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ABSTRACT: Novel biocatalysts that feature enzymes immobi-
lized onto solid supports have recently become a major research
focus in an effort to create more sustainable and greener
chemistries in catalysis. Many of these novel biocatalyst systems
feature enzymes immobilized onto metal−organic frameworks
(MOFs), which have been shown to increase enzyme activity,
stability, and recyclability in industrial processes. While the
strategies used for immobilizing enzymes onto MOFs can vary,
the conditions always require a buffer to maintain the functionality
of the enzymes during immobilization. This report brings attention to critical buffer effects important to consider when developing
enzyme/MOF biocatalysts, specifically for buffering systems containing phosphate ions. A comparative analysis of different enzyme/
MOF biocatalysts featuring horseradish peroxidase and/or glucose oxidase immobilized onto the MOFs UiO-66, UiO-66-NH2, and
UiO-67 using a noncoordinate buffering system (MOPSO buffer) and a phosphate buffering system (PBS) show that phosphate ions
can have an inhibitory effect. Previous studies utilizing phosphate buffers for enzyme immobilization onto MOFs have shown Fourier
transform infrared (FT-IR) spectra that have been assigned stretching frequencies associated with enzymes after immobilization.
Analyses and characterizations using zeta potential measurements, scanning electron microscopy, Brunauer−Emmett−Teller surface
area, powder X-ray diffraction, Energy Dispersive X-ray Spectroscopy, and FT-IR show concerning differences in enzyme loading
and activity based on the buffering system used during immobilization.

1. INTRODUCTION
One pivotal advancement in the development of sustainable
chemical processes is the immobilization of enzymes onto solid
supports to perform biocatalysis. Biocatalysts are often used as
a more efficient and greener alternative to catalysis in industrial
chemical processes1−3 because of their ability to perform
reactions under mild conditions with varied functionalities.4

Biocatalysts that feature immobilized enzymes have shown
improved catalytic activity, stability, recyclability, and function-
ality under extreme conditions.5,6 Immobilization is the
attachment of enzymes onto solid supports, which can be
done using a variety of techniques. These techniques include
physical adsorption, cross-linking, encapsulation, and chemical
adsorption,3,6 which can improve an enzyme’s catalytic activity
by preventing aggregation, promoting rigidification, and
inhibiting contact with hydrophobic interfaces, such as gas
bubbles.7 Various solid supports have been reported as efficient
substrates for enzyme immobilizations that have successfully
improved enzyme functionalities.8−16

An additional benefit to immobilizing enzymes on solid
supports is the ability to design biocatalytic systems that
feature multiple, co-immobilized enzymes that can participate

in cascade reactions.1,2,15,17−20 Previously reported co-immo-
bilized biocatalytic systems have been shown to perform
reactions better due to the proximity between both enzymes
on the solid support.1,13,15,21−25 In this report, the enzymes
glucose oxidase (GOx) and horseradish peroxidase (HRP)
were used to create a co-immobilized enzyme/metal−organic
framework (MOF) biocatalytic system. GOx from Aspergillus
niger (A. niger) is commercially available and utilized for its
ability to produce hydrogen peroxide via oxidation of
glucose.26 HRP, in turn, catalyzes the oxidation of many
organic substrates in the presence of hydrogen peroxide.27 The
two enzymes have been co-immobilized in previous studies for
biotechnological applications, such as biosensing, using various
solid support materials.23,28−31
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This report focuses specifically on using MOFs as solid
supports for enzyme immobilization. MOFs are coordination
networks containing potential void spaces that feature
inorganic nodes connected through organic linkers.32 They
are known for their porous properties and tunability, making
them ideal for guest−host interactions.3,33 MOFs have
traditionally been used for a variety of applications including
gas storage, sensing, and drug delivery, among others, but have
recently become popular for enzyme immobilizations.23,34

Many recent studies have reported successful enzyme
immobilizations using MOFs to create composite materials
for application in biosensing, proteomic analysis, synthesis, and
water remediation.35−40 These studies have used a variety of
immobilization techniques including adsorption, encapsula-
tion, and covalent bonding.41−44 All of these immobilization
techniques require a buffered system to maintain the
functionality of the enzymes used during immobilization.
This study utilizes the zirconium-based MOFs UiO-67,

UiO-66, and UiO-66-NH2 to investigate enzyme immobiliza-
tions with HRP and/or GOx under different conditions. The
UiO-66 and UiO-66-NH2 MOFs are similar in pore size and
structure, but UiO-66-NH2 features an amine group off the
1,4-benzene-dicarboxylate linker, which has been shown to
strengthen interactions at the enzyme/MOF interface thereby
influencing enzyme adsorption.22 The UiO-67 MOF is similar
to UiO-66 but features an additional aromatic ring in its 4,4′-
biphenyl-dicarboxylate linker that creates larger voids and
slightly decreases framework stability.45 Initially, the authors in
this study attempted to create biocatalysts using these MOFs
in a buffer containing phosphate ions to facilitate enzyme
immobilizations via adsorption because of its accessibility and
diverse pH ranges; however, the immobilized products showed
little to no catalytic activity compared with the free enzyme in
solution. These peculiar results prompted the authors to
further investigate the conditions utilized during enzyme
immobilization and their influence on the enzyme/MOF
interface.
Fourier transform infrared (FT-IR) characterization of the

enzyme/MOF products immobilized in phosphate buffer all
showed a strong absorption around 1000 cm−1 that was
initially attributed to an immobilized enzyme. This assignment
was supported by other studies from the literature of similar
enzyme/MOF systems created using phosphate buffer to
facilitate immobilization. Several recent studies, such as that
from Cao et al., have characterized this peak at 1000 cm−1 as
the immobilized enzyme in the enzyme/MOF composite
system.37,38,46−48 The study from Cao et al. used FT-IR data of
enzyme-immobilized UiO-66-NH2 and a typical amide I fitting
procedure to ascribe the secondary structure confirming the
enzyme’s presence and stability.46 This peak is also present in
several other enzyme immobilization studies that utilize UiO
MOFs, as well as other MOFs from the MIL series, as solid
supports.14,37,47,49,50 The authors herein attest that this peak is
attributable to phosphate ions and not to the attached enzyme.
Interestingly, the FT-IR peaks previously reported to

confirm enzyme immobilization were not observed in FT-IR
spectra taken of the enzyme/MOF composites after replacing
phosphate buffer with MOPSO buffer during immobilization.
This led to speculation as to whether the stretching frequency
previously observed at 1000 cm−1 was truly the result of the
immobilized enzyme or potentially from phosphate ions
adsorbed in the enzyme/MOF composite systems. MOPSO
buffer was used in this study for comparison with phosphate

buffer because of its ability to remain noncoordinate in
solution and operate at a similar pH range.51 FT-IR and
isotopic study data collected during this investigation definitely
show that the absorption peak at 1000 cm−1 previously
thought to confirm enzyme immobilization actually arises from
phosphate ions trapped in the pores of the MOF substrate.
Additionally, an investigation into the catalytic activity of
enzyme/MOF composites immobilized in both phosphate and
MOPSO buffers shows that adsorbed phosphate ions actually
inhibit enzyme loading, which limits catalysis.

2. EXPERIMENTAL SECTION
2.1. Materials. Zirconium(IV) chloride, purchased from

ACROS Chemistry (AR purity 97%), terephthalic acid and 2-
aminoterephthalic acid purchased from Sigma Aldrich (AR
purity <99%) were used as precursors for UiO-66 and UiO-66-
NH2. N,N-dimethylformamide (DMF), purchased from Fisher
Scientific (AR purity <99%), was used as a complexing solvent.
2-Hydroxy-3-morpholinopropanesulfonic acid (MOPSO) was
purchased from Sigma Aldrich. All chemicals are analytical
grade and were used without any further purification. HRP
(∼150 U/mg) and GOx from A. niger (50,000 U) were
purchased from Tokyo Chemical Industry (TCI) and Sigma
Aldrich.

2.2. MOF Synthesis. The synthesis of UiO-67 was
performed as a one-pot synthesis in a Baoshishan hydrothermal
synthesis autoclave reactor with a Teflon-lined reaction vessel
based on a solvothermal technique modified from Shearer et al.
using biphenyl-4,4′-dicarboxylic acid (bpdc) in place of 1,4-
benzendicarboxylic acid (bdc).33 Zirconium(IV) chloride
(1.98 mmol) and bpdc (1.98 mmol) precursors were dissolved
in 40 mL DMF in the reaction vessel. An addition of 342 μL of
concentrated hydrochloric acid moderator was then added to
improve ligand solvent exchange. The solution was heated at
120 °C in a stainless steel solvothermal reactor for 24 h. The
resulting MOF precipitate was collected and washed three
times with DMF, then left to soak in methanol for 24 h to
activate the pores. After soaking for 24 h, the UiO-67 product
was collected by vacuum filtration and washed three times with
methanol, then heated in an oven at 110 °C overnight. This
process was repeated for the synthesis of UiO-66 and UiO-66-
NH2 substituting the appropriate bdc linker for bpdc.
Functional groups of the MOF composites were identified
using Fourier transform infrared attenuated total reflectance
(FT-IR-ATR) spectroscopy on a CARY 630 FT-IR spec-
trometer.

2.3. Enzyme Immobilization. Enzymes were immobilized
by suspending 50 mg of MOF into a centrifuge tube containing
450 μL of buffer, 25 μL of GOx (5 mg/mL), and 25 μL HRP
(5 mg/mL). After 24 h of incubation, the enzyme/MOF
composites were filtered, washed with ethanol, and dried. The
following enzymes used in this study were purchased in the
solid state: GOx from A. niger 145,200 U/g from Sigma
Aldrich, and horse radish peroxidase 190 U/mL from TCI.
The 50 mM phosphate buffer was prepared by diluting 1 M
stock of phosphate buffer that was prepared from 85.3%
phosphoric acid and pH adjusted with 6 M NaOH. The 50
mM MOPSO buffer was prepared by diluting Bioworld 0.2 M
MOPSO buffer with a pH of 6.5, and the pH was adjusted
using 6 M NaOH.

2.4. Enzymatic Assay. The colorimetric purpurogallin
enzyme assay mixture consisted of the following glucose to
pyrogallol ratio in millimoles: 56:127 and 10 mg of enzyme/
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MOF composite. After running the reaction for 3 min, the
enzyme/MOF composite was filtered, and the absorbance of
the reaction solution was taken using a Vernier SpectroVis Plus
Spectrophotometer to calculate concentration of synthesized
purpurogallin.

2.5. Isotopic Study. The isotopic study was performed by
preparing phosphate-labeled buffer from potassium dihydrogen
phosphate (18O4, 95%) purchased from Cambridge Isotopic
Laboratories, Inc. The pH was adjusted to 7.00 using 2.0 M
KOH. Each enzyme solution (GOx and HRP) was then
prepared using the isotopic buffer to a concentration of 5 mg/
mL. The UiO-67 MOF was soaked overnight in 450 μL of
buffer, and 25 μL of each isotopically labeled enzyme solution
containing GOx or HRP. Isotopically labeled composites were
washed with ethanol and dried in a desiccator before
characterization.

2.6. Instrumentation. Functional groups of the pure and
isotopically labeled enzyme/MOF composites were identified
using FT-IR-ATR spectroscopy on a CARY 630 FT-IR
spectrometer. Powder X-ray diffraction (PXRD) data of the
MOF and enzyme/MOF composites were collected on a
Rigaku SmartLab SE diffractometer using a copper anode with
Kα1 = 1.54056 Å and Kα2 = 1.54439 Å fitted with a nickel Kβ
filter. Samples were analyzed between 2θ 5 and 80° with a step
size of 0.01 degrees and a scan speed of 1 degrees/min. Zeta
potentials of the pure and enzyme/MOF composites were
obtained using a Malvern Zetasizer Nano ZS. Each solution
was prepared by dissolving 2 mg of MOF, 10 μL of HRP, and
10 μL of GOx, into 15 mL of 50 mM PBS with a pH of 7.00.

Nitrogen adsorption isotherms were obtained at 77 K using a
Quantachrome NOVAtouch LX4 Surface Area and Pore Size
Analyzer. Samples were prepared by soaking UiO-66, UiO-66-
NH2, UiO-67, HRP/GOx@UiO-66, HRP/GOx@UiO-66-
NH2, and HRP/GOx@UiO-67 in either MOPSO or PB for
approximately 24 h before degassing at 25 °C for 24 h. Surface
area measurements were determined using the Brunauer−
Emmett−Teller (BET) method, and total pore volume and
average pore size measurements were also obtained. Scanning
electron microscopy (SEM) with complimentary energy
dispersive X-ray spectroscopy (EDS) measurements were
collected on a JEOL JCM-7000 SEM using a secondary
electron detector. All samples were precoated using 5 nm Au
nanoparticles to reduce charging.

3. RESULTS AND DISCUSSION
3.1. Enzyme Activity. The effects of the two different

buffers on activity of the enzyme/MOF composites were
determined by studying the catalytic oxidation of pyrogallol to
purpurogallin. This colorimetric assay measures the enzymatic
activity and tests the bienzymatic system of HRP and GOx.
Purpurogallin is synthesized from the oxidation of pyrogallol
by HRP that is activated by peroxide produced from the
oxidation of glucose in the presence of O2 as shown in Figure
1.52,53 The synthesis of purpurogallin can be monitored using
UV−vis spectroscopy by observing increases in absorption at
the λmax of 420 nm. The experimentally determined activities of
the free enzyme and enzyme/MOF composites in Table 1
show composites immobilized in MOPSO buffer performing

Figure 1. Pyrogallol enzymatic assay. The reaction scheme for the pyrogallol enzymatic assay to test the catalytic activity of the three enzyme/MOF
composites.
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markedly better than composites immobilized in phosphate
buffer.

The composite GOx/HRP@UiO-66-NH2 immobilized in
MOPSO buffer showed the greatest enzymatic activity (198.36

U/mg), which is no surprise considering the amine-function-
alized linker has been shown to enhance electrostatic
interactions at the enzyme/MOF interface resulting in greater
loading and activity.22 Interestingly, the same composite
system showed much lower activity (42.31 U/mg) when the
enzyme immobilization was performed in phosphate buffer
(PBS). This large discrepancy in enzyme activity was also
observed in the bienzymatic composite systems for UiO-66
and UiO-67, which performed much better after immobiliza-
tion in MOPSO buffer. Composites immobilized in phosphate
buffer overall showed a maximum 98% decrease in activity
compared to composites immobilized in MOPSO buffer as
given in Table 1. The free enzyme solutions also showed
greater catalytic activity in MOPSO compared with PBS,
however, this discrepancy was not nearly as pronounced as
those observed for the enzyme/MOF composites. These
results strongly support the notion that the absorption peak
observed at ∼1000 cm−1 in the FT-IR spectra of the enzyme/
MOF composite products is actually the result of adsorbed
phosphate ions rather than confirmation of enzyme immobi-
lization. This strong absorption peak was not observed in the
FT-IR spectra of enzyme/MOF composite products immobi-
lized in MOPSO, indicating that phosphate ions from PBS are
adsorbing into the MOF pores during immobilization and
acting as a potential barrier that inhibits enzyme loading. This

Table 1. Comparison of Enzyme Activities from Biocatalysts
Created Using PBS and MOPSO Buffers During
Immobilization

MOPSO activity
(U/mg)a

PBS activity
(U/mg)a

UiO-66 0 0
UiO-66-NH2 0 0
UiO-67 0 0
GOx/HRP@UiO-66-NH2 198.36 42.31
GOx/HRP@UiO-66 189.75 3.2933
GOx/HRP@UiO-67 71.95 18.24
free HRP and GOx 62.77b 50.69b

aEnzyme activity calculated from absorbance data of purpurogallin
synthesis and normalized to the calculated enzyme loading onto GOx/
HRP@UiO-66-NH2 in MOPSO in activity units (U per mg of
enzymes) loaded onto composite. bFree enzyme activity calculated
from absorbance data of purpurogallin synthesis in activity units (U
per mg of enzymes).

Figure 2. FT-IR spectra of MOF composites immobilized in MOPSO and phosphate buffers. Immobilized composites (a) UiO-66, (b) UiO-66-
NH2, (c) UiO-67 in MOPSO (top) and in PBS (bottom). Bottom panel shows comparison between MOPSO- and PB-soaked MOFs.
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outcome of impairment in phosphate-buffered enzyme/MOF
systems has also been reported in studies that utilize ZIF-8 and
MIL-100 as solid supports, and even for other composite
biocatalyst systems, such as lipase immobilized onto octyl-
agarose.48,54−57

3.2. FT-IR Characterization. The FT-IR spectra of all
enzyme/MOF composites were taken after enzyme immobi-
lization using both MOPSO and PBSs. In addition, all three
MOFs were soaked in both buffers alone to mimic enzyme
immobilization conditions and determine if the buffering
systems were affecting the MOF substrates. The spectra for
each MOF are shown overlayed with MOF after soaking in
buffer alone, singly immobilized enzyme/MOF composites
(with HRP or GOx), and doubly immobilized enzyme/MOF
composites (with both HRP and GOx) for each buffer system
in Figure 2.
The spectrum of the synthesized UiO-67 powder (Figure

2c) shows COO− symmetric and asymmetric stretching at
1565 and 1408 cm−1 characteristic of bridging coordination
from the carboxylate linker to the Zr nodes reported for UiO-
67.58 Additional peaks appearing at 1558 and 1207 cm−1 arise
from the C−C ring stretching and C−H bending in the ring.
These strong absorption peaks are retained in the spectra of
UiO-67 after exposure to PBS (Figure 2c) indicating the
carboxylate coordination is retained in the PBS-soaked MOF;
however, there is a considerable hypsochromic shifting of
minor MOF peaks observed from 900 to 1200 cm−1. These
shifts are the result of combination bands arising from the
broad phosphate stretching modes exciting at similar
resonances to the MOFs. New peaks also appear at 1000,
1297, and 1684 cm−1 in the spectra for PBS-soaked UiO-67
and all enzyme/UiO-67 composites due to phosphate
stretching from adsorbed phosphate ion in the MOF pores.
The spectra of the synthesized UiO-66 (Figure 2a) and

UiO-66-NH2 (Figure 2b) powder products show stretching
frequencies consistent with those reported in the litera-
ture.59−61 The UiO-66-NH2 shows additional broad peaks at
3500 and 3350 cm−1 and a moderate peak at 1650 cm−1 due to
N-H stretching and bending that is not observed in the UiO-66
product. These major product peaks are retained in the buffer-
soaked MOFs and enzyme-functionalized composites after
immobilization using both MOPSO and PBS. The MOF
powders soaked in PBS and the enzyme/MOF composites
immobilized in PBS, however, show new peaks at 1000 and
1297 cm−1 similar to what is observed in UiO-67. These
stretching frequencies can also be attributed to phosphate
adsorbed into the pores of the MOF substrates. The intensities
of these stretching frequencies, however, are much weaker
compared to the characteristic product peaks for UiO-66 and
UiO-66-NH2. This is likely an indication of less phosphate ion
adsorbed into void spaces, which is consistent with the smaller
pore volume of both UiO-66 and UiO-66-NH2. The spectra
for UiO-67 soaked in PBS, on the other hand, shows more
intense phosphate stretching that is likely a result of more
phosphate ions adsorbed into the larger pore volume of the
MOFs.

3.3. SEM of Enzyme/MOF Composites. Each sample was
prepared by vigorously washing in DI water after soaking in the
buffer to remove free ions from the solution that were not
adsorbed to the composite. The washed samples were then
dried on a high vacuum line at room temperature for 12 h
before being analyzed by SEM. All samples were precoated
using 5 nm Au nanoparticles to reduce charging. Figure 3

shows SEM images of UiO-67 after soaking in phosphate
buffer (a), as well as the enzyme/MOF composites HRP@
UiO-67 (b), GOx@UiO-67 (c), and HRP/GOx@UiO-67 (d)
prepared using PBS during immobilization. Elemental mapping
for zirconium (green) and phosphorus (gold) from EDS
analysis of each substance is also shown to the right of each
image. The images all show clusters of MOF particles with
morphologies that exhibit irregular octahedrons characteristic
of UiO-67.28 These irregular octahedral structures are less
prevalent than what would be expected for pristine UiO-67 due
to the presence of adsorbed phosphate ions and phosphate
salts as well as some enzyme functionalization. The elemental
maps of zirconium suggest the UiO-67 framework is retained
after exposure to PBS, but the elemental map of phosphorus
shows phosphate has infiltrated the surface of the MOFs in the
PBS-soaked UiO-67 and all enzyme/MOF composites
immobilized with PBS. Additionally, these maps show the
phosphate is highly dispersed throughout UiO-67 in all the
enzyme/MOF composites, and not concentrated in specific
regions. The presence of phosphorus in all the images analyzed
strongly suggests that phosphate from the buffer is adsorbing
into the MOFs and co-precipitating with the zirconium nodes
as a single crystal. This co-crystallization of zirconium and
phosphate demonstrated by the SEM images and elemental
maps further supports the aforementioned IR and enzyme
activity data.

3.4. Zeta Potential Characterization. To further
demonstrate how adsorbed phosphate ions could potentially
affect enzyme loading, the zeta potentials of pure MOF and
enzyme/MOF composites were measured. Zeta potential can
be used to predict enzyme immobilization success by
monitoring changes in electrostatic charges at the MOF
surface before and after enzyme immobilization.62,63 As shown
in Table 2, all solutions of MOF and enzyme/MOF
composites prepared in PB exhibited zeta potentials ranging

Figure 3. SEM images of MOF composites. (a) UiO-67 soaked in
PBS, (b) HRP@UiO-67 immobilized in PBS, (c) GOx@UiO-67
immobilized in PBS, and (d) HRP/GOx@UiO-67 immobilized in
PBS.
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from −17.4 to −20.1 mV. The data show no substantial
differences between the pure MOF and the enzyme/MOF
composites suggesting a lack of enzyme loading onto the MOF
during immobilization. Effective enzyme loading is expected to
produce composites with lower zeta potentials compared to
pure MOF due to increased aggregation of the composite
particles in the solution. Results from a previous study
reporting zeta potential measurements for UiO-66, UiO-66-
NH2, and HRP/GOx@UiO-66 prepared in MOPSO buffer,
where zeta potentials significantly decreased after enzyme
immobilization, are shown in Table 2 for comparison.22,33

While the composites prepared in MOPSO exhibited strong
changes in zeta potential after immobilization, the composites
prepared in phosphate buffer did not. This indicates that the
phosphate buffer is inhibiting enzyme loading, whereas the
MOPSO buffer is facilitating enzyme loading.

3.5. XRD Results. PXRD patterns of all of the enzyme/
MOF composites after immobilization using either MOPSO or
PBS were compared to the patterns of the as-prepared MOFs
to determine the effect of the buffering systems on the MOF
structure. Figure 4 shows the overlayed PXRD patterns for (a)
UiO-67, (b) UiO-66, and (c) UiO-66-NH2-based composites.
In addition, the three MOFs were soaked in either MOPSO or
PBS buffer alone without enzyme to mimic immobilization
conditions (Figure 5).
UiO-66 and UiO-66-NH2 samples show similar behavior.

The structures of these MOFs are unaffected by soaking alone
in either MOPSO buffer or phosphate buffer under the
conditions that mimic immobilization without enzyme.
However, the immobilization of HRP and GOx in PBS results
in a significant loss of crystallinity while immobilization of
HRP and GOx using MOPSO buffer does not affect the MOF
structure.
PXRD of all UiO-67 MOF and UiO-67 enzyme/MOF

composite samples soaked in MOPSO or PBS shows
significant loss of crystallinity compared to the as-prepared
UiO-67 sample. This is likely due to the decreased stability of

UiO-67 compared with UiO-66 and UiO-66-NH2. The longer
biphenyl linker of UiO-67 lowers its thermal and chemical
stability relative to UiO-66 making the framework more
susceptible to collapse when soaked in aqueous solutions for
extended periods of time. The activities of the enzyme-
immobilized UiO-67 biocatalyst composites are also signifi-
cantly lower than those observed for the UiO-66 and UiO-66-
NH2 enzyme composites, indicating these stability issues also
influence enzyme loading and activity.

3.6. Surface Area Analysis. Nitrogen isotherm data,
shown in Figures 6 and 7, were used to compare the effects of
MOPSO buffer and PBS on the surface area and pore size of
the MOFs before and after enzyme immobilization, which are
summarized in Table 3. Nik et al. reported surface areas of
pure UiO-66, UiO-66-NH2, and UiO-67 to be 857, 826, and
1998 m2/g, respectively.64 Our pure MOFs had surface areas of
1261.456 m2/g for UiO-66, 1248.978 m2/g for UiO-66-NH2,
and 2120.138 m2/g for UiO-67. The surface area measure-
ments obtained after MOFs were soaked in MOPSO were
approximately 1400 m2/g for UiO-66, 951 m2/g for UiO-66-
NH2, and 259 m2/g for UiO-67, while the surface areas for the
samples soaked in PBS were lower, at 935 m2/g for UiO-66,
850 m2/g for UiO-66-NH2, and 15 m2/g for UiO-67. In both
cases, there is a decrease in surface area for MOPSO- and PBS-
soaked MOFs, however, the PBS-soaked MOFs show a
significantly greater reduction. In addition, UiO-67 shows
larger reductions in surface area compared with UiO-66 and
UiO-66-NH2, which is due to the biphenyl scaffold being more
susceptible to hydrolysis than the bdc linker in the UiO-66
MOFs. This shows that UiO-67 experiences some framework
collapse after soaking in buffer solutions for 24 h, while the
UiO-66 MOFs maintain more structural integrity. Regardless,
the surface measurement for UiO-67 after soaking in MOPSO
is still significantly higher than that obtained after soaking in
PBS (259 vs 15 m2/g).
For both buffers, there was a reduction in the surface area

following enzyme immobilization in all MOFs, which is
attributed to pore blockage by the enzymes. However, all the
PBS-soaked samples had significantly reduced surface areas,
pore volumes, and average pore size values compared to the
MOPSO-soaked samples, with the exception of the average
pore size values of UiO-66 and UiO-66-NH2 soaked in PBS,
which exhibited a respective 22.8 and 5.2% increase from UiO-
66 and UiO-66-NH2 soaked in MOPSO. The overall reduction
in surface area, total pore volume, and average pore volume for
the PBS-soaked samples compared to the MOPSO-soaked
samples suggests phosphate ions are not only adsorbing into
the pores of the MOFs but also contributing to a loss in

Table 2. Zeta Potentials of MOFs and Enzymes/MOF
Composites

composite
phosphate buffer
(mV) MOPSO buffer (mV)

UiO-66 −17.6 −18.00
HRP/GOx@UiO-66 −19.5 −10.80
UiO-66-NH2 −18.1 −26.67
HRP/GOx@UiO-66-NH2 −17.4 −3.13
UiO-67 −18.6
HRP/GOx@UiO-67 −20.1

Figure 4. PXRD of MOF composites (a) as-prepared UiO-67, GOx/HRP@UiO-67 immobilized in MOPSO, and GOx/HRP@UiO-67
immobilized in PBS; (b) as-prepared UiO-66, GOx/HRP@UiO-66 immobilized in MOPSO, and GOx/HRP@UiO-66 immobilized in PBS; and
(c) as-prepared UiO-66-NH2, GOx/HRP@UiO-66-NH2 immobilized in MOPSO, and GOx/HRP@UiO-66-NH2 immobilized in PBS.
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Figure 5. PXRD of MOFs (a) as-prepared UiO-67, UiO-67 soaked in MOPSO, and UiO-67 soaked in PBS; (b) as-prepared UiO-66, UiO-66
soaked in MOPSO, and UiO-66 soaked in PBS; and (c) as-prepared UiO-66-NH2, UiO-66-NH2 soaked in MOPSO, and UiO-66-NH2 soaked in
PBS.

Figure 6. Adsorption−desorption curves for UiO samples after soaking in MOPSO for 24 h before drying.

Figure 7. Adsorption−desorption curves for UiO samples after soaking in PBS for 24 h before drying.
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crystallinity during the immobilization process. Thus, the
phosphate ions prevent immobilization of enzymes in
phosphate-buffered systems, resulting in significantly lower
surface areas and enzyme activities for all of the enzyme/MOF
composites studied.

3.7. Isotopic Study. The UiO-67 MOF and the enzyme/
UiO-67 composites were used in an isotope study to determine
if the new resonances arising at 1000, 1297, and 1684 cm−1

were indeed the result of phosphate ions and not enzyme.
These stretching frequencies have previously been assigned to
enzyme functional groups in similar reports using MOFs for
immobilization;37,49,50,65 however, these peaks were not
observed after attempting immobilization with the same
enzymes using MOPSO buffer in place of PBS. Additionally,
the enzyme/MOF composites immobilized in MOPSO
showed superior catalytic activity compared with those
immobilized in PBS. The UiO-67 MOF was chosen for this

isotopic investigation because of the larger relative intensities
observed for these stretching frequencies, which were much
weaker in UiO-66 and UiO-66-NH2 composites.
To investigate the true origin of these stretching frequencies,

an 18O isotopic study of immobilization in phosphate buffer
was performed to confirm if these peaks were the result of
immobilized enzyme or phosphate adsorbed onto the MOF
supports. The study was performed by soaking UiO-67 powder
in phosphate buffer made with 18O-labeled phosphate for the
time required for enzyme immobilization, as well as
immobilizing HRP and GOx onto UiO-67 using the same
18O-labeled phosphate buffer. The resulting MOF and GOx/
HRP@UiO-67 composite powders that were exposed to
isotopically labeled phosphate buffer were then dried and
analyzed using FT-IR. The larger mass of the P−18O bond
created a hypsochromatic shift of the stretching frequency at

Table 3. BET Surface Area, Total Pore Volume, and Average Pore Sizes for UiO Samples

sample surface area (m2/g) total pore volume (mL/g) average pore size (nm)

MOPSO UiO-66 1399.700 0.450 9.520
UiO-66-NH2 950.955 0.296 8.883
UiO-67 259.124 0.090 7.795
HRP/GOx@UiO-66 1044.150 0.393 11.820
HRP/GOx@UiO-66-NH2 740.45 0.2374 9.3945
HRP/GOx@UiO-67 123.952 0.0442 6.4080

phosphate buffer UiO-66 934.666 0.320 11.597
UiO-66-NH2 849.977 0.295 9.345
UiO-67 14.789 0.004 1.795
HRP/GOx@UiO-66 3.3509 0.0004 0.5892
HRP/GOx@UiO-66-NH2 28.1778 0.0101 5.3062
HRP/GOx@UiO-67 3.25533 −0.0024 −3.1520

Figure 8. Isotopic shift in FT-IR spectra in phosphate buffer and isotopically labeled 18O-phosphate buffer for (a) GOx/HRP@UiO-67 and (b)
UiO-67. Left graphs are full FT-IR spectra, middle graphs depict only the phosphate region, and the right graphs are the zoomed in difference
spectra.
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1000 cm−1 in the FT-IR spectra for UiO-67 and GOx/HRP@
UiO-67 exposed to isotopically labeled phosphate buffer, as
predicted by modeling P−O as a simple harmonic
oscillator.66,67 Using the reduced mass equation, the isotopic
shift was calculated to be around 50 cm−1, which is consistent
with the observed shifts in the FT-IR spectra shown in Figure
8a,b of UiO-67 and immobilized GOx/HRP@UiO-67
composites.

4. CONCLUSIONS
It is important to choose the appropriate microenvironment
when developing new MOF/enzyme systems for effective
biocatalysts. The results from this study show inhibitory effects
of phosphate ion in a phosphate buffering system for co-
immobilizing enzymes on UiO MOFs. A maximum decrease of
98% in enzyme’s activity in phosphate immobilized composites
in comparison with MOPSO buffer. The FT-IR spectra of
phosphate composites showed a common peak at 1000 cm−1

that was confirmed to be the phosphate ion peak from an
isotopic study. This result combined with the surface area,
SEM, and zeta potential data confirm that phosphate ions are
adsorbed by the UiO MOFs and cause partial framework
collapse that adversely affects the enzyme loading and
subsequently decreases catalytic activity in enzyme/UiO
MOF composites immobilized using phosphate buffer. This
study cautions the use of phosphate buffer in enzyme/MOF
systems due to the interactions of phosphate ions with the
MOFs that cause impairment in loading and activity.
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