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ABSTRACT

High-throughput biological technologies (e.g. ChIP-
seq, RNA-seq and single-cell RNA-seq) rapidly accel-
erate the accumulation of genome-wide omics data in
diverse interrelated biological scenarios (e.g. cells,
tissues and conditions). Integration and differential
analysis are two common paradigms for exploring
and analyzing such data. However, current integra-
tive methods usually ignore the differential part, and
typical differential analysis methods either fail to
identify combinatorial patterns of difference or re-
quire matched dimensions of the data. Here, we pro-
pose a flexible framework CSMF to combine them
into one paradigm to simultaneously reveal Common
and Specific patterns via Matrix Factorization from
data generated under interrelated biological scenar-
ios. We demonstrate the effectiveness of CSMF with
four representative applications including pairwise
ChIP-seq data describing the chromatin modification
map between K562 and Huvec cell lines; pairwise
RNA-seq data representing the expression profiles of
two different cancers; RNA-seq data of three breast
cancer subtypes; and single-cell RNA-seq data of hu-
man embryonic stem cell differentiation at six time
points. Extensive analysis yields novel insights into
hidden combinatorial patterns in these multi-modal
data. Results demonstrate that CSMF is a powerful
tool to uncover common and specific patterns with
significant biological implications from data of inter-
related biological scenarios.

INTRODUCTION

With the rapid development of high-throughput sequenc-
ing technologies, numerous omics data have been gener-

ated in diverse biological scenarios, which provide unprece-
dented opportunities to investigate the underlying biologi-
cal processes among them (1–3). For example, the encyclo-
pedia of DNA elements (ENCODE) project makes a variety
of ChIP-seq data of a wide assortment of cell types avail-
able; The Cancer Genome Atlas (TCGA) project generates
large amounts of omics data for various cancers. Moreover,
the throughput of single-cell RNA sequencing (scRNA-seq)
(4,5) has been significantly improved, providing a chance for
comprehensively viewing the heterogeneity of cells. Integra-
tive and comparative analysis of such data is becoming an
urgent need (1). Mathematically, these genomic data can be
regarded as data matrices, whose analysis method is based
on matrix signal extraction and computing.

Classical matrix signal extraction and pattern discovery
tools such as principle component analysis (PCA) (6), in-
dependent component analysis (ICA) (7) and non-negative
matrix factorization (NMF) (8) are powerful techniques for
analyzing high-dimensional data matrices. PCA is an effec-
tive tool for dimension reduction and visualization of such
data. ICA seeks to separate such data into a set of statis-
tically independent components. However, their decompo-
sition results are restricted to orthogonal or independent
vectors in new feature spaces and often lack interpretabil-
ity. Compared to PCA and ICA, NMF not only performs
dimension reduction, but also provides a better way to ex-
plain structured data. However, they are only designed for
resolving one data matrix at a time. All of this limit their va-
lidity in comparative analysis of the accumulated multiple
datasets. Early studies have adopted joint non-negative ma-
trix factorization (jNMF) and its network-regularized vari-
ants to conduct integrative analysis of multi-dimensional
genomics data for extracting combinatorial patterns (9–
11). More recently, an integrative NMF study further ex-
tended this framework to study heterogeneous confounding
effects among different datasets (12). However, these meth-
ods mainly focus on uncovering consistent patterns embed-
ded in various types of data from the same biological con-

*To whom correspondence should be addressed. Tel/Fax: +86 01 8254 1360; Email: zsh@amss.ac.cn

C© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com



Nucleic Acids Research, 2019, Vol. 47, No. 13 6607

dition. An unsolved valuable and urgent issue is how to per-
form integrative and comparative analysis on the same type
of data from multiple biological conditions (e.g. transcrip-
tional profiles of various cancer types or subtypes, epige-
nomic profiles across various cell lines) in the big data era.
Thus, the urgent needs for analyzing and comparing omics
data generated in multiple conditions prompt us to design
new tools to extract hidden structures or patterns for many
practical applications.

A few advances have been made toward integrative
and/or comparative analysis of omics data from multiple
conditions. For example, differential principal component
analysis (dPCA) is an efficient tool for analyzing multiple
ChIP-seq datasets to discover differential protein–DNA in-
teractions between K562 and Huvec cell lines (13). How-
ever, it only extracts differential patterns on two data ma-
trices with matched rows and columns. Tensor higher or-
der singular value decomposition method has also been
adopted to perform integrative analysis of DNA microar-
ray data from different studies (14). However, it was only
designed for pairwise or multiple datasets (represented by
tensors) that have the same row and column dimensions.
Therefore, neither of these two methods can be applied to
data with only one matched dimension in a unified frame-
work, which limits their applied ranges. What’s more impor-
tant, omics data under diverse conditions are generally in
different sizes of samples. ICA has been recently employed
to reveal cancer type-shared and cancer type-specific signals
by first applying it to each cancer expression data separately,
and then detecting common and specific modules on a re-
lationship network (15). However, this method may over-
look the influence between shared and differential features.
In more detail, tiny difference compared to shared features
may be ignored. Therefore, simultaneous determination of
common and specific patterns for the omics data matrices
with different row (or column) dimension among multiple
biological conditions remains an outstanding challenge.

To this end, we propose an integrative and comparative
framework CSMF to simultaneously extract Common and
Specific patterns on the omics data of two or multiple bi-
ological interrelated conditions via Matrix Factorization
(Figure 1). CSMF is suitable for analyzing RNA-seq, ChIP-
seq, scRNA-seq and other types of data. Extensive analyses
with four biological applications demonstrate that CSMF
can help yield novel insights into hidden combinatorial
patterns behind interrelated multi-modal data. Specifically,
four applications include (i) the histone modification data
of K562 and Huvec cell lines profiled using ChIP-seq from
ENCODE, (ii) the gene expression data of breast invasive
carcinoma (BRCA) and uterine corpus endometrial carci-
noma (UCEC) from TCGA, (iii) the gene expression data
of three breast cancer subtypes from Breast Cancer In-
ternational Consortium (METRABRIC) and (iv) single-
cell RNA-seq (scRNA-seq) data of six time points about
stem cell differentiation. CSMF discovered stable CTCF-
binding loci and three differential patterns with consistent
marks but differential binding intensities from the epige-
nomic profiles of K562 and Huvec. By comparing tran-
scriptional profiles of UCEC and BRCA, CSMF identi-
fied cancer hallmarks enriched common modules and can-
cer type-specific biological modules. Furthermore, CSMF

detected tiny BRCA subtype-specific biological modules.
Meanwhile, CSMF is an effective tool to analyze hetero-
geneous scRNA-seq data, and it revealed diverse degrees of
human embryonic stem cell differentiation. Overall, CSMF
is a powerful tool to uncover hidden combinatorial com-
mon and specific patterns embedded in the same omics data
of interrelated biological scenarios.

MATERIALS AND METHODS

Datasets and data preprocessing

We downloaded the normalized ChIP-seq data used in the
MYC analysis example from the website of dPCA (http:
//www.biostat.jhsph.edu/dpca/), which includes 58997 loci,
18 datasets and 70 samples in K562 and Huvec cell lines.
Each locus represents an extensional MYC motif site that
has significant signal(s) in at least one mark or TF in ei-
ther cell line. We log-transformed the binding signal with a
pseudo-count 1 (i.e. log2(1 + count)), and averaged the val-
ues of multiple replicates of each mark for K562 and Huvec
cell lines, respectively. Finally, we obtained the data matrix
X1 for K562 and X2 for Huvec, and both these two matrices
consist of 58997 loci and 18 marks.

We downloaded the level 3 gene expression data
(illuminahiseq rnaseqv2 -RSEM genes normalized) of
UCEC and BRCA on 28 January 2016 from http://gdac.
broadinstitute.org/. We log-transformed the expression with
a pseudo-count 1 and kept the differentially expressed
genes with absolute log2 (fold change) > 2 and Benjamin–
Hochberg adjusted P-value < 0.01 between cancer and nor-
mal samples by limma (16) for UCEC and BRCA, respec-
tively. Finally, we obtained the two gene expression data ma-
trices with X1 and X2 consisting of 6621 genes across 370
UCEC and 1100 BRCA tumors respectively.

The METRABRIC dataset was accessed through
Synapse (synapse.sagebase.org), which contained detailed
clinical annotations such as PAM50 subtype information
(17). We focused on the tumors of luminal A, luminal
B, basal and her2 subtypes. We kept genes that were
differentially expressed between each of these subtypes
and the normal-like subtype using limma with Benijamini–
Hochberg adjusted P-value < 0.01 and the absolute value
of log2(fold change) > 0.5. We also computed the median
absolute deviation (MAD) value of each gene across
samples of each subtype and kept the gene with MAD
> 0.2 in at least one subtype. Then, we combined these
two gene sets. We treated luminal A and luminal B as one
subtype, named as lum. Finally, we obtained the expression
data matrices X1, X2 and X3 with 2031 genes across 1209
lum, 328 basal and 238 her2 tumors.

We downloaded the scRNA-seq data of human embry-
onic stem cells and differentiation cells from NCBI’s Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo)
with accession number GSE75748. There were 758 cells
including 92, 102, 66, 172, 138 and 188 cells at time points
0, 12, 24, 36, 72 and 96 h, respectively. The gene expres-
sion values were log-transformed with a pseudo-count
1 and normalized by the media-by-ratio method with
SCPattern R package (18). We computed the variation
measured by standard deviation for each gene across
each time point and selected genes with z-score of the
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Figure 1. Illustration of CSMF. X1 and X2 are the data matrices as the inputs of CSMF. After applying CSMF on X1 and X2, low-rank basis matrices
and coefficient matrices are obtained. Then we reorder these low-rank matrices, which are shown in the middle panel. Next, the reordered X1 (X2) with
obvious patterns (the right panel) is reconstructed by summing the common characteristics WcHc1 (WcHc2) and specific characteristics Ws1Hs1 (Ws2Hs2).

variation > 1. We extracted the differentially expressed
genes across six time points by SCPattern (18). In to-
tal, 8968 genes were kept in this study (Supplemental
Table S1). By this way, we obtained six data matri-
ces (X1 ∈ R8968×92

+ , X2 ∈ R8968×102
+ , X3 ∈ R8968×66

+ , X4 ∈
R8968×172

+ , X5 ∈ R8968×138
+ , X6 ∈ R8968×188

+ ) for all time
points.

The CSMF model

In this study, we aim to develop a computational method
CSMF for simultaneously learning common and specific
patterns (or modules) among data from multiple biologi-
cal conditions (Figure 1). Here, we take the gene expres-
sion data X1 and X2 of n genes from two conditions with
m1 and m2 samples, respectively, as an example to illustrate
our method. A common pattern in these two gene expres-
sion data is defined by satisfying the criterion that ‘the pro-
files extracted from a set of columns of X1 and X2 across a
common set of rows have strong association or similar pro-
files among them’. In contrast, a specific pattern in one gene
expression data (e.g. X1) is defined by satisfying the crite-
rion that ‘the profiles extracted from a set of columns of
X1 across a set of rows have strong association or similar
profiles, but are not in any sets of columns of another data
(e.g. X2) across the same set of rows’. As shown in Figure 1,
several latent low-rank matrix variables Wc, Ws1, Ws2, Hc1,
Hc2, Hs1 and Hs2 are obtained by applying CSMF to data
matrices X1 and X2. Among them, Wc (Wc ∈ Rn×nc+ , nc is the
common low-rank) is the common basis matrix shared by
X1 and X2, Ws1 and Ws2 (Ws1 ∈ Rn×ns1+ , Ws2 ∈ Rn×ns2+ , ns1,
ns2 are the two specific low-ranks) are the specific basis ma-
trices for X1 and X2, and Hc1, Hc2, Hs1, Hs2 are the corre-
sponding common and specific coefficient matrices for X1
and X2, respectively. Then, we use these variables together
to generate the data matrices X1 and X2. Specifically, for X1,
the expected expression of gi in the common pattern k was
estimated by wc

ikhc1
kj , and the expected expression of gene gi

in the specific pattern k1 was estimated by ws1
ik1

hs1
k1 j . There-

fore, the expected expression of gi in the condition 1 is ap-
proximated by summing over common patterns k and spe-
cific patterns k1:

x̂1
i j =

nc∑
k=1

wc
ikhc1

kj +
ns1∑

k1=1

ws1
ik1

hs1
k1 j , i = 1 · · · n, j = 1 · · · m1.

(1)

Similarly, we obtain the expected expression of gi in the
condition 2:

x̂2
i j =

nc∑
k=1

wc
ikhc2

kj +
ns2∑

k2=1

ws2
ik2

hs2
k2 j , i = 1 · · · n, j = 1 · · · m2.

(2)

Equations ((1)) and ((2)) can be rewritten in matrix for-
mat as follows:

X1 = Wc Hc1 + Ws1 Hs1, (3)

X2 = Wc Hc2+Ws2 Hs2, (4)

We use the squared loss function to measure the relax-
ation error as follows:

F (Wc, Ws1, Ws2, Hc1, Hc2, Hs1, Hs2) = ‖X1 − (Wc Hc1 + Ws1 Hs1)‖2
F

+‖X2 − (Wc Hc2 + Ws2 Hs2)‖2
F ,

(5)

where ‖ • ‖F is the Frobenius norm of a matrix, and all vari-
ables are non-negative matrices. The two terms denote the
fitting between the expected and actual expression matrices
of each condition. Thus, the latent matrix variables can be
learned by solving the following optimization problem:

arg minWc,Ws1,Ws2,Hc1,Hc2,Hs1,Hs2≥0

F (Wc, Ws1, Ws2, Hc1, Hc2, Hs1, Hs2) .

Once the latent matrix variables are obtained, we reorder
rows of Wc, Ws1, Ws2 and columns of Hc1, Hc2, Hs1, Hs2.
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Then, the reordered X1 and X2 with obvious patterns are
obtained and shown in the right panel of Figure 1.

The CSMF algorithm

The objective function F(•) is not convex with respect to all
variables. Therefore, it is unrealistic to adopt a standard op-
timization algorithm to find the global minimum. To solve
this problem, we develop the following algorithm to find a
local minimum solution (or say a stationary point, which
means that the relative change of the objective function is
less than a small threshold, i.e. 10−6) by updating each vari-
able alternately. And to obtain a robust solution, we adopt
the disturbed solution of a heuristic method iNMF+ as the
initial value of CSMF. In more detail, given a best solution
(W0, H0) of iNMF+, a disturbed solution is obtained by
W = W0 + 1

m E, where E is a random noise matrix that fol-
lows 0–1 uniform distribution. m is the number of rows of
W0. This procedure based on W0 is repeated 10 times. Then,
these 10 disturbed solutions (W, H0) are used as initial
values of CSMF. Finally, we select the solution with least
collinearity (measured by Pearson correlation coefficients
between any pairwise columns of W) from these 10 repeti-
tions (Supplementary Data).

From the algorithm, we can see that CSMF optimization
problem can be solved by applying the classical NMF al-
gorithm in the inner step. Many approaches have been pro-
posed to solve classical NMF problem (8,19,20). We adopt
an effective Nesterov’s optimal gradient method to solve the
classical NMF problem (NeNMF), which alternatively op-
timizes one factor matrix with another fixed (20). NeNMF
can solve the slow convergence and non-convergence prob-
lems of other NMF algorithms (Supplementary Data). The
algorithm converges to a local minimum efficiently. It is
easy to see that the time complexity of CSMF algorithm is
O(ToTinr2), where To and Ti are the number of outer and in-
ner iterations wherein outer iteration indicates the iteration
step t and the inner iteration represents the iteration needed
for solving any subproblem in Algorithm for CSMF, respec-

tively, r is the sum of common and specific ranks, and n is
the maximum dimension of rows and columns.

General CSMF

In this subsection, we introduce a general framework to
learn common and specific patterns among data from mul-
tiple biological conditions. Suppose there are K conditions
and data Xi represents data matrix under the i-th condition.
We need to determine the basis matrices Wc and Wsi, and
coefficient matrices Hci and Hsi of each condition i for learn-
ing the common and specific patterns of each condition i.
We can obtain these variables by solving the following prob-
lem:

minWc,Hci ,Wsi ,Hsi ≥0,i=1,...,K F

=
K∑

i=1

‖Xi − Wc Hci − Wsi Hsi‖2
F . (6)

The problem (6) can be solved via a two-step procedure
by solving a series of classical NMF subproblems. In the

first step, we fix Wsi, Hsi and let
∼
Xi = max(Xi − Wsi Hsi , 0).

Then, we can obtain Wc and Hci by solving the following
model:

minWc,Hci ≥0,i=1,...,K

K∑
i=1

∥∥∥∥ ∼
Xi −Wc Hci

∥∥∥∥
2

F

=
∥∥∥∥[

∼
X1, . . . ,

∼
XK ] − Wc[Hc1, . . . , HcK ]

∥∥∥∥
2

F
. (7)

In the second step, we fix Wc and Hci and let X̂i =
max(Xi − Wc Hci , 0). Then, we can obtain Wsi, Hsi by solv-
ing K typical NMF subproblems and the i-th subproblem is
formulated as follows:

minWsi ,Hsi ≥0
∥∥X̂i − Wsi Hsi

∥∥2

F (8)

Moreover, we adopt the solution of a nave model iNMF+
as the initial one to improve the solution (Supplementary
Data; Supplementary Figures S1–S4).

Rank selection for common and specific patterns

Selection of the ranks of the common and specific patterns
is an important step in practical applications. How to de-
termine the rank of classical NMF model is still an open
problem. In our CSMF model, both the common and spe-
cific ranks need to be determined. To address this chal-
lenging problem, we propose a heuristic algorithm, which
includes the following two steps. (i) We take a stability-
based method to infer rank Ki of each dataset by perform-
ing NMF. (ii) We decompose the inferred rank Ki into the
sum of common rank nci and specific rank nsi based on the
cross-correlation coefficients between any two basis matri-
ces of different datasets.

Specifically, (i) the rank Ki of the data in the i-th condition
is determined based on a metric D that measures the stabil-
ity distance of the basis matrix relative to the initial starting
values (21). Therefore, given a predefined range of ranks, we
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perform NMF on each data matrix and compute the metric
D for each rank in the range. Ki is selected if the magnitude
of D begins to increase in a large scale. (ii) Ki ( = nc+nsi) is
the sum of ranks of the common pattern and the i-th spe-
cific pattern. In the step (i), the basis matrix Wj and coef-
ficient matrix Hj are obtained by NMF. By computing the
Pearson correlation coefficient between randomly selected
Wj and Wk, we then find the related columns whose corre-
lation coefficients are higher than a threshold T and obtain
a new basis matrix Ws by averaging the related columns be-
tween them. This procedure is repeated between Ws and a
randomly selected basis matrix from the left data matrix un-
til the basis matrices of all the data matrices are considered.
Finally, the number of related columns whose correlation
coefficients are higher than T is the common rank nc and nsi
= Ki − nci is the rank of the i-th specific pattern. In order
to avoid any column pair of basis matrices being disorder
and high co-linearity, we proposed a heuristic method to
fine-tune the ranks as well as the solution of CSMF (Sup-
plementary Figure S5).

Determination of patterns

The obtained Wc, Wsi and Hci, Hsi (i = 1, 2, . . . ) are used to
assign both rows (features) and columns (samples) to pat-
terns (or say modules). The maximum coefficient can be
used in each column of Hs (or each row of Ws) to deter-
mine pattern memberships. However, this method restricts
the assignment for each sample or feature to one and only
one pattern (22). In our application, we expect one sample
or feature can be assigned to multiple or none of patterns.
Therefore, we employ the column-wise (row-wise) z-score of
Ws (Hs) to determine pattern memberships as used before
(9). For example, we calculate the z-score for wij, which is the
element i in the j-th column of W by zi j = (wi j − w̄• j )/s• j ,
where w̄• j is the average value of w• j and s• j is its standard
deviation. We assign element j as a member of common pat-
tern i if zij is greater than a given threshold T. Smaller T
leads to patterns in larger size, which may contain much re-
dundant information, while larger T makes the patterns in
smaller size that leaves some patterns out.

RESULTS

Simulation study and comparison

Early studies have adopted jNMF and its various variants
to identify common modules across multiple omics data (9–
11). Therefore, it can be also applied to the same data type
in various conditions to discover common patterns. How-
ever, jNMF cannot identify differential patterns. To show
the superior performance of simultaneously learning com-
mon and specific patterns (or modules) using CSMF, we
proposed two nave models (i.e. jNMF+ and iNMF+) based
on jNMF and NMF as sequential and separated manners,
respectively, to identify common and specific patterns (Sup-
plementary Data). We generated five simulated data using
the strategy used in a previous study (21) and compared
the accuracy of CSMF with these two heuristic methods
in identifying common and specific patterns. We adopt the
area under receiver operating characteristic curves (AUC)
and the area under precision-recall (AUPR) as measures

to quantify the accuracy of the embedded patterns. Results
showed that iNMF+ performed better than jNMF+ in the
identification of both common and specific patterns with
varying the ratio of common and specific parts (Supplemen-
tary Figure S1), and CSMF exhibited significantly higher
accuracy than iNMF+ even for the data with overlap pat-
terns. Therefore, CSMF is an effective method to do integra-
tion and differential analysis. Moreover, we found that using
the solution of the naive model iNMF+ as the initial input
of CSMF can further improve the accuracy of identification
(Supplementary Figures S2–S4). These results suggest that
CSMF performs better in identifying common and specific
patterns, which proves that our simultaneous manner is in-
deed helpful to discover the hidden patterns compared to
the typical separate and sequential manners.

Determine common and specific protein–DNA interaction
patterns in enhancer region between K562 and Huvec cell
lines

In cellular systems, enhancers can be bound by proteins to
influence gene expression by activating or repressing tran-
scription in cells. Differential analysis of modifications of
two or multiple cell lines is valuable to decipher their under-
lying distinct combinatorial and regulatory patterns. Here,
we demonstrate that CSMF can reveal not only differential
modification patterns but also common ones. We applied
CSMF to the pairwise ChIP-seq data with 58 997 loci of
18 histone marks or TFs of K562 and Huvec cell lines with
nc= 1, ns1= 3, ns2= 3 (Supplementary Data), and obtained
Wc, Ws1, Ws2, Hc1, Hc2, Hs1 and Hs2. Then, we combined
them to form W (each row represents a locus) and H (each
column represents a mark) by

W = [Wc, Ws1, Ws2] , H =
[Hc1 Hc2

Hs1 0
0 Hs2

]
.

Interestingly, we can see that the common pattern (named
C) has strong signals with CTCF mark. Coincidently, the
loci of C pattern are significantly enriched with the mo-
tifs of CTCF (Supplementary Table S5). It is well known
that CTCF is a ubiquitously expressed DNA-binding pro-
tein. Previous study suggested that CTCF-binding sites are
relatively invariant across diverse cell types or cell lines
including K562 and Huvec (23). Moreover, DNase mark
also shows strong signals in the common pattern C (Fig-
ure 2B), which is consistent with that CTCF-binding sites
co-localize with DNase I hypersensitive sites. This illustra-
tive example demonstrates that CSMF can reveal common
or shared protein–DNA interaction patterns between two
cell lines, which was ignored by dPCA (13).

We further note that the three specific patterns (denoted
as K1, K2, K3 in K562 and H1, H2, H3 in Huvec) are
marked with diverse marks for K562 and Huvec, respec-
tively (Figure 2A and B), and the marks in K1 and K2 pat-
terns are almost the same as marks in dPC1 and dPC2 de-
termined by dPCA. Specifically, K1, K2, K3 are marked by
strong signals of a repressive mark (H3K27me3), four ac-
tive marks (H3K4me2, H3K4me3, H3K9ac and H3K27ac)
and a structural mark (H3K36me3), respectively. The en-
tries of a column in W represent the binding potential of
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Figure 2. Pattern discovery from the pairwise ChIP-seq data of K562 and Huvec cell lines with nc = 1, ns1 = 3, ns2 = 3. (A and B) Heat maps of the basis
and coefficient matrices W and H, where W is reordered according to the values in each column. Since ChIP-seq data were obtained from two different
institutes (i.e. Broad Institute and University of Washington), thus one mark may have two corresponding data. (C) Venn diagram representing the overlap
loci of da and dW2 across K562 and Huvec. da represents a locus set in which active marks have strong binding probability in either K562 (compared to
Huvec) or Huvec (compared to K562) detected by Wilcoxon tests. dW2 represents the loci with significantly higher binding probability in K2 column of
W than that of H2, and vice versa, respectively. (D) The gene network of K2 constructed using IPA and the size of gene node is proportional to its node
degree. (E) The top enriched functional terms of the gene network (D) associated with cellular development, cell cycle and cell death, respectively. (F) Top
5 motifs enriched in the loci of K2 and H2 with q-value < 0.0001.

marks in the corresponding pattern to the loci. Although
the three patterns H1, H2, H3 are marked with the same
marks as those in K562 (K1, K2, K3), the corresponding
binding loci or binding intensity show distinct difference
(Figure 2A), which shapes the specificity of the two cell
lines. We extracted the loci with differential binding prob-
ability (Supplementary Data) and found that such loci in
pattern K2 (dW2) are enriched in the differential loci with
strong signals of active marks (da) in K562 compared to
signals of active marks in Huvec detected by the Wilcoxon
test (Figure 2C). Moreover, the genes closing to the loci of

K1, K2 and K3 are significantly enriched in leukemia as-
sociated functions (Figure 2E and Supplementary Figure
S7), indicating that these patterns indeed show strong speci-
ficity relating to K562. We constructed a gene functional
network for each specific pattern in K562 and explored
their functions by Ingenuity Pathway Analysis (IPA, http:
//www.ingenuity.com) (Figure 2D and Supplementary Fig-
ure S7). In K1, we observe a highly connected gene RUNX1,
which is one of the most frequent targets of chromosomal
translocations in AML, playing a critical role in leukemia
development. Moreover, a previous study (24) suggested

http://www.ingenuity.com
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that RUNX1 promoter is bound by EZH2 that is negatively
regulated by H3K27m3, a key mark in K1. In the gene
functional network of K2 (Figure 2D), many genes (e.g.
KMT2A, MECOM, ROCK1, VAV1, BCL2L11, SIN3A,
PARP1) are related with leukemia, indicating that K2 is in-
deed a K562-specific pattern. For example, KMT2A (also
known as ALL-1 and MLL1) is a key epigenetic regulator
in leukemia, which up-regulates mono-, di- and trimethy-
lation of H3K4 (25). Moreover, many genes are connected
with MYC in the gene network of K2 (Figure 2D), which
is consistent with the fact that these genes locate nearby
the MYC motif. These results demonstrate that the specific
binding loci of K562-specific patterns revealed by CSMF
are significantly associated with leukemia.

Transcription factors (TFs) play a key role in regulat-
ing the expression of many cell line-specific genes by bind-
ing certain motifs. We note a number of significantly en-
riched motifs locate in the differential loci using Homer
(Figure 2F and Supplementary Table S5). In K2, the top
5 TF motifs are all relate to GATA TFs, which are zinc fin-
ger DNA-binding proteins, regulating transcription in cell
development and cell differentiation. The functional role
of most members of GATA family in leukemia has been
reported in literature (26). For example, GATA1 is a rele-
vant biomarker for acute myeloid leukemia and its overex-
pression is related to the expression of CD34 antigen and
lymphoid T markers (27). GATA2 is found in a subset of
human chronic myelogenous leukemia (28), and its over-
expression determines megakaryocytic differentiation (29).
Overall, these results imply that GATA TFs are expected to
have a higher level of expression in K562, which is consis-
tent with K2 being a pattern of activate marks. In H2, the
top 5 TF motifs are of ATF3, FRA1, BATF, AP1 and Jun-
AP1 (Figure 2F and Supplementary Table S5), which play
key roles in the development of endothelial cells (30,31). For
example, ATF3 is highly expressed in Huvec, which protects
Huvec from TNF-� induced cell death (32). FRA1 is up-
regulated in endothelial cells (33), which is consistent with
that H2 is marked by active marks revealed by CSMF. At
last, insulin/IGF pathway, PDGF signaling pathway and
VEGF signaling pathway are significantly enriched in the
genes locating to the loci in H3, indicating its specificity to
endothelial cells.

Determine common and specific gene modules between two
types of cancers BRCA and UCEC

We applied CSMF to two gene expression data of BRCA
(breast invasive carcinoma) and UCEC (uterine corpus en-
dometrial carcinoma) and obtained five common modules
(C1,C2,C3,C4,C5), two UCEC-specific modules (U1,U2)
and three BRCA-specific modules (B1,B2,B3) with nc =
5, ns1 = 2, ns2 = 3 (Supplementary Data). Five common
modules show diverse enriched biological functions with
FDR < 0.05 (Figure 3A). These enriched biological pro-
cesses relate to several key cancer hallmarks (34,35) includ-
ing cell cycle, cell division, immune response, cell death
and molecule metabolic process, suggesting their underly-
ing common mechanisms between UCEC and BRCA.

We found that the two UCEC-specific modules U1 and
U2 are significantly enriched in the two tumor histologi-

Figure 3. Functional and clinical analysis of UCEC and BRCA common
and specific modules. (A) Functional enrichments of five common modules
between UCEC and BRCA. The significance values (-log10(q-value)) of
the enriched biological processes are shown. (B) The distribution of histo-
logical types of patients in the two UCEC-specific modules (denoted as U1
and U2). Type I and II are endometrioid endometrial adenocarcinoma and
uterine serous endometrial adenocarcinoma, respectively. (C) Comparison
of age and weight distribution of patients in the two UCEC-specific mod-
ules and other patients of type I and II, respectively. I and II denote the
type I and II patients except for those in U1 and U2, respectively. (D) Top
5 enriched hallmark signatures of B1 module. (E) The Immunohistochem-
istry hormone receptor status enriched in B3 module. (F) The heat map
of the combined genes of top 20 highly expressed genes from U1 and B3
modules, respectively. *: 1e−5< P-value < 0.05, **: P-value < 1e−5.

cal types uterine serous carcinoma (type II) and endometri-
oid tumor (type I) (Figure 3B), revealing their functional
specificity as we expected. The biomarkers associated with
type II carcinoma (36) such as TROP-2, kallikrein-6 and
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-10, claudin-3 and -4 are enriched in module U1. Intrigu-
ingly, the U1 patients are older and thinner than the U2
patients when they get sick, which is consistent with a pre-
vious conclusion about type II and type I tumors (Figure
3C). Moreover, the age difference between patients of U1
and U2 is more significant than that between the remain-
ing ones of type I and type II. At last, the estrogen recep-
tor status of the patients in B1 is almost all positive, and
the top two significant hallmark gene sets enriched in this
module are all associated with estrogen response (Figure
3D and Supplementary Table S9). In module B3, the estro-
gen receptor, progesterone receptor and human epidermal
growth factor receptor 2 all tend to be in negative status
(Figure 3E), implying that the module B3 is enriched with
triple-negative breast tumors. Though uterine serous car-
cinomas share many molecular features with basal breast
tumors such as high frequency of TP53 mutation and low
frequency of TPEN mutation, they do show some differ-
ences including distinct mutation frequency of PIK3CA,
PPP2R1A and FBXW7 (37). CSMF reveals differentially
expressed genes between triple-negative breast cancer in B3
module and uterine serous carcinomas in U1 module (Fig-
ure 3F), in which the overexpressed genes KRT5, KRT6B
and KRT14 in B3 are indeed basal markers (38).

Determine common and specific gene patterns among breast
cancer subtypes

To show the ability in the identification of cancer hall-
marks and subtle differences among different cancer sub-
types, we applied CSMF to gene expression of three breast
cancer subtypes including lum (denoting the combination
of luminal A and B tumors), basal and her2 tumors to ex-
plore the underlying mechanisms among them with nc =
4, ns1 = 1, ns2 = 1, ns3 = 1 (Supplementary Data). We
determined four common gene patterns (C1, C2, C3, C4)
and one specific pattern (L, B, H) for each subtype using
CSMF. We can see that these four common gene modules
are involved in the typical cancer hallmarks like cell cycle,
cell death, immune response and cellular metabolic pro-
cess (Supplementary Figure S9). More interestingly, each
subtype-specific pattern tends to relate to subtype-specific
pathways (Figure 4A and Supplementary Table S11). For
example, lum-specific pattern is enriched with PID HNF3A
pathway, where HNF3A (also known as FOXA1) is a marker
of good outcome in breast cancer. Tumors with highly ex-
pressed FOXA1 are mostly classified as luminal A ones (39).
Thus, this pattern is indeed a subtype-related functional
module. Basal-specific pattern B tends to be enriched in
PID Rb1 pathway and biological processes like cell cycle,
G1 phase and G1/S transition, which is consistent with that
the tumor suppressor gene Rb1 plays a key role in regulating
the cell cycle process. We note that Rb1 deletion or muta-
tion, INK4a (also known as CDKN2A) deletion, mutation
or silencing and CCND1, CDK4 and CDK6 overexpression
can cause Rb1 loss or Rb1 hyperphosphorylation that fur-
ther disorders G1/S checkpoint (40). A previous study un-
covered a strict inverse correlation between E2F3 and Rb1
expression in human basal-like breast cancer (41). Surpris-
ingly, E2F3 is highly expressed in B module, which is con-
sistent with that Rb1 loss is more common in triple negative

Figure 4. Biological functions and survival analysis of lum-, basal- and
her2-specific modules (L, B, H). (A) The selected enriched pathways of
each specific module. (B) Networks of genes (filled circles) in the three spe-
cific patterns visualized by Cytoscape. (C) The survival curve of patients in
the basal-specific module. This curve is compared with that of all patients
in the basal subtype (left) and that of all patients in lum- and her2-specific
modules (right).

breast cancers than in other subtypes (42). Interestingly, al-
though patients with triple negative breast cancers lacking
Rb1 may have good clinical outcome under conventional
chemotherapy (40), the clinical performance of patients in
the basal-specific pattern B is the worst among all patients
in basal subtype. Therefore, the result implies that a sim-
ple loss of Rb1 function is not responsible for the increased
sensitivity of triple negative tumors to chemotherapy as sug-
gested in a previous study (42). At last, her2-specific pattern
H tends to be enriched in PID PLK1 pathway. PLK1 is a key
regulator associated with cell cycle, and it is also associated
with her2 (43).

We further constructed a gene functional network consid-
ering only the experimentally verified relationships with IPA
(Figure 4B) to demonstrate the distinct functional speci-
ficity of the three subtype-specific patterns. Literature study
suggests that a lot of genes in the network are associated
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with each breast subtype (Supplementary Table S12). For
example, GATA3 has been implicated in the luminal types
of breast cancer, which is overexpressed in the lum-specific
subnetwork. Moreover, its coding protein is a transcription
factor that regulates the differentiation of luminal cells in
the mammary glands (30,31). The basal-like tumors asso-
ciated basal cytokeratins (KRT5, KRT6, KRT14, KRT15,
KRT16, KRT17) are highly expressed in basal specific-
pattern B, demonstrating its specificity. Particularly, KRT5
serves as an important biomarker distinguishing basal sub-
type and other subtypes of breast cancer. Moreover, the pa-
tients in basal-specific pattern have worse survival perfor-
mance within the first 5 years relative to the remaining basal
tumors and those in other patterns (Figure 4C). PGK1 is
a downstream effector of her2 signaling, which contributes
to the tumor aggressiveness of breast cancer. It is highly ex-
pressed in her2-specific module, confirming the functional
specificity of this pattern (44).

Identify common biological process and stage-specific sub-
populations along the differentiation of human pluripotent
cells

With the development of single cell sequencing technology,
it provides us an opportunity to study the underlying cellu-
lar heterogeneity at a single cell resolution. We investigated
the potential of CSMF to disentangle the heterogeneity
during human embryonic differentiation. This time-course
scRNA-seq data consists of 8968 genes (rows) and 92, 102,
66, 172, 138, 188 cells (columns) at six time points (0, 12, 24,
36, 72 and 96 h), respectively (18). We identified one com-
mon pattern and 1, 2, 1, 1, 1, 2 stage-specific patterns at each
time point (Supplementary Data). The highly expressed
genes of the common pattern are enriched in the biologi-
cal processes including cell cycle, biosynthetic process, reg-
ulation of catabolic process and RNA processing, suggest-
ing that these biological processes are participant in the em-
bryonic differentiation process (Supplementary Table S14).
The expressions of marker genes (POU5F1, T, CXCR4 and
SOX17) of embryonic differentiation are highly expressed in
their corresponding subpopulations (Figure 5A). Further-
more, we obtained two stage-specific cell subpopulations at
12 and 96 h, respectively. POU5F1 and T show very diverse
expressions in the two subpopulations at 96 and 12 h, re-
spectively. It might suggest that one subpopulation differ-
entiates more slowly than another one (Figure 5A).

CSMF can reveal subpopulation-related genes that in-
clude known differentiation-associated gene markers (Fig-
ure 5B). For example, NANOG and POU5F1 are highly ex-
pressed at 0 h during cell differentiation. They indeed play
important roles in the maintenance of pluripotency of hu-
man embryonic stem cells. However, NODAL, EOMES and
ID1 are highly expressed at 12 h and T is highly expressed at
24 h. It is well known that T is the key marker of mesendo-
derm in embryonic stem cell studies and it is first expressed
in the primitive streak (45,46). Moreover, the two definitive
endoderm-specific genes CER1 and GATA6 are highly ex-
pressed at 36 h. Actually, CER1 is one of the top important
genes at 36, 72 and 96 h during differentiation (Figure 5B).
These key stage-specific gene markers revealed by CSMF
are consistent with a previous study based on a differential

expression analysis tool SCPattern (18), which cannot re-
veal stage-specific cell subpopulations.

The subpopulation-related genes indeed point to key dif-
ferentiation process such as the birth of definitive endo-
derm. To our knowledge, the hypoxic treatment experi-
ments suggest that the birth of nascent definitive endoderm
cells is a well-timed event (18). We combined the top 30
genes in 24 h- and 36 h-specific patterns together and ob-
tained 45 genes after removing the ERCC family genes.
This gene set is enriched in the Wnt signaling pathway,
which is crucial for the development of endoderm (47,48).
These genes have different expression patterns accompany-
ing differentiation toward definitive endoderm and are in-
volved in differentiation of stem cells and proliferation of
mesenchymal cells (Figure 5C and Figure 5D). Previous
studies suggested that cells undergo mesenchymal transition
when the embryonic stem cells differentiate into definitive
endoderm during gastrulation (49). All these observations
demonstrate that the patterns uncovered by CSMF reveal
novel hidden characteristics among the biological data of
interrelated scenarios.

DISCUSSION

With the rapid development of high-throughput technolo-
gies (e.g. ChIP-seq, RNA-seq and scRNA-seq), a huge
number of genomic data of different biological conditions
have been profiled and collected, providing a grand oppor-
tunity to decipher the underlying commonality and spe-
cialty among diverse biological conditions through large-
scale integrative and comparative analysis. However, cur-
rent integrative methods usually ignore the differential part,
and typical differential analysis methods either fail to iden-
tify the combinatorial patterns of difference (e.g. differen-
tial expression analysis tool limma) or require matched di-
mensions of the data (e.g. dPCA). To this end, we propose
a powerful and flexible mathematical framework CSMF,
which only requires one matched dimension and is suitable
for analyzing data generated by different techniques such
as RNA-seq, ChIP-seq and scRNA-seq. To our knowledge,
this is the first report to propose the idea to identify com-
mon and specific patterns simultaneously using NMF tech-
nique.

We have demonstrated the utility of CSMF as an effective
tool to reveal hidden common and specific patterns among
complex data across diverse conditions. As we shown in the
simulation study, compared to the typical separate and se-
quential manners based on either differential or integration
analysis, our simultaneous manner shows superior perfor-
mance. Our proposed model is different from differential
expression analysis when it is applied on gene expression
data between case and control groups, which only identifies
a list of genes with statistical significance. On the contrast,
CSMF can identify the combinatorial patterns of the differ-
ently expressed genes and these combinatorial patterns have
strong biological interpretability. To demonstrate its power,
we applied CSMF to four applications. Application to the
pairwise ChIP-seq data describing the chromatin modifica-
tion map on protein–DNA interactions between K562 and
Huvec cell lines, CSMF discovered stable CTCF binding
loci and three differential patterns with consistent marks
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Figure 5. Cell subpopulations identified by CSMF from the time-course scRNA-seq data. (A) The expressions of marker genes in each specific pattern.
(See online colored version: dots in specific patterns are represented by different colors and dots indicated by × with shallow red and rose red represent
cells in 12 h- and 96 h-specific subpopulation II, respectively). (B) Significance of selected markers enriched in each time-specific pattern determined by
W. (C) The enriched biological processes of the intersection of genes in Wnt signaling pathway and genes differentially expressed between 24 h- and 36
h-specific patterns. (D) The heat map of genes described in panel (C) in the cells from 24 h- and 36 h-specific patterns.

but with differential binding intensities between K562 and
Huvec. By comparing transcriptional profiles of two types
of cancers BRCA and UCEC or various subtypes of BRCA,
CSMF identified cancer hallmark-enriched common mod-
ules and cancer-specific or subtype-specific biological mod-
ules. Furthermore, not only differentially expressed marker
genes but also the corresponding stage-specific cell subpop-
ulations can be identified when CSMF was applied to the
scRNA-seq data with six time points.

Recently, rapid development of single-cell sequencing
technology enables fast accumulation of large amounts of
scRNA-seq data across different conditions, tissues and
platforms. Integrative and comparative analysis of these
data is essential for translating it into biological insight (50).

For example, Kiselev et al. presented a method for project-
ing cells from an scRNA-seq data set onto cell types or indi-
vidual cells from other experiments (51). Butler et al. intro-
duced an strategy for integrating scRNA-seq datasets based
on common sources of variation learned from canonical
correlation analysis (CCA) (52). CSMF combines dimen-
sion reduction and comparative analysis into one paradigm.
As a tool for comparative analysis, CSMF is able to identify
common and specific gene patterns across different scRNA-
seq data sets, providing insights into hidden combinatorial
patterns embedded in these interrelated data. As a tool for
dimension reduction, the learned low-dimensional repre-
sentations of the scRNA-seq data, including common and
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specific sources of variation, are useful for the identification
of shared and specific subpopulations across datasets.

Each subproblem of CSMF was converted into the clas-
sical NMF problem. Therefore, the runtime of CSMF is
currently dominated by the NMF. We improved its com-
putational ability by applying Nesterov’s accelerate method
to solve the classical NMF instead of adopting commonly
used multiplicate update rule. However, with the increasing
number of samples, e.g. tens of thousands of samples, fu-
ture work is needed to develop more efficient NMF update
method and implement in a parallel platform with an accel-
erated strategy. In addition, selecting a well-reasoned num-
ber of common and specific patterns for CSMF is a chal-
lenging issue, and we proposed a heuristic method to ad-
dress it (Supplementary Data). In future studies, we will de-
sign more elaborate mathematical penalties onto the factor-
ization to enhance the pattern discovery. Moreover, CSMF
should be applicable to many other kinds of data such as
copy number variation, DNA methylation and miRNA ex-
pression of different conditions, which will help us under-
stand the data heterogeneity and underlying patterns.
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