGBP)
(AY249858.1), Crustin-P (CRSTP) (AY488497), C-type lectin 1-
like (CTL1-like) (DQ858900.1), Extracellular Copper/Zinc
Superoxide dismutase (EC-SOD) (HM371157), Kazal protease
inhibitor (KPI) (AY544986), lipopolysaccharide and b-1,3-glucan-
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binding protein (LGBP) (EU102286.1), Penaidin 2 (PEN2)
(Y14925), Prophenol oxidase activation system 2 (PPAE2)
(AWF98992.1), Serpin8 (SEP8) (KU853046.1), serine protease
(SP) (AY368151), Chymotrypsin A (ChyA) (Y10664),
Chymotrypsin B (ChyB) (Y10665) and two toxin genes of V.
parahaemolyticus (i.e. pirA and pirB toxin genes, KM067908)
were measured by quantitative PCR (StepOnePlus Real-time PCR
system, Applied biosystems, USA) using PowerUPTM SYBR Green
Master Mix (Applied Biosystem, USA). The reaction mixture
contained 10 µl of PowerUP™ SYBR Green Master Mix, 0.8 µl
(0.4 µM) of each primer, 2.0 µl of cDNA and 6.4 µl of sterile water
in a reaction volume of 20 µl. The thermal profile for the reaction
was 2 minutes at 50°C, 2 minutes at 95°C followed by 40 cycles of 3
seconds at 95°C and 30 seconds at 60°C. The primer sequence for
each gene is given in Supplementary Table S1. In addition,
literature search of the responses to pathogens of studied genes
was provided in Supplementary Table S4. Each sample was run in
duplicate and the mean Ct value was used for gene expression
analysis. Expression levels of each gene in various populations are
shown relative to the expression in corresponding control
treatments according to the formula of Livak and Schmittgen
(26). For evaluating the gene expression between challenged
animals coming from P1 and P2 population, the expression levels
of each gene were shown relative to the expression in the P1
negative control. The expression value was converted to Log based 2
prior to statistical analysis. The genes showing statistical difference
in expression level in Bioassay 2 were validated in Bioassay 3.

Bioassay 3- Gene Expression Validation
Two hundred shrimp (average wt. 2 g) with the same genetic
characteristics of the AHPND tolerant shrimp line (P2) from
Bioassay 2 were stocked in two 1000 L-tanks (100 shrimp/tank)
in which one tank was challenged with VPAHPND. The remaining
tank was used as negative control. Forty SPF shrimp (AHPND
susceptible shrimp) (average wt. ~1.5 g) (P1) were stocked in two
90L-tanks (20 shrimp/tank), one tank was challenged with
VPAHPND. The remaining tank was used as negative control.
The AHPND challenge protocol was the same as described
previously. After 24 hours, nine shrimp from each tank were
collected for gene expression analyses.

Statistical Analysis
The statistical significances in the difference in Log based 2 value
of gene expression between control and challenged animals in
each population and between challenged animals in P1 and P2
populations was determined by using Student’s t-test with
P<0.05, SPSS v.16 software. The mortality data was analyzed
using Kaplan-Meier method, SPSS v.16 software.
RESULTS

Bioassay 1- Assessing AHPND Tolerance
in P. vannamei
In experimental AHPND challenge, the survival rate in the
AHPND-tolerant P2 population was over five times higher
Frontiers in Immunology | www.frontiersin.org 3
compared to the AHPND-susceptible P1 population (72% vs.
12.5%). Meanwhile, the survival rate in negative control was
95.45% (Supplementary Figure S1). The histopathology of the
P1 and P2 populations are presented in Figure 1. The Davidson-
fixed shrimp from the healthy, negative controls from P1 and P2
displayed normal structure of tubules and epithelial cells in the
hepatopancreas including high levels of lipid droplets (R-cells),
secretory vacuoles (B-cells) and absence of AHPND (Figures 1A,
B). In contrast, shrimp from the P1 population challenged with
VpAHPND displayed lesions typical of AHPND in the acute phase,
including a multifocal necrosis and massive sloughing of HP
tubule epithelial cells in the hepatopancreas. At this stage,
bacterial colonization was not observed (Figure 1C). Shrimp
from the P2 population displayed the typical VPAHPND chronic
phase characterized by SHPN-like lesions (Figure 1D).

Bioassay 2- Initial Gene Expression
Analyses, Measuring the mRNA
Expression of Immune and Metabolic
Genes in P. vannamei
Interestingly, there was no significant difference in the expression
levels of pirA/pirB genes between P1 and P2 population (P>0.05)
(Figure 2).

The mRNA expression of a set of immune and metabolic
genes (i.e. SEP8, BGBP, CRSTP, CTL1-like, KPI, LGBP, EC-
SOD, PEN2, PPAE2, SP, ChyA and ChyB) were measured by
RT-qPCR in control animals and challenged animals in each
population. We also compared the levels of gene expression in
AHPND susceptible P1 and AHPND tolerant P2 populations.

The V. parahaemolyticus infection led to the significant
upregulation of expression of LGBP, PPAE2, and ChyA
transcripts in the P1 population (P<0.05) whereas SP mRNA
showed significant down regulated expression (P<0.05). The
mRNA levels of BGBP, CRSTP, CTL1-like, KPI, PEN2, EC-
SOD, SEP8 and ChyB in the challenged and un-challenged
groups did not show significant differences (P>0.05)
(Figure 3A).

In the P2 population, V. parahaemolyticus infection led to the
significant downregulated expression of LGBP mRNA (P<0.05).
The expression of BGBP, SEP8, CTL1-like, CRSTP, KPI, EC-
SOD, PPAE2, PEN2, SP, ChyA and ChyB showed no significant
difference between challenged and un-challenged groups
(P>0.05) (Figure 3B).

When the mRNA expression levels were compared between
AHPND challenged animals from the P1 and P2 populations,
there were significant differences in the expression profiles of
some genes. For example, while the susceptible P1 population
showed significantly higher levels of expression of ChyA, CRSTP,
CTL1-like, LGBP and PPAE2 (P<0.05) (Figure 3C), the
AHPND-tolerant population P2 showed higher expression of
SP and ChyB compared to the susceptible P1 population
(P<0.05) (Figure 3C) (Supplementary Table S2).

Bioassay 3- Gene Expression Validation
The genes showing significant differences in expression levels
between susceptible and tolerant shrimp were selected for
May 2021 | Volume 12 | Article 634152
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validations in Bioassay 3. In the P1 population, the expression of
CTL1-like, CRSTP, SP and ChyB were significantly down
regulated (P<0.05) meanwhile PPAE2 and ChyA expression
levels were significantly up regulated (P<0.05) (Figure 4A).
LGBP expression level was not significant during the
experiment (P>0.05) (Figure 4A).

In P2 population, PPAE2, ChyA and LGBP expression levels
were significantly up regulated (P<0.05). In contrast, the
expression levels of CRSTP and SP were down regulated
(P<0.05) (Figure 4B). CTL1-like and ChyB expression were not
significantly different during the experiment (P>0.05) (Figure 4B).

By comparison, P1 and P2 challenged animals showed the
same expression pattern in both Bioassay 2 and Bioassay 3. The
expression levels of CRSTP, PPAE2 and ChyA were significantly
higher in P1 population (P<0.05). LGBP expression level was
higher in P1 population but not significantly different (P>0.05).
Meanwhile, SP had a significant higher expression level in P2
population than P1 population (P<0.05) (Figure 4C). ChyB
expression level was higher in P2 population than P1
population even though there was no significant difference
Frontiers in Immunology | www.frontiersin.org 4
observed during the experiment (P>0.05) (Figure 4C)
(Supplementary Table S3).
DISCUSSION

Bacterial pathogenesis in crustaceans is well studied and genes
involved in humoral and cellular immunity are known. We
decided to take advantage of this background knowledge by
measuring the expression of genes that are well known to be
involved in defense and metabolic responses during bacterial
infections in shrimp. Coincidentally, we had access to AHPND-
tolerant lines of P. vannamei and considering the lethal nature of
AHPND-causing V. parahaemolyticus we explored if genes
known to be involved in other bacterial pathogenesis in shrimp
are also involved in AHPND pathogenesis. To our knowledge, a
recently published paper is the first report of the development of
AHPND resistant/tolerant lines of P. vannamei, Aranguren Caro
et al. (15), and as of today, there is no report of looking into the
gene expression profiles of AHPND-tolerant vs. susceptible lines.
FIGURE 1 | H&E (Mayer–Bennet hematoxylin and eosin-phloxine) histology of Penaeus vannamei from Bioassay 1. Penaeus vannamei from negative control tank
from the P1 (A) and P2 populations (B) showing intact tubules and epithelial R-cells (arrowhead) and B-cells (white arrow). Acute phase infection of AHPND in
shrimp from P1 population (C) showing a severe sloughing of epithelial tubule cells into the lumen. Terminal phase of AHPND infection in shrimp from P2 population
(D) showing a severe intertubular hemocytic infiltration surrounding the affected melanized tubules. Scale bars for (A, B) = 50 mm; (C, D) = 100 mm.
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It is now widely accepted that the etiology of AHPND is the
insecticidal binary toxin-like genes carried by plasmid DNA in
Vibrio spp (11, 12, 27). An AHPND resistant/tolerant shrimp line
would be ideal in controlling the disease in shrimp aquaculture.
Tinwongger and colleagues (16) showed that shrimp exposed to
formalin kil led cel ls (FKC) of AHPND causing V.
parahaemolyticus can survive upon AHPND challenge, and anti-
lipopolysaccharide factor AV-R isoform (LvALF AV-R) showed
significantly higher expression in the hepatopancreas from the
survivor. Interestingly, only four out of two hundred shrimp (2%)
survived after feeding with FKC diet, and only three shrimp from
the survivor group were used for gene expression analysis. Despite
examining a limited number of animals, the authors were
successful in identifying genes that could be potentially involved
in AHPND pathogenesis. In this study, three bioassays were
performed. Bioassay 1 was performed to identify an AHPND
tolerant line, P2, using mortality and histopathology as end point
data of the bioassay. The P2 population suffered 28% mortality
compared to the susceptible line P1 that experienced 87.5%
mortality. The bioassay was repeated using the same AHPND-
susceptible (P1) and tolerant line (P2) (i.e. Bioassay 2) to examine
the mRNA expression of twelve candidate immune and metabolic
genes. When the expression of these genes were compared before
and after challenge within a population, P1 and P2, a number of
genes showed differential expression. However, when the
expression profiles were compared between P1 and P2
populations after AHPND-challenge, seven candidate genes
showed differential expression. These genes are likely involved in
AHPND pathogenesis. In order to further validate the expression
of these seven genes, a third bioassay was conducted (i.e. Bioassay
3) and samples were collected for the gene expression validation.
The data shed light on the molecular basis of AHPND
pathogenesis and enabled to identify potential markers for
AHPND tolerance/susceptibility, as discussed below.
Frontiers in Immunology | www.frontiersin.org 5
Bioassay 1
The mortality data in the Bioassay 1 showed that the survival rate
of the P2 population was over five times higher than P1
population indicating that P2 population is indeed an AHPND
tolerant line. The mortality data was consistent with the
histopathology findings that cellular damage in the
hepatopancreas was far greater in animals from the P1
compared to the P2 population. For example, sloughing of the
epithelial cells in the hepatopancreatic tubules followed by
massive infiltration of bacterial cells that are considered
pathognomonic for AHPND was clearly evident by H&E
histology in animals from P1 population (Figure 1), whereas
in the P2 population, the lesions present in the hepatopancreas
resembled more of a chronic infection as seen during SHPN. The
differences in mortality and histopathology data led to examining
the expression profiles of twelve metabolic and immune-related
genes in these two populations. Interestingly, some genes
in the tolerant shrimp such as CRST-P, SP, ChyB and LGBP
showed the discrepancies in the trend of expression between
Bioassay 2 and Bioassay 3. However, only LGBP expression
significantly down-regulated in tolerant shrimp from Bioassay
2 meanwhile LGBP expression in tolerant shrimp from
Bioassay 3 showed significantly up-regulated. The reasons for
discrepancies could be different animals reacting differently to
the same pathogen although they are similar genetic line. That
would be the reason we had to do validation test with larger
number animals.

Gene Expression in P. vannamei From
Bioassay 2 vs. Bioassay 3
The expression of twelve candidate genes known to be involved
in other bacterial diseases were examined to determine if similar
genes are involved in AHPND pathogenesis. It was interesting to
note that there was no significant difference in the expression
levels of pirA or pirB toxin genes between the P1 and P2
populations suggesting that the animals from the two
populations were exposed to equivalent levels of toxin. Thus,
the difference in tolerance was most likely due to the difference in
immune response between the two populations.

It is known that shrimp, like other invertebrates, elicit cellular
and humoral immune responses when exposed to microbes or
non-self-protein containing pathogen associated molecular
patterns (PAMP) (28, 29). PAMP is easily recognized by
pattern recognition proteins including BGBP, LGBP and CTL
(19, 30–33). Several studies indicate that the expression of BGBP,
LGBP and CTL are up-regulated in shrimp challenged with
pathogens such as bacteria, viruses and fungi (34–37).

In Bioassay 2, when the mRNA expressions of BGBP, LGBP
and CTL1-like genes were compared between AHPND-
susceptible P1 and AHPND-tolerant P2 populations, LGBP
and CTL1-like genes were found to be upregulated in P1
compared to P2 population. However, there was no difference
in BGBP expression between the two populations (Figure 3).
Interestingly, in Bioassay 3, although LGBP expression was
higher in P1 than P2 populations as in Bioassay 2 samples, the
difference in expression was not statistically significant
FIGURE 2 | Comparative pirA- and pirB- toxin genes expression in challenged
animals from Bioassay 2 in the P1 and P2 populations. The levels of mRNA
expression is expressed as a normalized mean Ct value. The data is presented
as DMean Ct ± SD. Statistical significance between P1 and P2 populations for
each of the candidate gene was determined using Student’s t-test.
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(p=0.365). In contrary, CTL1-like gene did not show any
differential expression between the two populations (Figure 4),
as observed in samples derived from Bioassay 2 (Figure 3). These
discrepancies highlight two important facts: (i) it is critical to
validate gene expression data with biological samples derived
from independent bioassays, and (ii) it is important to validate
initial findings with larger sample sets, as in Bioassay 3 compared
to Bioassay 2. These gives further credence to the mRNA
expression findings reported in this study.

In shrimp, upon microbial infection pattern recognition
protein(s) circulating in the hemolymph triggers immune
response by activating proPO cascade and releasing anti-
microbial peptides such as PEN and CRSTP to eliminate the
invading pathogen(s) (20). Although PEN and CRSTP were
shown to have antimicrobial activities against Vibrio spp. and
Gram positive bacteria in penaeid shrimp (21, 23, 38), neither
Frontiers in Immunology | www.frontiersin.org 6
of these genes were significantly upregulated in the challenged
animals in Bioassay 2. In shrimp, PEN2 is mostly detected in
hemocytes and to a lesser level in hepatopancreas. Since we
examined the gene expression in hepatopancreas tissue, it is
possible that for this reason PEN2 was not found to be
differentially expressed. Interestingly, CRSTP which is also
predominantly expressed in hemocytes and less in hepato
pancreas showed significantly higher expression in AHPND
susceptible P1 compared to AHPND tolerant P2 populations in
both Bioassays 2 and 3. It remains to be determined if higher
CRSTP expression in the susceptible population is due to
increased bacterial cell deaths and consequently the release of
PirABVP toxin in the infected animals.

The proPO activation is an important event in crustacean
immunity to eliminate pathogens from the circulatory system
(39, 40). The final event in the proPO activation process is the
A B

C

FIGURE 3 | Gene expression profiles of metabolic and immune genes in shrimp Penaeus vannamei from Bioassay 2. (A) The mRNA expression profile in AHPND
susceptible (P1) population following experimental challenge. (B) The mRNA expression profile in AHPND tolerant (P2) population following experimental challenge.
Expression levels of each gene are shown relative to the expression in correspond control treatment (C) Comparison of gene expression profile from AHPND
susceptible (P1) vs. AHPND resistant/tolerant (P2) population. Expression levels of each gene are shown relative to the expression in P1 negative control treatment.
The data is presented as log2 of relative expression ± SD. Statistical significance between control and challenged animals for each of the candidate gene was
determined using Student’s t-test. *P<0.05. BGBP, b-glucan binding protein; CRST P, Crustin P; CTL, C-type lectin 1-like; ECSOD, Extracellular Copper/Zinc
Superoxide dismutase; KPI, Kazal protease inhibitor; LGBP, Lipopolysaccharide and b-1,3-glucan-binding protein; PEN2, Penaidin 2; PPAE2, Prophenol oxidase
activation system 2; SEP, Serpin8; SP, Serine protease; ChyA, Chymotrypsin A; ChyB, Chymotrypsin B.
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conversion of proPO to phenoloxidase (PO) by the PPAE (26, 41,
42). In both Bioassays 2 and 3, PPAE2 showed significantly
higher expression after AHPND challenge in P1 compared to P2
populations. The finding is consistent with a previously
published report in P. monodon where PPAE2 expression in
the stomach showed significant upregulation at 24 hour post-
challenge with AHPND causing V. parahaemolyticus (43). In a
separate study, Apitanyasai et al. (44) suggested an overreaction
of the proPO cascade causes damage to host cells during
AHPND infection and leads to higher mortality. The higher
expression of PPAE2 in AHPND susceptible P1 population
supports this observation. Taken together, this evidence
suggests that upon infection with VpAHPND, not only the
expression of antimicrobial peptide like CRSTP but also the
genes involved in the proPO pathway are elevated in AHPND
susceptible compared to tolerant animals.
Frontiers in Immunology | www.frontiersin.org 7
It is known that the activation of proPO leads to production
of quinones and other intermediate reactions which polymerizes
quinones to melanin resulting in pathogen capsulation (45).
Quinone, however, also causes cell death by inducing reactive
oxygen species (ROS) production (46–48). In crustacean, ROS
can be scavenged by an anti-oxidant system involving enzymes
of the SOD family (49–51). The EC-SOD expression in the
animals studied was not significantly modulated upon AHPND
challenge. The proPO cascade is also modulated by a series of
protease inhibitors such as KPI and SEP8 to prevent the over
activation (52, 53). Again, both KPI and SEP8 mRNA levels in
animals from the P1 and P2 populations were not significantly
different. It is tempting to speculate that for the lack of
modulation of efforts in EC-SOD, proPO cascade activation led
to cell toxicity more in P1 compared to P2 population. It is also
possible that killing of VpAHPND cells leads to further release of
A B

C

FIGURE 4 | Validation of gene expression profiles of metabolic and immune genes in Penaeus vannamei from Bioassay 3 (A) The mRNA expression profile in
P. vannamei AHPND susceptible (P1) population (Panel A) and AHPND resistant/tolerant (P2) population (Panel B) following experimental challenge. Expression level
of each gene is shown relative to the expression in correspond control treatment (C) Comparison of gene expression profile from AHPND susceptible (P1) vs
AHPND resistant/tolerant (P2) population. Expression levels of each gene are shown relative to the expression in P1 negative control treatment. The data are
presented as log2 of relative expression ± SD. Statistical significance between control and challenged animals for each of the candidate gene was determined using
Student’s t-test. *P<0.05. CRST P, Crustin P; CTL, C-type lectin 1-like; LGBP, Lipopolysaccharide and b-1,3-glucan-binding protein; PPAE2, Prophenol oxidase
activation system 2; SP, Serine protease; CHYA, Chymotrypsin A; CHYB, Chymotrypsin B.
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PirAB toxin from the inactivated bacterial cells exerting lethal
effects in genetically susceptible animals.

The involvement of PO activity in the susceptibility of
invertebrates due to bacterial toxins has been well documented
in many insect species. For example, cabbage loopers
(Trichoplusia ni) is inherently susceptible to the Cry toxin
secreted from Bacillus thuringiensis. However, the Cry toxin
resistance is negatively correlated with the PO activity in B.
thuringiensis challenged T.ni (54). In addition, the effectiveness
of biological insecticide is also higher in lepidopteran species that
show high PO activity (55). Recently, it has been reported that
during VPAHPND infection resulting in AHPND, reduction in
activation of the proPO system by a serine protease inhibitor,
LvSerpin7, results in reduction of the toxic effects compared to
an unregulated activation of the PO cascade (44).

Apart from the difference in immune gene expression, the
expression of metabolic genes also showed differences between
healthy and AHPND-challenged animals in each population and
between challenged animals in populations P1 vs P2. The
expression of ChyB and SP were down regulated whereas
ChyA expression was up regulated in AHPND challenged
shrimp in both P1 and P2 populations and in both Bioassays 2
and 3. These results are consistent with the findings from a recent
study in which SP was shown to be upregulated in AHPND
tolerant P. monodon (18). In addition, Chymotrypsin is
upregulated in AHPND susceptible P. vannamei after 24 hour
of infection (17) which is also in agreement with our findings.

Recently, the crystal structure of PirABVP toxin shows
homology to the structure of the Cry toxin released by B.
thuringiensis (56), and it is known that the Cry protein is
activated by protease enzymes (56–58). The tertiary structure of
PirABVP involves a heterotetrameric interaction between two
PirAVP and two PirBVP. It has been hypothesized that PirAVP

plays a role in receptor binding while PirBVP is involved in pore
formation in the cell membrane (59). In silico analysis (https://
web.expasy.org/peptide_cutter/) showed that the PirAVP toxin
contains twelve and nine putative sites that are likely to be cleaved
by chymotrypsin and trypsin, respectively (Supplementary
Figure S2). Meanwhile, PirBVP toxin contains 53 and 36 sites
cleaved by chymotrypsin and trypsin, respectively. Multiple
alignments between Cry toxin and PirAVP showed that 3 out of
12 and 3 out of 9 cleaved sites for chymotrypsin and trypsin were
conserved. Meanwhile, the multiple alignment between Cry toxin
and PirBVP showed that 9 out of 53 and 1 out of 36 cleaved sites
for chymotrypsin and trypsin were conserved (Supplementary
Figure S2). It is interesting to note that SP expression showed
higher levels in the AHPND tolerant than AHPND susceptible P.
vannamei in this study and this enzyme belongs to trypsin family
(60). It remains to be determined if SP is involved in cleaving
PirABVP toxins to de-activate the toxin. If so, a higher expression
of this enzyme in AHPND tolerant population (P2) may prevent
the activation of toxin from exerting a lethal effect.

To summarize, we compared the gene expression profiles of
two populations of P. vannamei that differ in susceptibility to
AHPND. The two populations showed a major difference in
survival upon experimental challenge. The difference in
Frontiers in Immunology | www.frontiersin.org 8
susceptibility was further evidenced by the differences observed
by histopathology. In order to understand the molecular
mechanisms governing tolerance and susceptibility, a set of
candidate genes that are known to be involved in bacterial
pathogenesis and in metabolism in crustaceans were evaluated.
Seven genes that showed differential expression in Bioassay 2
were further evaluated in a follow-up challenge, Bioassay 3. The
pattern of differential expression between the susceptible (P1) and
tolerant (P2) population in Bioassays 2 and 3 were in agreement.
Despite the fact that the mRNA expression of only handful genes
were measured and a limited number of animals were screened,
the information, albeit limited, provides valuable insight in V.
parahaemolyticus pathogenesis and sheds light on how
susceptible and tolerant populations of P. vannamei respond
differently to VpAHPND. To our knowledge, this is the first
report looking into the differences in gene expression profiles
between AHPND tolerant and susceptible lines in P. vannamei.
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