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Abstract
Kernel methods play a critical role in many machine learning algorithms. They are
useful in manifold learning, classification, clustering and other data analysis tasks.
Setting the kernel’s scale parameter, also referred to as the kernel’s bandwidth, highly
affects the performance of the task in hand. We propose to set a scale parameter that is
tailored to one of two types of tasks: classification andmanifold learning. Formanifold
learning, we seek a scale which is best at capturing the manifold’s intrinsic dimension.
For classification, we propose three methods for estimating the scale, which optimize
the classification results in different senses. The proposed frameworks are simulated
on artificial and on real datasets. The results show a high correlation between optimal
classification rates and the estimated scales. Finally, we demonstrate the approach on
a seismic event classification task.

Keywords Dimensionality reduction · Kernel methods · Diffusion maps ·
Classification

1 Introduction

Dimensionality reduction is an essential step in numerous machine learning tasks.
Methods such as Principal Component Analysis (PCA) (Jolliffe 2002), Multidimen-
sional Scaling (MDS) (Kruskal 1977), Isomap (Tenenbaum et al. 2000) and Local
Linear Embedding (Roweis and Saul 2000) aim to extract essential information from
high-dimensional data points based on their pairwise connectivities. Graph-based ker-
nel methods such as Laplacian Eigenmaps (Belkin and Niyogi 2001) and Diffusion
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Maps (DM) (Coifman and Lafon 2006), construct a positive semi-definite kernel based
on the multidimensional data points to recover the underlying structure of the data.
Such methods have been proven effective for tasks such as clustering (Luo 2011),
classification (Lindenbaum et al. 2015), manifold learning (Lin et al. 2006) and many
more.

Kernel methods rely on computing a distance function (usually Euclidean) between
all pairs of data points xi , x j ∈ X ∈ R

D×N and application of a data dependent kernel
function. This kernel should encode the inherited relations between high-dimensional
data points. An example for a kernel that encapsulates the Euclidean distance takes
the form

K(xi , x j ) � K
( ||xi − x j ||2

ε

)
= Ki, j , (1.1)

(where ‖ · ‖ denotes the Euclidean norm). As shown, for example, in Roweis and
Saul (2000), Coifman and Lafon (2006), spectral analysis of such a kernel provides an
efficient representation of the lower (d-) dimensional data (where d � D) embedded
in the ambient space.Devising the kernel towork successfully in such contexts requires
expert knowledge for setting two parameters, namely the scaling ε (Eq. 1.1) and the
inferred dimension d of the low-dimensional space. We focus in this paper on setting
the scale parameter ε, sometimes also called the kernel bandwidth.

The scale parameter is related to the statistics and to the geometry of the data points.
The Euclidean distance, which is often used for learning the geometry of the data, is
meaningful only locally when applied to high-dimensional data points. Therefore, a
proper choice of ε should preserve local connectivities and neglect large distances.
If ε is too large, there is almost no preference for local connections and the kernel
method is reduced essentially to PCA (Lindenbaum et al. 2015). On the other hand,
if ε is too small, the matrix K (Eq. 1.1) has many small off-diagonal elements, which
is an indication of a poor connectivity within the data.

Several studies have proposed different approaches for setting ε. A study by Lafon
et al. (2006) suggests a methodwhich enforces connectivity amongmost data points—
a rather simplemethod, which is nonetheless sensitive to noise and to outliers. The sum
of the kernel is used by Singer et al. (2009) to find a range of valid scales, this method
provides a good starting value but is not fully automated. An approach by Zelnik-
Manor and Perona (2004) sets an adaptive scale for each point, which is applicable for
spectral clustering but might deform the geometry. As a result, there is no guarantee
that the rescaled kernel has real eigenvectors and eigenvalues. Others simply use the
squared standard deviation (mean squared Euclidean distances from the mean) of the
data as ε, this again is very sensitive to noise and to outliers.

Kernel methods are also used for Support Vector Machines (SVMs, Scholkopf and
Smola 2001), where the goal is to find a feature space that best separates given classes.
Methods such as (Gaspar et al. 2012; Staelin 2003) use cross-validation to find the
scale parameter which achieves peak classification results on a given training set. The
study by Campbell et al. (1999) suggests an iterative approach that updates the scale
until reaching maximal separation between classes. Chapelle et al. (2002) relate the
scale parameter to the feature selection problem by using a different scale for each
feature. This framework applies gradient descent to a designated error function to find
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the optimal scales. These methods are good for classification, but require to actually
re-classify the points for testing each scale.

In this paper we propose methods to estimate the scale which do not require the
repeated application of a classifier to the data. Since the value of ε defines the con-
nectivity of the resulted kernel matrix (Eq. 1.1), its value is clearly crucial for the
performance of kernel based methods. Nonetheless, the performance of such meth-
ods depends on the training data and on the optimization problem in hand. Thus, in
principle we cannot define an ’optimal’ scaling parameter value independently of the
data. We therefore focus on developing tools to estimate a scale parameter based on a
given training set. We found that there are almost no simple methods focusing on find-
ing element-wise (rather than one global) scaling parameters dedicated for manifold
learning. Neither are there methods that try to maximize classification performance
without directly applying a classifier. For these reasonswe propose newmethodologies
for setting ε, dedicated either to manifold learning or to classification.

For themanifold learning task,we start by estimating themanifold’s intrinsic dimen-
sion. Then, we introduce a vector of scaling parameters ε = [ε1, ..., εD], such that each
value εi , i = 1, ..., D, rescales each feature. We propose a special greedy algorithm
to find the scaling parameters which best capture the estimated intrinsic dimension.
This approach is analyzed and simulated to demonstrate its advantage.

For the classification task, we propose three methods for finding a scale parameter.
In the first, by extending (Lindenbaum et al. 2016) we seek a scale which provides the
maximal separation between the classes in the extracted low-dimensional space. The
second is based on the eigengap of the kernel. It is justified based on the analysis of
a perturbed kernel. The third method sets the scale which maximizes the within-class
transition probability. This approach does not require to compute an eigendecompo-
sition.

Additionally, we provide new theoretical justifications for the eigengap-based
method, as well as new simulations to support all methods. Interestingly, we also
show empirically that all the three methods converge to a similar scale parameter ε.

The structure of the paper is as follows: Preliminaries are given in Sect. 2. Section 3
presents and analyzes two frameworks for setting the scale parameter: the first is
dedicated to amanifold learning task while the second fits a classification task. Section
4 presents experimental results. Finally, in Sect. 5 we demonstrate the applicability of
the proposed methods for the task of learning seismic parameters from raw seismic
signals.

2 Preliminaries

We begin by providing a brief description of two methods used in this study: A kernel-
basedmethod for dimensionality reduction calledDiffusionMaps (Coifman and Lafon
2006); andDimensionality fromAngle and NormConcentration (DANCo, Ceruti et al.
2014), which estimates the intrinsic dimension of a manifold based on the ambient
high-dimensional data. In the following, vectors and matrices are denoted by bold
letters, and their components are denoted by the respective plain letters, indexed using
subscripts or parentheses.

123



Gaussian bandwidth selection for manifold... 1679

2.1 Diffusionmaps (DM)

DM (Coifman and Lafon 2006) is a nonlinear dimensionality reduction framework
that extracts the intrinsic geometry from a high-dimensional dataset. This framework
is based on the construction of a stochastic matrix from the graph of the data. The
eigendecomposition of the stochastic matrix provides an efficient representation of the
data. Given a high-dimensional dataset X ∈ R

D×N , the DM framework construction
consists of the following steps:

1. A kernel function K : X × X −→ R is chosen, so as to compute a matrix K ∈
R

N×N with elements Ki, j = K(xi , x j ), satisfying the following properties: (i)
Symmetry: K = K T ; (ii) Positive semi-definiteness: K � 0, namely vT Kv ≥ 0
for all v ∈ R

N ; and (iii) Non-negativity: K ≥ 0, namely Ki, j ≥ 0 ∀i, j ∈
{1 . . . N }. These properties guarantee that K has real-valued eigenvectors and
non-negative real-valued eigenvalues.
In this study, we focus on the common choice of a Gaussian kernel (see Eq. 1.1)

K(xi , x j ) � Ki, j = exp

(
−||xi − x j ||2

2ε

)
, i, j ∈ {1 . . . N }, (2.1)

as the affinity measure between two multidimensional data vectors xi and x j ;
Obviously, choosing the kernel function entails the selection of an appropriate
scale ε, which determines the degrees of connectivities expressed by the kernel.

2. By normalizing the rows of K , the row-stochastic matrix

P � D−1K ∈ R
N×N (2.2)

is computed, where D ∈ R
N×N is a diagonal matrix with Di,i = ∑

j Ki, j .
P can be interpreted as the transition probabilities of a (fictitious) Markov chain
on X , such that

[
(P)t

]
i, j � pt (xi , x j ) (where t is an integer power) describes the

implied probability of transition from point xi to point x j in t steps.
3. Spectral decomposition is applied to P , yielding a set of N eigenvalues {λn}

(in descending order) and associated normalized eigenvectors {ψn} satisfying
Pψn = λnψn, n ∈ {0 . . . N − 1};

4. A new representation for the dataset X is defined by

�ε(xi ) : xi 	−→ [
λ1ψ1(i), λ2ψ2(i), λ3ψ3(i), ..., λN−1ψN−1(i)

]T ∈ R
N−1,

(2.3)
where ε is the scale parameter of the Gaussian kernel (Eq. 2.1) and ψm(i) denotes
the i th element ofψm . Note that λ0 = 1 andψ0 = 1were excluded as the constant
eigenvector ψ0 = 1 doesn’t carry information about the data.
Themain idea behind this representation is that theEuclidean distance between two
multidimensional data points in the new representation is equal to the weighted
L2 distance between the conditional probabilities p(xi , :) and p(x j , :), i, j =
1, ..., N , where i and j are the i-th and j-th rows of P . The diffusion distance is
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defined by

D2
ε (xi , x j ) = ||�ε(xi ) − �ε(x j )||2 =

∑
m≥1

λm(ψm(i) − ψm( j))2

= ||p(xi , :) − p(x j , :)||2W−1 , (2.4)

where W is a diagonal matrix with Wi,i = Di,i∑M
i=1 Di,i

. This equality is proved in

Coifman and Lafon (2006).
5. A low-dimensional mapping �d

ε (xi ), i = 1, ..., N is defined by

�d
ε (xi ) : X → [

λ1ψ1(i), λ2ψ2(i), λ3ψ3(i), ..., λdψd(i)
]T ∈ R

d , (2.5)

such that d � D, where λd+1, ..., λN−1 −→ 0.

We chose to use DM in our analysis as it provides an intuitive interpretation based on
its Markovian construction. Nonetheless, the methods in this manuscript could also
be adapted to Laplacian Eigenmaps (Belkin and Niyogi 2001) and to other kernel
methods.

2.2 Intrinsic dimension estimation

Given a high-dimensional dataset X = {x1, x2, ..., xN } ⊆ R
D×N , which describes

an ambient space with a manifold M containing the data points x1, x2, ..., xN , the
intrinsic dimension d̄ is the minimum number of parameters needed to represent the
manifold.

Definition 2.2.1 Let M be a manifold. The intrinsic dimension d̄ of the manifold is
a positive integer determined by how many independent “coordinates” are needed
to describe M. By using a parametrization to describe the manifold, the intrinsic
dimension is the smallest integer d̄ such that there exists a smooth map f (ξ) for all
data points on the manifold M = f (ξ), ξ ⊆ Rd̄ .

Methods proposed by Fukunaga and Olsen (1971) or by Verveer and Duin (1995) use
local or global PCA to estimate the intrinsic dimension d̄. The dimension is set as the
number of eigenvalues greater than some threshold. Others, such as Trunk (1976) or
Pettis et al. (1979), use k-neaserst-neighbors (KNN)distances tofinda subspace around
each point and based on some statistical assumption estimate d̄ . A survey of different
approaches is provided in Camastra (2003). In this study we use Dimensionality from
Angle and Norm Concentration (DANCo, by Ceruti et al. (2014)) based algorithm
(which we observed to be the most robust approach in our experiments) to estimate d̄.

DANCo jointly uses the normalized distances and mutual angles to extract a robust
estimate of d̄. This is done by finding the dimension that minimizes the Kullback-
Leibler divergence between the estimated probability distribution functions (pdf-s)
of artificially-generated data and the observed data. A full description of DANCo is
presented in the “Appendix” of this manuscript. In Sect. 3.2, we propose a framework
which exploits the resulting estimate d̂ of d̄ for choosing the scale parameter ε.
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3 Setting the scale parameter �

DM as described in Sect. 2 is an efficient method for dimensionality reduction. The
method is almost completely automated, and does not require tuning many hyper-
parameters. Nonetheless, its performance is highly dependent on proper choice of ε

(Eq. 1.1), which, along with the decaying property of Gaussian affinity kernel K ,
defines the affinity between all points in X ∈ R

D×N . If the ambient dimension D is
high, the Euclidean distance becomes meaningless once it takes large values. Thus,
a proper choice of ε should preserve local connectivities and neglect large distances.
We argue that there is no one ’optimal’ way for setting the scale parameter; rather, one
should define the scale based on the data and on the task in hand.

In the following subsection we describe several existing method for setting ε. In
Sect. 3.2, we propose a novel algorithm for setting ε in the context of manifold learn-
ing. Finally in Sect. 3.3, we present three methods for setting ε in the context of
classification tasks, so as to optimize the classification performance (in certain senses)
in the low-dimensional space. Our goal is to optimize the scale prior to the application
of the classifier.

3.1 Existingmethods

Several studies propose methods for setting the scale parameter ε. Some choose ε as
the empirical squared standard deviation (mean squared Euclidean deviations from
the empirical mean) of the data. This approach is reasonable when the data is sampled
from a uniform distribution.

A max-min measure is suggested in Lafon et al. (2006) where the scale is set to

εMaxMin = C · max
j

[min
i,i �= j

(||xi − x j ||2)], i, j = 1, ...N , (3.1)

and C ∈ [2, 3]. This approach attempts to set a small scale to maintain local connec-
tivities.

Another scheme (Singer et al. 2009) aims to find a range of values for ε. The idea
is to compute the kernel K from Eq. (2.1) at various values of ε. Then, search for the
range of values which give rise to a well-pronounced Gaussian bell shape. The scheme
in Singer et al. (2009) is implemented using Algorithm 3.1.

Algorithm 3.1: ε range selection

Input: dataset X = {x1, x2, . . . , xN }, xi ∈ R
D .

Output: Range of values for the scale ε, ε̄ = [ε0, ε1].

1: Compute Gaussian kernels K (ε) for several values of ε.
2: Compute: L(ε) = ∑

i

∑
j
Ki, j (ε) (Eq. 2.1).

3: Plot a logarithmic plot of L(ε) (vs. ε).
4: Set ε̄ = [ε0, ε1] as the maximal linear range of L(ε).
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Note that L(ε) consists of two asymptotes, L(ε)
ε→0−→ log(N ) and L(ε)

ε→∞−→
log(N 2) = 2log(N ), since when ε → 0, K (Eq. 2.1) approaches the Identity matrix,
whereas for ε → ∞, K approaches an all-ones matrix. We denote by ε0 the minimal
valuewithin the range ε̄ (defined inAlgorithm3.1). This value is used in the simulations
presented in Sect. 4.

A dynamic scale is proposed in Zelnik-Manor and Perona (2004), suggesting to
calculate a local-scale σi for each data point xi , i = 1, ..., N . The scale is chosen
using the L1 distance from the r -th nearest neighbor of the point xi . Explicitly, the
calculation for each point is

σi = ||xi − xr ||, i = 1, ..., N , (3.2)

where xr is the r -th nearest (Euclidean) neighbor of the point xi . The value of the
kernel for points xi and x j is

K(xi , x j ) � Ki, j = exp

(
−||xi − x j ||2

σiσ j

)
, i, j ∈ {1 . . . N }. (3.3)

This dynamic scale guarantees that at least half of the points are connected to r
neighbors.

All the methods mentioned above treat ε as a scalar. Thus, when data is sampled
from various types of sensors these methods may be dominated by the features (vector
elements) with highest energy (or variance). In such cases, each feature � = 1, .., D,

in a data vector xi [�] may require a different scale. In order to re-scale the vector,
a diagonal D × D positive-definite (PD) scaling matrix A  0 is introduced. The
rescaling of the feature vector xi is set as x̂i = Axi , 1 ≤ i ≤ N . The kernel matrix is
rewritten as

Ki, j = K (
x̂i , x̂ j

) = exp

(
− 1

2ε
‖x̂i − x̂ j‖2

)

= exp

(
− 1

2ε

(
xi − x j

)T AT A
(
xi − x j

))
. (3.4)

A standard way to set the scaling elements A�,� is to use the empirical standard
deviation of the respective elements and then set ε = εstd � 1. More specifically,

A�,� =
√√√√ 1

N

N∑
i=1

(xi (�) − μ�)
2, μ� � 1

N

N∑
i=1

xi (�) � = 1, ..., D, ε = εstd = 1.

(3.5)

3.2 Setting� for manifold learning

In this subsection we propose a framework for setting the scale parameter ε when the
dataset X has some low-dimensional manifold structure M. We start by revisiting
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an analysis from (Coifman et al. 2008; Hein and Audibert 2005), which relate the
scale parameter ε to the intrinsic dimension d̄ (Definition 2.2.1) of the manifold. In
Coifman et al. (2008) a range of valid values is suggested for ε, here we expand the
results from (Coifman et al. 2008; Hein and Audibert 2005) by introducing a diagonal
PD scaling matrix A (as used in Eq. 3.4). This diagonal matrix enables a feature
selection procedure which emphasizes the latent structure of the manifold.

Let K (ε) ∈ R
N×N , A ∈ R

D×D be the kernel matrix and diagonal PDmatrix (resp.)
from Eq. (3.4). By taking the double sum of all elements in Eq. (3.4), we get

S(ε) �
∑
i, j

Ki, j (ε) =
∑
i, j

exp

(
− 1

2ε

(
xi − x j

)T AT A
(
xi − x j

))
. (3.6)

By assuming that the data points in X are independently uniformly distributed over
the manifold M, this sum can be approximated using the mean value theorem as

S(ε) ≈ N 2

Vol2 (M)

∫
M

∫
M

exp

(
− 1

2ε
‖ y′ − y‖2

)
d y′d y, (3.7)

where Vol (M) �
∫
M d y is the (weighted) volume of the d̄-dimensional manifold

M, with d y, d y′ being infinitesimal parallelograms on the manifold, carrying the
dependence on A (see Moser 1965 for a more detailed discussion). When ε is suffi-
ciently small, the integrand in the internal integral in Eq. (3.7) takes non-negligible
values only when y′ is close to the hyperplane tangent to the manifold at y. Thus,
the integration over y′ within a small patch around each y can be approximated by
integration in Rd̄ , so that

S(ε) ≈ N 2

Vol2 (M)

∫
M

∫
Rd̄

exp

(
− 1

2ε
‖ y − t‖2

)
dtd y, (3.8)

where d̄ is the intrinsic dimension ofM and t is a d̄-dimensional vector of coordinates
on the tangent plane.

The integral in Eq. (3.8) has a closed-form solution (the internal integral yields
(2πε)d̄/2, so that the outer integral yields (2πε)d̄/2 Vol(M) ), and we therefore obtain
the relation

S (ε) =
∑
i, j

exp
(−ri, j (A)/2ε

) ≈ N 2 (2πε)d̄/2

Vol (M)
, (3.9)

where we have used ri, j (A) �
(
xi − x j

)T AT A
(
xi − x j

)
for shorthand.

The key observation behind our suggested selection of A and ε, is that due to the
approximation in Eq. (3.9), an “implied” intrinsic dimension dε(A) can be obtained

123



1684 O. Lindenbaum et al.

for different selections of A and ε as follows. Taking the log of Eq. (3.9) we have

log S (ε) = log

⎛
⎝∑

i, j

exp
(−ri, j (A)/2ε

)⎞⎠ ≈ d̄

2
log (ε) + log

(
N 2 (2π)d̄/2

Vol (M)

)
.

(3.10)
Differentiating w.r.t. ε we obtain

∂ log S(ε)

∂ε
=

∑
i, j ri, j (A) exp

(−ri, j (A)/2ε
)

2ε2
∑

i, j exp
(−ri, j (A)/ 1

2ε

) ≈ d̄

2ε
, (3.11)

leading to the “implied” dimension

dε(A) ≈
∑

i, j ri, j (A) exp
(−ri, j (A)/2ε

)
ε
∑

i, j exp
(−ri, j (A)/2ε

) . (3.12)

We propose to choose the scaling so as to minimize the difference between the esti-
mated dimension d̂ (see Sect. 2.2) and the implied dimension dε(A). We therefore set
A (and ε) based on solving the following optimization problem

A = argmin
A,ε

|dε(A) − d̂| s.t. A is diagonal and PD, ε > 0. (3.13)

We note that this minimization problem has one degree of freedom, which can be
resolved, e.g., by arbitrarily setting A1,1 = 1 (see Algorithm 3.2 below). When work-
ing in a sufficently small ambient dimension D, the minimizaion can be solved using
an exhaustive search (e.g., on some pre-defined grid of scaling values). However, for
large D an exhaustive search may become unfeasible in practice, so we propose a
greedy algorithm, outlined below as Algorithm 3.2, for computing both the scaling
matrix A and the scale parameter ε.

Algorithm 3.2: Manifold Based Vector Scaling

Input: dataset: X = {x1, x2, ..., xN } ∈ R
D×N .

Intrinsic dimension estimate: d̂ (optional).
Output: Normalized dataset X̂
1: if isempty(d̂) then
2: Apply DANCo Ceruti et al. (2014) to X to estimate d̂ (description in Appendix).
3: end if

4: Set X̂(d̂) =
(
X1:d̂,: − mean(X1:d̂,:)

)
./std(X1:d̂,:).

5: for � = d̂ + 1 to D do
6: Construct X̂(�) � [X̂(�−1); X�,:]
7: Find A�,� > 0 and ε > 0 minimizing |dε(A) − d̂|, where A ∈ R

�×� is an identity matrix with its

(�, �)-th element (only) replaced by A�,�, and where ri, j (A) in Eq. (3.12) operates on X̂(�)

8: Update X̂(�) = [X̂(�−1); X�,: · A�,�]/√ε

9: end for
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The proposed algorithm (Algorithm 3.2) operates by iteratively constructing the
normalized dataset X̂ � AX/

√
ε row by row. To this end, the algorithm is first

initialized by normalizing the first d̂ rows (coordinates) using their empirical standard
deviations (note that the estimated (or known) intrinsic dimension d̂ is either provided
as an input or estimated using DANCo Ceruti et al. (2014)). Then, in the �-th iteration
(� = d̂ + 1, . . . D) only the scaling factor A�,� for the next (�-th) row of X and a new
overall scaling ε are found, using a (two-dimensional) exhaustive search. The resulting
A�,� is then applied to the �-th row, and the entire � × N data block is normalized by√

ε before the next iteration.
The computational complexity of this algorithm with k hypotheses of ε and Al,l

for each iteration is O
(
N 2kD

)
, since N 2 operations are required in the computation

of a single scaling hypothesis, and this is required for each coordinate d = 1, ..., D.
Due to the greedy nature of the algorithm, its performance depends on the order

of the D features. We further propose to reorder the features using a soft feature-
selection procedure. The studies in Cohen et al. (2002), Lu et al. (2007), Song et al.
(2010) suggest an unsupervised feature selection procedure based on PCA. The idea
is to use the features which are most correlated with the top principle components.
We propose an algorithm for reordering the features based on their correlation with
the leading coordinates of the DM embedding. The algorithm (Algorithm 3.3 below)
is called Correlation Based Feature Permutation (CBFP), and uses the correlation
between the D features and d̂ embedding coordinates. This correlation value provides
a natural measure for the influence of each feature on the extracted embedding.

Algorithm 3.3: Correlation Based Feature Permutation (CBFP)

Input: dataset: X = {x1, x2, ..., xN } ∈ R
D×N .

Intrinsic dimension estimate: d̂ (optional).
Output: Feature permutation vector j , such that j = σ([1, ..., D]) and σ() is a permutation

operation.
1: if isempty(d̂) then
2: Apply DANCo Ceruti et al. (2014) to X to estimate d̂ (described in the Appendix).
3: end if
4: Compute εMaxMin based on Eq. (3.1).

5: Using εMaxMin for the kernel scaling, compute DM representation � d̂ using Eq. (2.5).
6: Compute a vector c ∈ R

D of the feature-embedding correlation scores, defined as

ci �
d̂∑

�=1

|corr(X i,:, � d̂
�,:)|, i = 1, ..., D, (3.14)

where corr(·, ·) denotes the correlation coefficient between its two vector agruments.
7: Set [v, j ] = sort(c), where v, j are the sorted values and corresponding indices of c.
8: Reorder the D features by ˜X = X( j , :).

Some remarks on the uniform distribution and finite sample assumptions: The
derivation in Eq. (3.7) is based on the assumption that the distribution of X is uniform.
If the density is not uniform, consider a measure μ with probability density μ(x). The
integration in Eqs. (3.7) and (3.8) should be with respect to μ(x). This will change
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the result in Eq. (3.9) and in the algorithm that follows. In Hein and Audibert (2005),
the authors show that under certain assumptions on μ(x) the integral in Eq. (3.9) can
still be used to approximate the intrinsic dimension d̄ .

The approximations in Eqs. (3.7) and (3.9) are unbiased for proper choices of N
and ε. As shown in Hein and Audibert (2005), the bias error in Eq. (3.9) is propor-
tional to ε2C(M), where C(M) is the curvature of the manifold. This means that ε

should be sufficiently small for this term to vanish; However, due to the finite sample
approximation of the integral, ε should not be too small, since the variance term is
proportional to 1

Nεd̄
. This quantity could be used to validate the scaling parameter

estimated by Algorithm 3.2. In practice, a proper range of scales ε, can be validated
by evaluating the slope of log S(ε) (see Eq. 3.9). If the slope of log S(ε) as a function
of ε appears linear, this indicates that the approximation holds, and the bias and the
variance errors are negligible.

In Sect. 4.1 below, we evaluate the performance of Algorithms 3.2 and 3.3 when
applied to synthetic data embedded in artificial manifolds.

3.3 Setting� for classification

Classification algorithms use a metric space and an induced distance to compute the
category of unlabeled data points. Dimensionality reduction is effective for capturing
the essential intrinsic geometry of the data and neglecting the undesired information
(such as noise). Therefore, dimensionality reduction can drastically improve classifica-
tion results (Lindenbaum et al. 2015). As previously mentioned, ε playes a crucial role
in the performance of kernel methods for dimensionality reduction. Various methods
have been proposed for finding a scale ε that would potentially optimize classification
performance.

Studies such as by Gaspar et al. (2012) and by Staelin (2003) use a cross-validation
procedure and select the scale ε that maximizes the performance on the validation data.
In Chapelle et al. (2002) apply gradient descent to a classification-error function to find
an ’optimal’ scale ε. Although these methods share our goal, they require performing
classification on a validation set for selecting the scale parameter. To the best of our
knowledge, the only method that estimates the scale without using a validation set was
proposed by Campbell et al. (1999), where for binary classificationit was suggested to
use the scale thatmaximizes themargin between the support vectors. The authors show
empirically that their suggested value correlates with peak classification performance
on a validation set.

In this subsectionwe focus onDMfor dimensionality reduction and demonstrate the
influence of the scale parameter ε on classification performance in the low-dimensional
space. The contribution in this section is threefold:

• We use the Davis-Kahan theorem to analyze a perturbed version of ideally sep-
arated classes. This allows us to optimize the choice of ε merely based on the
eigengap of the perturbed kernel.

• Based on our study in Lindenbaum et al. (2015), we present an intuitive geometric
metric to evaluate the separation in a multi-class setting. We show empirically that
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Fig. 1 A schematic of the three proposed methods for estimated ε dedicated for classification. Given an
input X we use range of hypothesis ε̄. a The first two dimensions of high-dimensional Gaussian classes. b
The probabilistic approach- the scale is estimated based on modified transition matrices. c The geometric
approach- the scale is estimated based on the geometry of the embedding. d The spectral approach- the
scale is estimated based on a generalized eigengap computed for each scale within the hypothesis range

the scale which maximizes the ratio between class separation and the average class
spread also optimizes classification performance.

• Finally, to reduce the computational complexity involved in the spectral decom-
position of the affinity kernel, we present a heuristic that allows to estimate the
scale parameter based on the stochastic version of the affinity kernel.

Next, we develop tools to estimate a scale parameter based on a given training set.
The training set denoted as T ⊂ R

D×N consists of NC classes. The classes are denoted
by C1, ...,CNC . In this study we focus on the balanced setting, where the number of
samples in each class is NP , thus the total number of data points is N = NPNC . We
use a scalar scaling factor ε. However, the analysis provided in this subsection could
be expanded to a vector scaling (namely, to the use of a diagonal PD scaling matrix)
in a straightforward way (Fig. 1).

3.3.1 The geometric approach

The following approach for setting ε is based on the geometry of the extracted embed-
ding. The idea is to extract low-dimensional representations for a range of candidate
ε’s. Then choose ε whichmaximizes the among-classes towithin-class variances ratio.
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In other words, choose a scale such that the classes are dense and far apart from each
other in the resulting low-dimensional embedding space. This is done by maximizing
the ratio between the inter-class variance and the sum of intera-class variances. We
have explored a similar approach for an audio based classification task in Lindenbaum
et al. (2015). This geometric approach is implemented using the following steps:

1. Compute DM-based embeddings �d
ε (xn), n = 1, ..., N , (Eq. 2.5) for various

candidate-values of ε.
2. Denote by μi the center of mass for class C i , i = 1, ..., NC , and by μa the center

of mass for all the data points. Allμi andμa are computed in the low-dimensional
DM-based embedding �d

ε (xn) - see step 1.
3. For each class C i , the average square distance (in the embedding space) is com-

puted for the NP data points from the center of mass μi such that

Dci = 1

NP

∑
xn∈C i

||�d
ε (xn) − μi ||2, i = 1, ..., NC . (3.15)

4. The same measure is computed for all data points such that

Da = 1

N

∑
xn∈X

||�d
ε (xn) − μa ||2. (3.16)

5. Define

ρ� � Da

NC∑
i=1

Dci

. (3.17)

6. Choose ε which maximizes ρ�

ερ� = argmax
ε

ρ�. (3.18)

The idea is that ερ� (Eq. 3.18) inherits the inner structure of the classes and neglects
the mutual structure. In Sect. 4.2, we describe experiments that empirically evaluate
the influence of ε on the performance of classification algorithms. We note, however,
that this approach requires an eigendecomposition computation for each ε, thus, its
computational complexity is of order of O(N 2d) (d being the number of required
eigenvectors).

3.3.2 The spectral approach

In this subsection, we analyze the relation between the spectral properties of the
kernel and its corresponding low-dimensional representation. We start the analysis by
constructing an ideal training set, with well separated classes. Then, we add a small
perturbation to the training set and compute the perturbed affinity matrix K . Based on
the spectral properties of the perturbed kernel we suggest a scaling ε to capture the
essential information for class separation.
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The Ideal Case: We begin the discussion by considering an ideal classification
setting, in which the NC classes are assumed to be well-separated in the ambient
space X (a similar setting for spectral clustering was described in Ng et al. (2002)).
The separation is formulated using the following definitions:

1. The Euclidean gap is defined as

DGap(X) � min
xi∈C�,x j∈Cm

�,m=1,...,NC , � �=m

||xi − x j ||2. (3.19)

This is the Euclidean distance between the two closest data points belonging to
two different classes.

2. The maximal class width is defined as

DClass(X) � max
xi ,x j∈C�

�=1,...,NC

||xi − x j ||2. (3.20)

This is the maximal Euclidean distance between two data points belonging to the
same class.

We assume that DClass � DGap such that the classes are well separated. Using this
assumption and the decaying property of the Gaussian kernel, the matrix K (Eq. 2.1)
converges to the following block form

K̄ =

⎡
⎢⎢⎣
K (1) 0 ... 0
0 K (2) ... 0
: : : :
0 0 ... K (NC )

⎤
⎥⎥⎦ , P̄ = D̄

−1
K̄ , P̄ =

⎡
⎢⎢⎣
P (1) 0 ... 0
0 P (2) ... 0
: : : :
0 0 ... P (NC )

⎤
⎥⎥⎦ , (3.21)

where D̄i,i = ∑
j
K̄i, j . For the ideal case, we further assume that the elements of

K (i), i = 1, ..., NP , are non-zeros because ε ∼ DClass and the classes are connected.

Proposition 3.3.1 Assume that DClass � DGap, then, the matrix P̄ (Eq. 3.21) has an
eigenvalue λ = 1 with multiplicity NC . Furthermore, the first NC coordinates of the
DM mapping (Eq. 2.3) are piecewise constant. The explicit form of the first nontrivial
eigenvector ψ1 is given by

ψ1 = [1, ..., 1︸ ︷︷ ︸
NP 1’s

, 0, ..., 0︸ ︷︷ ︸
N−NP 0’s

]T /
√
NP .

The eigenvectors ψ i , i = 2, ..., NC have the same structure but cyclically shifted to
the right by (i − 1) · NP bins.
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Proof Recall that P̄ = D̄
−1

K̄ (row-stochastic). Due to the special block structure of
K̄ (Eq. 3.21), each block P (i), i = 1, ..., NP , is row stochastic. Thus,

ψ i = [ 0, ..., 0︸ ︷︷ ︸
(i−1)·NP 0’s

1, ..., 1︸ ︷︷ ︸
NP 1’s

, 0, ..., 0︸ ︷︷ ︸
N−i ·NP 0’s

]T /
√
NP .

Each eigenvector ψ i , i = 1, .., Np consists of a block of 1-s at the row indices
that correspond to P (i) (Eq. 3.21), padded with zeros. ψ i is the right eigenvector
(1 · ψ i = P̄ · ψ i ), with the eigenvalue λ = 1. We now have an eigenvalue λ = 1 with
multiplicity NP and piecewise constant eigenvectors denoted as ψ i , i = 1, ..., NP . ��
Each data point xi ∈ C�, � = 1, ..., NC , corresponds to a row within the respective
sub-matrix P (�). Therefore, using �

NC
ε (T ) = [1 · ψ1, ..., 1 · ψNC

]T as the low-
dimensional representation of T , all the data points from within a class are mapped to
a point in the embedding space.

Corollary 3.3.1 Using the first NC eigenvectors of P̄ (Eq. 3.21) as a representation for
T such that �NC

ε (T ) = [1 · ψ1, ..., 1 · ψNC
]T yields that the distances DGap(�

NC
ε ) =

2 and DClass(�
NC
ε ) = 0 (defined in Eqs. (3.19) and (3.20), respectively).

Proof Based on the representation in Proposition 3.3.1 along with Eq. (3.19), we get

DGap(�
NC
ε ) = min

xi∈C�,x j∈Cm
�,m=1,...,NC , � �=m

||�NC
ε (xi ) − �NC

ε (x j )||2 =
NC∑
r=1

λr · (ψr (i) − ψr ( j))
2

= 1 · (1 − 0)2 + 1 · (0 − 1)2 +
NC∑
r=3

1 · (0 − 0)2 = 2. (3.22)

In a similar manner, we get by Eq. (3.20)

DClass(�
NC
ε ) = max

xi ,x j∈C�

�=1,...,NC

||�NC
ε (xi ) − �NC

ε (x j )||2 =
NC∑
r=1

λr · (ψr (i) − ψr ( j))
2

= 1 · (0 − 0)2 + 1 · (1 − 1)2 +
NC∑
r=3

1 · (0 − 0)2 = 0. (3.23)

��
Corollary 3.3.1 implies that we can compute an efficient representation for the NC

classes. We denote this representation by �̄
NC
ε = [ψ1,ψ2, ...,ψNC

].
The Perturbed Case In real datasets, we cannot expect that the off block-diagonal
elements of the affinity matrix K would be zero. The data points from different
classes in real datasets are not completely disconnected, and we can assume they
areweakly connected. This lowconnectivity implies that off-block-diagonal values
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of K are non-zeros. We analyze this more realistic scenario by assuming that K is
a perturbed version of the “Ideal” block form of K̄ . Perturbation theory addresses
the question of how a small change in amatrix relates to a change in its eigenvalues
and eigenvectors. In the perturbed case, the off-block-diagonal terms are non-zeros
and the obtained (perturbed) matrix K̃ takes the form

K̃ = K̄ + Ŵ , (3.24)

where Ŵ is assumed to be a symmetrical small perturbation of the form

Ŵ =

⎡
⎢⎢⎣

−W (1,1) W (1,2) ... W (1,NC )

W (2,1) −W (2,2) ... W (2,NC )

: : : :
W (NC ,1) W (NC ,2) ... −W (NC ,NC )

⎤
⎥⎥⎦ ,W (�,m) = W (m,�), �,m = 1, ..., NC .

(3.25)
The analysis of the “Ideal case” has provided an efficient representation for clas-
sification tasks as described in Proposition 3.3.1. We propose to choose the scale
parameter ε such that the extracted representation based on K̄ (Eq. 3.21) is similar
to the extracted representation using K̃ (Eq. 3.24). For this purpose we use the
following theorem.

Theorem 3.1 (Davis-Kahan) Stewart (1990) Let Ā and B̂ be Hermitian matrices of
the same dimensions, and let Ã � Ā+ B̂ be a perturbed version of Ā. Set an interval
S, denote the eigenvalues within S as λS( Ā) and λS( Ã) with a corresponding set of
eigenvectors V̄ 1 and Ṽ 1 for Ā and Ã, respectively. Define δ as

δ � min{|λ( Ã) − s|; λ( Ã) /∈ S, s ∈ S}. (3.26)

Then the distance

d(V̄ 1, Ṽ 1) �
∥∥sin

(
V̄ 1, Ṽ 1

)∥∥
F ≤ 1

δ

∥∥B̂∥∥
F , (3.27)

where
(
V̄ 1, Ṽ 1

)
is a diagonal matrix with the principal angles on the diagonal, and

‖ · ‖F denotes the Frobenius norm.

In other words, the theorem states that the eigenspace spanned by the perturbed kernel
K̃ is similar, to some extent, to the eigenspace spanned by the ideal kernel K̄ . The
distance between these eigenspaces is bounded by 1

δ
‖Ŵ‖F . Theorem 3.2 provides a

measure which helps to minimize the distance between the ideal representation �̄
NC
ε

(proposition 3.3.1) and the realistic (perturbed) representation �̃
NC
ε .

Theorem 3.2 The distance between �̄
NC
ε ∈ R

NC and �̃
NC
ε ∈ R

NC in the DM repre-
sentations based on the matrices P̄ and P̃ , respectively, is bounded such that

d
(
�̄

NC
ε , �̃

NC
ε

)
=

∥∥∥sin
(
�̄

NC
ε , �̃

NC
ε

)∥∥∥
F

≤ ||Ŵ ||F || D̄−1/2||2F
λ̃NC − λ̃NC+1

, (3.28)
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where Ŵ is the perturbation matrix defined in Eq. (3.24) and D̄ is a diagonal matrix
whose elements are the sums of rows D̄i,i = ∑

j K̄i, j .

Proof Define Ā � D̄
−1/2

K̄ D̄
−1/2 = D̄

1/2
P̄ D̄

−1/2
. Based on Eq. (3.24), we have

Ã = Ā + D̄
−1/2

Ŵ D̄
−1/2

. (3.29)

We are now ready to use Theorem 3.1. Assume that the eigenvalues {λ̄i } of Ā and {̃λi }
of Ã are ordered in descending order, and set S = [λ( Ã)NC , 1], denoting the first NC

eigenvectors of Ā and of Ã as V̄ 1 and Ṽ 1, respectively. Obviously, by construction
we have λ̃i ∈ S, i = 1, ..., NC . Based on the analysis of the “ideal” matrix P̄ , we
know that its first NC eigenvalues are equal to 1. Noting that Ā is algebraically similar
to P̄ , they have the same eigenvalues, implying that λ̄i ∈ S, i = 1..., NC , as well.
Using the definition of δ from Eq. (3.26), we conclude that δ = λ̃NC − λ̃NC+1. Setting

Ā � D̄
−1/2

K̄ D̄
−1/2

and ̂B = D̄
−1/2

Ŵ D̄
−1/2

, the Davis-Kahan Theorem 3.1 asserts
that the distance between the eigenspaces V̄ 1 and ˜V 1 is bounded such that

d
(
�̄

NC
ε , �̃

NC
ε

)
=

∥∥∥sin
(
�̄

NC
ε , �̃

NC
ε

)∥∥∥
F

≤ ||Ŵ ||F || D̄−1/2||2F
λ̃NC − λ̃NC+1

, (3.30)

The eigen-decomposition of Ā is written as Ā = V̄ �̄V̄
T
. Note that P̄ =

D̄
−1/2

Ā D̄
1/2

which means that the eigen-decomposition of P̄ could be written as

P̄ = D̄
−1/2

V̄ �̄V̄
T
D̄
1/2

and the right eigenvectors of P̄ are �̄ = D̄
−1/2

V̄ . Using the
same argument for ˜A and choosing the eigenspaces using the first NC eigenvectors,

we get that decreasing the term d(V̄ 1, Ṽ 1) also decreases d(�̄
NC
ε , �̃

NC
ε ). ��

Assumption 1 The perturbation matrix Ŵ (Eq. 3.24) changes only slightly over the
range of values of ε ∈ (DClass, DGap).
Explanation For two data points xi , x j from different classes xi ∈ C�, x j ∈ Cm, � �=
m and ε ∼ DClass, the values of Ŵ i, j � 1. The decaying property of the Gaussian
kernel provides a range of values for ε ∼ DClass such that the perturbation matrix Ŵ
is indeed small. In Sect. 4.2 below we evaluate this assumption using a mixture of
Gaussians.

Corollary 3.3.2 Given NC classes under the perturbation assumption and assump-
tion 1, the generalized eigengap is defined as Ge = |̃λNC − λ̃NC+1|. The scale
parameter ε, which maximizes Ge

εGe = argmax
ε

(Ge) = argmax
ε

(̃λNC − λ̃NC+1) (3.31)
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provides the best class separation using an NC coordinates embedding (�̃
NC
ε ).

This approach also requires computing an eigendecomposition for each ε value, thus,
its computational complexity is of the order of O(N 2NC ).

3.3.3 The probabilistic approach

We introduce here notations from graph theory to compute a measure of the class
separation based on the stochastic matrix P (Eq. 2.2). Based on the values of the
matrix P , a Cut (Shi and Malik 2000) is defined for any two subsets A, B ⊂ T

cut(A, B) =
∑

xi∈A,x j∈B

Pi, j . (3.32)

Given NC classes C1,C2,C3, ...,CNC ⊂ T , we define the Classification Cut by the
following measure

Ccut(C1, ...,CNC ) =
∑NC

�=1 cut(C�,C�)

N
. (3.33)

In clustering problems, a partition is searched such that the normalized version of the
cut is minimized (Dhillon et al. 2004; Ding et al. 2005). We use this intuition for a
more relaxed classification problem.

We first define a Generalized cut using the following matrix

P̂i, j �
{
Pi, j , if i �= j

0, otherwise
. (3.34)

Based on P̂ (which carries the dependence on ε), the Generalized cut is then defined
as

Gcut(A, B) �
∑

xi∈A,x j∈B

P̂i, j . (3.35)

The idea is to remove the probability of “staying” at a specific node from the within-
class transition probability. Now let

ρP � GCcut(C1, ...,CNC ) � 1

N

NC∑
�=1

Gcut(C�,C�). (3.36)

We search for ε which maximizes ρP , namely

ερP = argmax
ε

(ρP ). (3.37)

By the stochastic model, the implied probability of transition between point xi and
point x j is equal to p(xi , x j ) = Pi, j , therefore by maximizing ρP , the sum of within-
class transition probabilities is maximized. Based on the definition of the diffusion
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distance (Eq. 2.4), this implies that the within-class diffusion distance would be small,
followed by a small Euclidean distance in the DM space. The heuristic approach
entailed in Eq. (3.37) provides yet another criterion for setting a scale parameter which
captures the geometry of the given classes. This approach does not require computing
an eigendecomposition for each candidate ε value, thus, its computational complexity
is of order of O(N 2).

4 Experimental results

In this section we provide some experimental results, showing and comparing the
different approaches (outlined in the previous section) in their respective contexts. We
begin by demonstrating our proposed manifold-based scaling in Sect. 4.1, and then
demonstrate the classification-based scaling approaches in Sect. 4.2.

4.1 Manifold learning

In this subsection we evaluate the performance of the proposed manifold-based
approach by embedding a low-dimensional manifold which lies in a high-dimensional
space. We consider two datasets: A synthetic set and a set based on an image taken
from the MNIST database.

4.1.1 A synthetic dataset

The first experiment is constructed by projecting a 3-dimensional synthetic mani-
fold into a high-dimensional space, then concatenating it with Gaussian noise. Data
generation is done according to the following steps:

• First, a 3-dimensional Swiss Roll is constructed based on the following function

yi =
⎡
⎣yi (1)
yi (2)
yi (3)

⎤
⎦ =

⎡
⎣6θi cos(θi )hi
6θi sin(θi )

⎤
⎦ , i = 1, ..., N , (4.1)

where θi , hi (i = 1, ..., N ), are drawn from Uniform distributions within the
intervals [ 3·π2 , 9·π

2 ], [0, 100], respectively. In our experiment we chose N = 2000.
• We project the Swiss roll into a high-dimensional space by multiplying the data
by a random matrix NT ∈ RD1×3, D1 > 3. The elements of NT are drawn from
a Gaussian distribution with zero mean and variance of σ 2

T .• Finally, we augment the projected Swiss Roll with a vector of Gaussian noise,
obtaining

xi =
[
NT · yi

n1i

]
, i = 1, ..., N , (4.2)

where each component of n1i ∈ R
D2 , i = 1, ..., 2000, is an independent Gaussian

variable with zero mean and variance of σ 2
N .
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Fig. 2 Left: “clean” Swiss Roll (Y in Eq. (4.1). Right: 3 coordinates of the projected Swiss Roll (X in Eq.
(4.2)). Both figures are colored by the value of the underlying parameter θi , i = 1, ..., 2000 (Eq. 4.1)

Fig. 3 Extracted DM-based embedding of the “noisy” Swiss roll using different methods for choosing the
scale parameter ε. Top left: standard deviation scalings, the matrix A and scaling εstd are computed by Eq.
(3.5). Top right: the ε0 scaling, the calculation of ε0 is described in Alg. (3.1) and Singer et al. (2009).
Mid left: the MaxMin scaling, the value εMaxMin is defined by Eq. (3.1). Mid right: KNN based scaling
(Zelnik-Manor and Perona 2004). Bottom left: the proposed scaling ε̂, Â which is described in Alg. (3.2).
Bottom right: scaling based on ε0 as described in Algorithm (3.1) and Singer et al. (2009) applied to the
clean Swiss roll Y that is defined by Eq. (4.1)

We define the datasets Y = [ y1, ..., yN ] ∈ R
3×N and X = [x1, ..., xN ] ∈

R
(D1+D2)×N

To evaluate the proposed framework, we apply Algorithm 3.1 followed by Algo-
rithm 3.2, and extract a low-dimensional embedding (Fig. 2).

Different high-dimensional datasets X were generated using various values of σN ,
σNT , D1 and D2. DM is applied to each X using:

• The standard deviation normalization as defined in Eq. (3.5).
• The ε0 scale, which is described in 3.1 and in Singer et al. (2009).
• The MaxMin scale, as defined in Eq. (3.1) and in Lafon et al. (2006).
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Fig. 4 The mean square error of the extracted embedding. A comparison between the proposed normaliza-
tion and alternative methods which are detailed in Sect. 3

• The KNN based scaling (Zelnik-Manor and Perona 2004).
• The proposed scale parameters A, ε, obtained using Algorithm 3.2.

The extracted embedding is compared to the embedding extracted from the clean Swiss
roll Y defined in Eq. (4.1).

Each embedding is computed using an eigendecomposition, therefore, the embed-
ding’s coordinates could be the same up to scaling and rotation. To overcome this
ambiguity, we search for an optimal translation and rotation matrix of the following
form

�̄ε(X) = R · �ε(X) + T , (4.3)

where R is the rotation matrix and T is the translation matrix, which minimizes the
mis-match error

err = ||�̄ε(X) − �ε(Y)||2F , (4.4)

defined as the sum of square distances between values of the clean mapping �ε(Y)

and the “aligned” mapping �̄ε(X). We repeat the experiment 40 times and compute
the empirical Mean Square error in the embedding space defined as

MSE = 1

N

N∑
i=1

(�ε( yi ) − �̄ε(xi ))2. (4.5)

An example of the extracted embedding based on all the different methods is presented
in Fig. 3, followed by the MSE in Fig. 4. It is evident that Algorithm 3.2 is able to
extract a more precise embedding than the alternative scaling schemes. The strength
of Algorithm 3.2 is that it emphasizes the coordinates which are essential for the
embedding and neglects the coordinates which were contaminated by noise.
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4.1.2 MNIST manifold

In the following experiment, we create an artificial low-dimensional manifold by
rotating a handwritten image of a digit. First, we rotate the handwritten digit ‘6’ from
MNIST dataset by N = 320 angles that are uniformly sampled over [0, 2π ]. Next, we
add random zero-mean Gaussian noise with a variance of σ 2

N independently to each
pixel. An example of the original and noisy version of the handwritten ‘6’ are shown
in Fig. 5. Note that the values of the original image are in the range [0, 1]. In order to
capture the circular structure of the manifold we apply DM to the rotated images. An
example of the expected circular structure extracted by DM is depicted in Fig. 5.

We apply the different scaling schemes to the noisy images and extract a 2-
dimensional DM-based embedding. For the vectorized scaling schemes (proposed
and standard deviation approach) we apply the scalings to the top 50 principle com-
ponents. This allows us to reduce the computational complexity, as the dimension of
the feature space is reduced from 784 to 50. In this experiment we further compare
to two additional local scaling schemes. The first (Vasiloglou et al. 2006), which we
refer to as Harmonic, and the second, presented in Taseska et al. (2019), which we
refer to as LocalDM.

To evaluate the performance of the different scaling schemes, we propose the
following metric to compare the extracted embedding to a perfect circle. Given a
2-dimensional representation �ε(X), we use a polar transformation to evaluate the
implied radius at each point. The squared radius is defined by r2i = (�1

ε(xi ))
2 +

(�2
ε(xi ))

2. Next, we normalize the radius values by their empirical mean, such that
r̂i = ri

μr
, and μr is the empirical mean of the radii μr = ∑

i
ri
N . Finally, we compute

the empirical variance of the normalized radius r̂ . Explicitly, this value is computed

by σ 2
r̂ =

∑
i (r̂i−1)2

N . A scatter plot of σ 2
r̂ vs. the variance of the additive noise σ 2

N is
presented in Fig. 6. As evident in this figure, up to a certain variance of the noise, the
proposed scaling scheme suppresses the noise and captures the correct circular struc-
ture of the data. At some level of noise our method breaks. It seems that the standard
deviation and Singer’s approach also break at a similar noise level. An explanation for
this phenomenon could be that at the lower SNRs all these methods start to “amplify”
the noise, rather than the signal.

4.2 Classification

In this subsection we provide empirical support for the theoretical analysis from
Sect. (3.3). We evaluate the influence of ε on the classification results using four
datasets: a mixture of Gaussians, artificial classes lying on a manifold, handwritten
digits and seismic recordings. We focus on evaluating how the proposed measures
ρP , ρ� ,Ge (Eqs. (3.37), (3.18), (3.31), resp.) are correlated with the quality of the
classification.
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Fig. 5 Top left: an example of a clean handwritten digit of ‘6’. Top right: a noisy example of the digit ‘6’.
Each pixel is added by a Gaussian noise. The noise is i.i.d. drawn from N (0, 0.5). Bottom left: extracted
DM-based embedding from 320 rotated images of the “clean” handwritten digit. Bottom right: extracted
DM-based embedding from 320 rotated images of the “noisy” handwritten digit

Fig. 6 The normalized radius variance (NRV) of the extracted embedding from the noisy rotated digit
manifold. A comparison between the proposed normalization and alternative methods which are detailed
in Sect. 3
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Fig. 7 Left: an example of the Gaussian distributed data points. Right: a 2-dimensional mapping of the data
points

Fig. 8 Left: the first eigenvector�1 computed for various values of ε. Right: a comparison between ρP , ρ�

and Ge

4.2.1 Classification of a Gaussian mixture

In the following experiment we focus on a simple classification test using a mixture
of Gaussians. We generate two classes using two Gaussians, based on the following
steps:

1. Two vectors μ1 and μ2 ∈ R
6 were drawn from a Gaussian distribution N (0, σM ·

I6×6). These vectors are the centers of masses for the generated classes C1 and
C2. (resp.).

2. N = 100 data points were drawn for each class C1 and C2 with a Gaussian
distribution N (μ1, σV · I6×6) and N (μ2, σV · I6×6), respectively. Denote these
2N data points by C1 ∪ C2 = T ⊂ R

6×200.

The first experiment evaluates the Spectral Approach (Sect. 3.3.2). Therefore, we
set σv < σM such that the class variance is smaller than the variance of the center
of mass. Then, we apply DM using a scale parameter ε such that ε ∼ σ 2

v < σ 2
M . In

Fig. 8 (left), we present the first extracted diffusion coordinate using various values
of ε. It is evident that the separation between classes is highly influenced by ε. A
comparison between ρP ,ρ� and Ge is presented in Fig. 8 (right). This comparison
provides evidence of the high correlation between ρP (Eq. 3.37), ρ� (Eq. 3.18) and
the generalized eigengap (Eq. 3.31) (Fig. 7).

To evaluate the validity of Assumption 1, we calculate the Frobenius norm of the
perturbation matrix Ŵ for various values of ε. The results with the approximated εGe

are presented in Fig. 9. Indeed, as evident from Fig. 9, the value of ||Ŵ ||F is nearly
constant for a small range of values around εGe.
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Fig. 9 The Frobenius norm of the perturbation matrix Ŵ . The annotated point is the approximated scale
εGe

4.2.2 Classes based on an artificial physical process

For the non-ideal case, we generate classes using a non-linear function. This non-linear
function is designed to model an unknown underlying nonlinear physical process
governed by a small number of parameters. Consequently, the classification task is
essentially expected to provide an estimate of these hidden parameters. An example
for such a problem is studied, e.g., in Lindenbaum et al. (2015), where a musical key is
estimated by applying a classifier to a low-dimensional representation extracted from
the raw audio signals. In the following steps we describe how we generate classes
from a Spiral structure:

1. Set the number of classes NC and a gap parameterG. Each classC�, � = 1, ..., NC ,

consists of NP data points drawn from a uniformly dense distribution within the
line [(� − 1) · LC , � · LC − G], � = 1, ..., NC . LC is the class-length, set as
LC = 1

NC
. Let N = NCNP denote the total number of points.

2. Denote {ri }Ni=1 as the set of all points from all classes.
3. Project each ri into the ambient space using the following spiral-like function

x̄i =
⎡
⎣x̄i (1)
x̄i (2)
x̄i (3)

⎤
⎦ =

⎡
⎣(6πri ) cos(6πri )

(6πri ) sin(6πri )
r3i − r2i

⎤
⎦ + n2i , (4.6)

where n2i ∈ R
3 are drawn independently from a zero-mean Gaussian distribution with

covariance� = σS · I3. Two examples of the spiral-based classes are shown in Fig. 10.
For both examples, we use NC = 4, NP = 100, σS = 0.4 with different values for
the gap parameter G.

To evaluate the advantage of the proposed scale parameters ε� and εP (Eqs. (3.18)
and (3.37), resp.) for classification tasks, we calculate the ratios ρP and ρ� for various
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Fig. 10 Two examples of the generated three-dimensional spiral that are based on Eq. (4.6) using NC = 4
classes with NP = 100 data points within each class. The gaps are set to be G = 0.02, 0.04 left and right,
respectively

Fig. 11 A 2-dimensional mapping extracted from both spirals presented in Fig. 10

values of ε, and thenwe evaluate the resulting classification (which is based on the low-
dimensional embedding). Examples of embeddings of the two spirals from Fig. 10 are
shown in Fig. 11. This merely demonstrates the effect of ε on the quality of separation.

We apply classification in the low-dimensional space using KNN (k = 1). The
KNN classifier is evaluated based on Leave-One-Out cross validation. The results are
shown in Fig. 12, where it is evident that the classification results in the ambient space
are highly influenced by the scale parameter ε. Furthermore, peak classification results
occur at a value of ε corresponding to the maximal values of ρGe and ρ� . The value of
ρP did not indicate the peak classification scale, however, its computation complexity
is lighter compared to ρGe and ρ� .

4.2.3 Classification of handwritten digits

In the following experiment, we use the dataset from the UCImachine learning reposi-
tory (Lichman 2013). The dataset consists of 2000 data points describing 200 instances
of each digit from 0 to 9, extracted from a collection of Dutch utility maps. The dataset
consists of multiple features of different dimensions. We use a concatenation of the
Zerkine moment (ZER), morphological (MOR), profile correlations (FAC) and the
Karhunen-loéve coefficients (KAR) as our features space.

We compute the proposed ratios ρP and ρ� for various values of ε, and estimate
the optimal scale based on Eqs. (3.18), (3.37). We evaluate the extracted embedding
using 20-fold cross validation (5% left out as a test set). The classification is done
by applying KNN (with k = 1) in the d-dimensional embedding. In Fig. 13, we
present the classification results and the proposed optimal scales ε for classification.
Our proposed scale concurs with the scale that provides maximal classification rate.
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Fig. 12 Accuracy of classification in the spiral artificial dataset for different values of the gap parameter
G. The data is generated based on Eq. (4.6). The proposed scales (ε�, εGe, εP ) and existing methods
(ε0, εMaxMin, εstd ) are annotated on the plots

Fig. 13 Accuracy of classification in the multiple features dataset. KNN (k = 1) is applied in a d =
4 dimensional diffusion based representation. The proposed scales (ε�, εGe, εP ) and existing methods
(ε0, εMaxMin, εstd ) are annotated on the plots

4.2.4 Classification of COVID-19 using chest X-ray images

In the next evaluation, we focus on classifying individuals that were infected by
COVID-19. In certain individuals, the COVID-19 disease may cause symptoms of
pneumonia; these individuals could be further diagnosed using chest X-ray images
(Abbas et al. 2020). Convolutional neural networks (CNNs) have demonstrated
promising results in classification of COVID-19 based on X-ray (Sethy and Behera
2020; Wang and Wong 2020) or CT (Shuai et al. 2020; Song et al. 2020) of chest
images. Here, we focus on the task of classifying COVID-19 patients based on the
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Fig. 14 Classification accuracy vs. value of ε on the COVID-19 chest X-ray dataset. The proposed scales
(ε�, εGe, εP ) and existingmethods (ε0, εMaxMin, εstd ) are annotated on the plots. Left panel: Classification
using KNN (K=2). Right panel: Classification using Support Vector Machine (SVM)

front view chest X-ray images. The data is collected from the Kaggle database,1 from
which we have used 112 images that are split equally between two classes: healthy
and COVID-19 infected.

The feature space is defined by resizing all the chest X-rays to 200 × 200 pixel
images. This feature space is still sensitive to translations and scales,which are inherent
to the X-ray modality. This sensitivity could clearly be partly mitigated by defining a
translation-invariant feature space, e.g. by using CNNs, however, this is beyond the
scope of this study. To evaluate the proposed schemes, we compute the ratios ρP and
ρ� for various values of ε, and estimate optimal scales based on Eqs. (3.18), (3.37).
For each scale value, we extract a 2-dimensional embedding and perform classification
using KNN (with k = 2) and SVM classifiers. Accuracy is averaged using a 10-folds
cross-validation. Fig. 14 demonstrates that the proposed scales are good candidates
for selecting a scale that yields high classification performance.

4.3 Practical guidelines

Our numerical simulations demonstrate that none of the proposed scaling schemes
consistently outperforms the others. Nonetheless, across all of the evaluated datasets,
the best performance was obtained within the range where the ε values were bounded
by εψ, ερP and εGe. The probabilistic approach that estimates ερP is based on the
transition matrix P and requires O(N 2) computations. This complexity could be
further reduced by computing a k-sparse approximation for the matrix P . Specifically,
methods such as k-sparse graph (Wang et al. 2013) can be computed with complexity
O(NlogN + Nk). The probabilistic approach is based on a heuristic, and we consider
it to be the least accurate of all of the proposed schemes.

Both the Spectral approach and the Geometric approach require a spectral decom-
position. Assuming that both methods use the same number of coordinates (i.e., the
embedding dimension is the same as the number of classes, d = NC ), they both require
O(N 2NC ) computations. The spectral approach is derived by analyzing a perturbed
version of a kernel K , constructed based on well-separated classes. Empirically, this
analysis seems to hold for certain cases; however, if there is no spectral gap (i.e.,
λNC − λNC+1 � 1) we do not recommend to use this method. Finally, the Geometric

1 https://www.kaggle.com/khoongweihao/covid19-xray-dataset-train-test-sets.
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approach is purely based on the extracted representation. Therefore, we consider it as
the most reliable method for estimating a scale parameter ε that is most appropriate
for classification.

5 Application: learning seismic parameters

In this section we demonstrate the capabilities of the proposed approach for extract-
ing meaningful parameters from raw seismic recordings. Extracting reliable seismic
parameters is a challenging task. Such parameters could help discriminate earthquakes
from explosions, moreover, they can enable automatic monitoring of nuclear experi-
ments. Traditional methods such as Rodgers et al. (1997); Blandford (1982) use signal
processing to try to analyze seismic recordings. More recent methods, such as Kort-
ström et al. (2016); Ruano et al. (2014); Ohrnberger (2001); Beyreuther et al. (2012);
Hammer et al. (2013); Del Pezzo et al. (2003); Tiira (1996) use machine learning to
construct a classifier for a variety of seismic events. Here, we extend our result from
Rabin et al. (2016a); Lindenbaum et al. (2018), in which we have demonstrated the
strength of DM for extracting seismic parameters. Our proposed method performs a
vector scaling for manifold learning. Thus, essentially if the data lies on a manifold,
our scaling combined with DM will extract the manifold from high-dimensional seis-
mic recordings. Moreover, it will provide a natural feature selection procedure, thus if
some features are corrupt, the proposed scaling may be able to reduce their influence.

As a test case, we use a dataset from (Rabin et al. 2016a, b; Lindenbaum et al.
2018), which was recorded in Israel and Jordan between 2005–2015. All recordings
were collected inHRFI (Harif) station located in the south of Israel. The station collects
three signals from north (N), east (E) and vertical (Z). Each signal is sampled using a
broadband seismometer at 40[Hz] and consists of 10,000 samples.

5.1 Feature extraction

Seismic events usually generate two waves, primary-waves (P) and secondary waves
(S). Theprimarywave arrives directly from the source of the event to the recorder,while
the secondary wave is a shear wave and thus arrives at some time delay. Both waves
pass through different material thus have different spectral properties. This motivates
the use of a time-frequency representation as the feature vector for each seismic event.
The time-frequency representation used in this study is a Sonogram (Joswig 1990),
which offers computation simplicity while retaining the sufficient spectral resolution
for the task in hand. The Sonogram is basically a spectrogram, renormalized and
rearranged in a logarithmic manner. Given a seismic signal z(n), the Sonogram is
extracted using the following steps:

1. Compute a discrete-time Short Term Fourier Transform:

̂Z( f , t) =
N∑

n=1

w(n − �(t)) · z(n) · e− j2π f n, (5.1)
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Fig. 15 Top: Example of a raw signal recorded from a an explosion and b earthquake. Bottom: The
Sonogram matrix extracted from c an explosion and d earthquake

where w(n − �(t)) is a window function of length N0 = 512, with a shift value of
�(t) = �(1 − s) · N0 · t� time steps. We use overlap of s = 0.85 and compute for
N0 frequency bins, such as the values of f are spread uniformly on a logaritmic
scale.

2. Normalize the energy by the number of frequency bins

˜Z( f , t) = |̂Z( f , t)|2
N0

. (5.2)

3. Reshape the time frequency representation into a vector, by concatenating columns.
The resulted vector representation for a signal z(n) is denoted by x.

These steps are applied to each of the channels separately. This results in three sets XE

for the east channel, XN for the north channel and X Z for the horizontal. Examples
for seismic recording of an explosion and of an earthquake are presented on Fig. 15a,
b. Examples of corresponding Sonograms are presented in Fig. 15a, b .

5.2 Seismic manifold learning

To evaluate the proposed scaling for manifold learning, we use a subset of the seismic
recording with 352 quarry blasts. The explosions have occurred at 4 known quarries
surrounding the recording stationHRFI.Our study inRabin et al. (2016a), Lindenbaum
et al. (2018), has demonstrated that most of the variability of quarry blasts stems from
the source location of each quarry, therefor, we assume that the 352 blasts lie on some
low-dimensional manifold. Where the parameters of the manifold should correlate
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Fig. 16 The two leading DM coordinates of the 352 quarry blasts, colored by source quarry cluster. Scaling
method based on: a The standard deviation of the data. b Singer’s (2009) approach ε0 (detailed in Algo-
rithm 3.1. c The max-min methods εMaxMin (Eq. 3.1). d Proposed scaling for manifold learning (detailed
in Algorithm 3.2)

with location parameters. Our approach for setting the scale parameter provides a
natural feature selection procedure. To evaluate the capabilities of this procedure we
“destroy” the information in someof the features.Wedo this by applying a deformation
function to one channel out of the three seismometer recordings. We define the input
for Algorithm 3.2 as

X = [XN , XE , g(X Z )], (5.3)

where g(·) is an element-wise deformation function. In the first test case the defor-
mation function is defined by g(y) = y0.1. Then, we apply DM with various scaling
schemes and examine the extracted representation. In Fig.16 the two leading DM
coordinates of different scaling methods are presented.

The quarry cluster separation is clearly evident in Fig. 16d. To further evaluate how
well the low-dimensional representation correlates with the source location we use a
list of source locations. A list with the explosions locations is provided to us based
on manual calculations, performed by an analyst by considering the phase difference
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Fig. 17 a A map with source locations of 352 explosions. Points are colored by quarry cluster. b A CCA
based representation of the latitude and longitude of the explosions. c A CCA based representation of the
two leading DM coordinates extracted based on the proposed scaling (appear in Fig. 16d)

between the signals’ arrival times to different stations. We note that this estimation is
accurate up to a few kilometers. A map of the location estimates colored by source
quarry is presented in Fig. 17a. Then, we apply Canonical Correlation Analysis (CCA)
to find the most correlated representation. The transformed representations U and V
are presented in Fig. 17b, c respectively. The two correlation coefficients between
coordinates of U and V are 0.88 and 0.72.

In the second test case, we use additive Gaussian noise to “degrade” the signal.
We use g(y) = y + n1 as the defoemation function, where n1 is drawn from a zero-
mean Gaussian distribution with variance of σ 2

N . We estimate the scaling ε based on
the proposed and alternative methods. Then, we apply CCA to the two leading DM
coordinated and the estimated source locations. The top correlation coefficients for
various values of σ 2

N are presented in Fig. 18. Both the max-min method εMaxMin and
Singer’s ε0 (Singer et al. 2009) scheme seem to break at the same noise level. The
standard deviation approach is robust to the noise level, this is because it essentially
performs whitening of the data. However, this also obscures some of the information
content when the noise is of low power. The proposed approach seems to outperform
all alternative schemes for this test case.

5.3 Classification of seismic events

Automatic classification of seismic events is useful as it may reduce false alarm warn-
ings on one hand, and enable monitoring nuclear events on the other hand. To evaluate
the proposed scaling for classification of seismic events, we use a set with 46 earth-
quakes and 62 explosions all of which were recorded in Israel. A low-dimensional
mapping is extracted by using DM with various values of ε, and binary classification
was applied using KNN (k = 5) and Support Vector Machine (SVM) in a leave-
one-out fashion. The accuracy of the classification for each value of ε is presented in
Fig. 19. The estimated values of εGe, ερP and ερ� were annotated. It is evident that
for classification the estimated values are indeed close to the optimal values, although
they do not fully coincide. Nevertheless, they all achieve high classification accuracy.
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Fig. 18 Highest correlation coefficient between the DM representation extracted using various scaling
schemes. The x-axis corresponds to the variance of the additive Gaussian noise

Fig. 19 Classification accuracy vs. value of ε. The proposed scales (ε�, εGe, εP ) and existing methods
(ε0, εMaxMin, εstd ) are annotated on the plots. Left panel: Classification using KNN (K = 2). Right panel:
Classification using Support Vector Machine (SVM)

6 Conclusions

The scaling parameter ε of thewidely usedGaussian kernel is often crucial formachine
learning algorithms. As happens in many tasks in the field, there does not seem to be
one global scheme that is optimal for all applications. For this reason, we propose
two new frameworks for setting a kernel’s scale parameter tailored for two specific
tasks. The first approach is useful when the high-dimensional data points lie on some
lower dimensional manifold. By exploiting the properties of the Gaussian kernel, we
extract a vectorized scaling factor that provides a natural feature selection procedure.
Theoretical justification and simulations on artificial data demonstrate the strength of
the scheme over alternatives. The second approach could improve the performance of
a wide range of kernel based classifiers. The capabilities of the proposed methods are
demonstrated using artificial and real datasets. Finally, we present an application for
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the proposed approach that helps learnmeaningful seismic parameters in an automated
manner. In the future, we intend to generalize the approach for the multi-view setting
recently studied in Lindenbaum et al. (2020), Salhov et al. (2019), Lederman and
Talmon (2014).
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Appendix

Dimensionality fromAngle andNormConcentration (DANCo)Ceruti et al. (2014)
DANCo is a recent method for estimating the intrinsic dimension based on high-
dimensional measurements. The estimate is based on the following steps:

1. For each point xi , i = 1, ..., N , find the set of �+1 nearest neighbors S�+1(xi ) =
{xs j }�+1

j=1. Denote the farthest neighbor of xi by Ŝ(xi ). The value of � depends on
the density of the dataset, and is usually not higher than 10.

2. Calculate the normalized closest distance for xi as ρ(xi ) = min
x j∈S�+1(xi )

||xi−x j ||
||xi−Ŝ(xi )|| .

3. Use Maximum Likelihood (ML) to estimate d̂ML = argmaxL(d), where the log
likelihood is

L(d) = N log �d + (d − 1)
∑
xi∈X

log ρ(xi )+ (�− 1)
∑
xi∈X

log(1−ρd(xi )). (6.1)

4. For each point xi , find the � nearest neighbors and center them relative to xi . The
translated points are denoted as x̃s j � xs j − xi . The set of � nearest neighbors for

point xi is denoted by S̃�(xi ) = {x̃s j }�j=1. The distribution model is explained in
Camastra (2003).

5. Calculate the
(
�
2

)
angles for all pairs of vectors within S̃�(xi ). The angles are

calculated using

θ(xs j , xsm ) = arccos
x̃s j · x̃sm

||x̃s j ||||x̃sm || . (6.2)

For each point xi concatenate all angles from Eq. (6.2) into a vector θ̄ i and the set
of vectors by ̂θ � {θ̄ i }Ni=1.

6. Estimate the set of parameters ν̂ = {ν̂i }Ni=1 and τ̂ = {τ̂i }Ni=1 based on a ML
estimation using the von Mises (VM) distribution with respect to X . The VM pdf
describes the probability for θ given the mean direction ν and the concentration
parameter τ ≥ 0. The VM pdf, as well as the ML solution, are presented in Ceruti
et al. (2014). The means of ν̂ and τ̂ are denoted as μ̂ν and μ̂τ , respectively.

7. For each hypothesis of d = 1, ..., D, draw a set of N data points Yd = { ydi }Ni=1
from a d-dimensional unit hypersphere.

8. Repeat steps 1-6 for the artificial dataset Yd . Denote the maximum likelihood
estimated set of parameters as d̃ML , ν̃, τ̃ , μ̃ν, μ̃τ .
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9. Obtain d̂ by minimizing the Kullback-Leibler (KL) divergence between the dis-
tribution based on X and Yd . The estimator takes the following form

d̂ = argmin
d=1,...,D

KL(g(·; �, d̂ML), g(·; �, d̃ML)) + KL(q(·; μ̂ν, μ̂τ ), q(·; μ̃ν, μ̃τ )),

where g is the pdf of the normalized distances and q is the VM pdf. Both g and q
are described in Ceruti et al. (2014).
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