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SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2)
is the most dangerous form of the coronavirus, which causes
COVID-19. In patients with severe COVID-19, the immune system
becomes markedly overactive. There is evidence that supplemen-
tation with select micronutrients may play a role in maintaining
immune system function in this patient population. Throughout
the COVID-19 pandemic, significant emphasis has been placed on
the importance of supplementing critical micronutrients such as
Vitamin C and Zinc (Zn) due to their immunomodulatory effects.
Viral infections, like COVID-19, increase physiological demand for
these micronutrients. Therefore, the purpose of this review was to
provide comprehensive information regarding the potential
effectiveness of Vitamin C and Zn supplementation during viral
infection and specifically COVID-19. This review demonstrated a
relation between Vitamin C and Zn deficiency and a reduction in
the innate immune response, which can ultimately make patients
iratory Syndrome-Coronavirus-2; Zn, Zinc; RCTs, Randomized controlled
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beta; TNF-a, Tumor necrosis factor alpha.
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with COVID-19 more vulnerable to viral infection. As such,
adequate intake of Vitamin C and Zn, as an adjunctive therapeutic
approach with any necessary pharmacological treatment(s), may
be necessary to mitigate the adverse physiological effects of
COVID-19. To truly clarify the role of Vitamin C and Zn supple-
mentation in the management of COVID-19, we must wait for the
results of ongoing randomized controlled trials. The toxicity of
Vitamin C and Zn should also be considered to prevent over-
supplementation. Over-supplementation of Vitamin C can lead to
oxalate toxicity, while increased Zn intake can reduce immune
system function. In summary, Vitamin C and Zn supplementation
may be useful in mitigating COVID-19 symptomology.

© 2022 The Authors. Published by Elsevier Ltd on behalf of
European Society for Clinical Nutrition and Metabolism. This is an

open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Since December 2019, the world has been plagued by a new viral disease, which has resulted in a
pandemic. The novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2),
causing COVID-19, is by far the most dangerous coronavirus ever identified [1]. The high pathoge-
nicity andmortality associatedwith this virus have promptedmany prevention- and treatment-related
research efforts. In patients with severe COVID-19, the immune system becomes overactive, such that
there is a marked increase in the secretion of pro-inflammatory cytokines, especially locally in the
respiratory system [2]. Despite the multitude of medications prescribed (e.g., corticosteroids and cyclo-
oxygenase 2 inhibitors) to mitigate COVID-19-related symptoms, many have proven to be ineffective
[3,4]. Therefore, determining effective strategies for preventing and/or attenuating COVID-19-related
symptoms is a biomedical research priority, as these therapeutic approaches could help to preserve
immune function and lessen the release of pro-inflammatory cytokines in patients with COVID-19.

A patient's response to the virus is dependent on many factors, including age, lifestyle, and medical,
socioeconomic and nutrient status [5]. Regarding nutrient status, serum levels of Vitamin C and Zinc
(Zn) at the onset of infection have shown to influence the severity of COVID-19 symptomology [6e8].
Currently, there is a lack of evidence from randomized controlled trials (RCTs) on the preventative and/
or therapeutic effects of Vitamin C and Zn supplementation for treating COVID-19-related symptoms.
Therefore, in the present review, we discuss: 1) potential mechanisms by which Vitamin C and Zn
supplementation may prevent or mitigate symptoms associated with COVID-19; and 2) potential
toxicity concerns with Vitamin C and Zn supplementation.

The role of Vitamin C in immune system regulation

Vitamin C is a necessary water soluble nutrient for human health [9]. The normal serum concen-
tration of Vitamin C is considered to be 30e90 mol/L. Serum concentrations between 11- 23 mol/L are
qualified as marginal Vitamin C deficiency and levels below 11 mol/L are referred to as deficient [10].
The Recommended Dietary Allowance (RDA) for Vitamin C is approximately 75 mg/day for adult
women and 90 mg/day for adult men [11]. Daily intake of 100e200 mg/day of Vitamin C from the diet
appears to be adequate for maintaining normal serum levels in both men and women [12]. The im-
mune system in general is a complex network of organs, tissues, and cells, which are designed to
protect the body from foreign pathogens. The immune system can generally be divided into epithelial
barriers and cellular and humoral immunity [13]. Many studies have shown that Vitamin C plays a
critical role in maintaining immune system function, and it contributes to both innate and adaptive
immunity, especially immune cell function (i.e., epithelial barrier integrity, chemotaxis and antimi-
crobial activities of phagocytes, natural killer [NK] cell activity, and proliferation and differentiation of
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lymphocytes) [14,15]. Vitamin C can accumulate in select populations of immune cells, such as
phagocytes and T-cells, and these cell types are dependent on Vitamin C to maintain proper function
[16]. Therefore, Vitamin C deficiency can result in reduced capacity of the immune system to combat
foreign pathogens [17].

The membranes of immune cells contain an abundance of polyunsaturated fatty acids (PUFAs),
making these cells sensitive to oxidative stress e i.e., PUFAs contain hydrogen atoms located near
double bonds, and this location makes them highly susceptible to oxidation [18]. Vitamin C is a potent
antioxidant due to its ability to donate electrons, which allows for protection against oxidant-related
stress, which could take place as a result of exposure to foreign pathogens [19]. Vitamin C is also a co-
factor for the lysyl and prolyl hydroxylases, which are involved in the stabilization of the fourth
structure of collagen, which can help to maintain barrier function. Another critical role of Vitamin C is
the regulation of DNA and histone methylation in immune cells, which highlights that Vitamin C may,
in part, mediate epigenetic regulation of antioxidant defenses [20]. Recent research showed that
Vitamin C is an important co-factor for the regulation of the transcription factor hypoxia-inducible
factor-1a (HIF-1a) [21,22], and maintenance of HIF-1a has shown to be protective against COVID-19-
related symptoms [23]. We have summarized the overall role of Vitamin C in boosting immune sys-
tem function in Fig. 1.

The role of Zn in the immune system

Zn is a trace element and adequate intake is critical for human health [24]. After iron, the second-
most abundant trace element in the body is Zn which is a crucial component of protein structure and
function [25]. The total content of Zn in the human body is 2e4 g and serum concentration of Zn is
12e14 mMe 60% bound to albumin, 30% bound to a2-macroglobulin and 10% bound to transferrin [26].
At basal/physiological levels, the serum concentration of Zn is exceptionally low and daily intake of Zn
(generally from the diet) is necessary to achieve optimal levels [26].

The RDA for Zn is approximately 11 mg/day for men and 8 mg/day for women [27]. Zn is necessary
for adequate innate and adaptive immune system function [28]. According to the world health orga-
nization (WHO), approximately one-third of the world's population is deficient in Zn and Zn deficiency
is responsible for nearly 16% of severe lung infections worldwide [29,30]. Zn deficiency may reduce
immune system function, and in some cases, deficiency in Zn can cause several forms of infection (e.g.,
respiratory, inflammatory, and autoimmune) and in the most extreme case, could even increase
mortality from infection [31,32]. Recent studies have shown that Zn has three important roles in im-
mune system biology: 1) its impact on signal transduction within the immune system; 2) its role in
immune cell function; and 3) it can enhance nutritional immunity e defined as limiting pathogenicity
during an infection [33].

Zn is also a potent antioxidant as it can prevent the production of free radicals [34]. In addition, Zn
can enhance immune system function by: 1) increasing the activity of T-helper 1 cells, which are
primarily anti-inflammatory [35]; 2) suppressing the function of effector T cells, which are primarily
pro-inflammatory [36,37]; and 3) regulating lymphocyte apoptosis [24]. Furthermore, Zn is a major
co-factor for the activity of more than 300 enzymes such as Zn finger DNA binding proteins, DNA
polymerase, thymidine kinase and DNA dependent RNA polymerase [26], which are all associated
with immune system function. Moreover, thymulin, which is largely responsible for epithelial barrier
function and in turn immune system function, is dependent on Zn for its biological activity [24]. Zn
status and pro-inflammatory cytokine abundance may be mutually reinforcing, such that
adequate levels of circulating Zn can support anti-inflammatory cytokine production and greater
abundance of pro-inflammatory cytokines can reduce circulating levels of Zn [38]. Zn deficiency is
common in the elderly and in individuals with malnutrition, autoimmune diseases, and certain
pro-inflammatory conditions [39]. As such, maintaining adequate levels of Zn may be favorable for
mitigating excess oxidative stress and inflammation, especially at the onset of exposure to a
foreign pathogen. We have summarized the overall role of Zn in boosting immune system function in
Fig. 2.
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The role of Vitamin C on antiviral function

Vitamin C has known antiviral properties and some studies have shown that Vitamin C may be
useful for treating and preventing viral infections in the respiratory tract (i.e., influenza and the
common cold) [40,41]. Furthermore, recent evidence suggests that Vitamin C supplementation may be
an effective adjunctive treatment strategy for mitigating COVID-19-related symptoms [42]. The release
of pro-inflammatory cytokines is a common side effect of bacterial and viral infections, and these
cytokines can increase oxidative stress [43]; thus, an antioxidant such as Vitamin C could potentially
mitigate excess inflammation and oxidative stress.

Previously, Vitamin C has shown to regulate antiviral cytokine production, such as with interferon
alfa (IFN-a) production, which can protect against influenza-mediated lung injury [44]. Interferons are
cytokines that are produced by infected cells and these cytokines are released in response to viruses
[45]. To achieve a stronger immune response, interferons can act in a paracrine and/or endocrine
manner, as these cytokines can activate other immune cells [46]. A majority of the antiviral properties
of Vitamin C are attributed to improving the overall immune response [47]. Several in vitro studies
have demonstrated that high dose Vitamin C has antiviral activity [48], which is thought to occur via
the function of Vitamin C as an antioxidant [49,50]. Vitamin C can also modulate the immune system of
patients with viral infections, which could be due to increased production of anti-inflammatory INF-a
and INF-b and reduced production of pro-inflammatory cytokines [41,51]. Although Vitamin C may
have beneficial effects on disease states associated with viral infections, there is still a need for placebo
controlled RCTs to directly evaluate the influence of Vitamin C in mitigating symptoms related to viral
infections.

The role of Zn on antiviral function

Zn has shown to have direct and indirect antiviral effects. Previous work has shown that Zn defi-
ciency: 1) is associated with reduced antibody production in response to a virus; 2) can reduce the
function of the innate immune system; 3) can lower cytokine production frommonocytes [52]; and 4)
increased susceptibility to infectious diseases that were brought about by bacterial and viral pathogens
[53]. Furthermore, Zn can prevent viral replication via inhibition of RNA synthesis [54]. Furthermore,
in vitro studies have shown that Zn can increase the production of IFN-a and IFN-g, which have shown
to elicit antiviral effects [55]. In vivo evidence suggests that Zn supplementation may enhance the
production of IFN-a by leukocytes and decrease the production of tumor necrosis factor (TNF-a) by B
lymphocytes [52,56].

The antiviral activity of IFNa occurs via up-regulation of antiviral enzymes and signaling through
the JAK1/STAT1 pathway [57]. In healthy adults, supplementation with Zn has shown to reduce TNF-a
and IL-1b production [58]. In addition, Zn can improve resistance of cells to apoptosis via inhibition of
caspase-3, 6, and 9 [59]. The Anti-apoptotic actions of Zn in peripheral tissues (e.g., the thymus) could
lead to an increase in the abundance of anti-inflammatory T-helper cells. The antiviral action of Znmay
also occur via metallothioneins, cysteine-rich proteins, which have a role in transfer and storage of Zn
[60]. Moreover, the common cold accounts for approximately 30% of the most prevalent respiratory
infections caused by the coronavirus, and studies have shown that Zn supplementation can reduce the
duration and severity of the common cold; therefore, it can be concluded that Zn supplementationmay
be an effective therapeutic strategy for strengthening the immune system in patients with COVID-19
[61,62].

Clinical trials: intervention with Vitamin C and Zn supplementation in patients with COVID-19

Currently, multiple RCTs in which patients with COVID-19 are being supplemented with Vitamin C
and Zn have been registered at clinicaltrials.gov [63,64]. The details of previously published RCTs are
summarized in Table1. An intervention with 6 g/day of Vitamin C for 5 days in 30 patients with severe
COVID-19, compared to a placebo control group, did not influence COVID-19-related symptoms,
including body temperature, peripheral capillary oxygen saturations (SpO2), length of ICU stay and
mortality [65]. Furthermore, another study which consisted of 4 groups over a 10 day supplementation
149
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Table 1
Published RCTs on intervention with Vitamin C and Zn supplement in COVID-19 patients.

Author, year (ref) Country Type of
study

Participants Number of I/C Intervention Control Duration Results

JamaliMoghadamSiahkali,
et al., 2021 [65]

Iran RCT Severe
COVID-19

30/30 High dose Vitamin C
(6 g/daily)

lopinavir/ritonavir and
hydroxychloroquine

5 days Body temperature ↔
SpO2 ↔
Length of hospitalization [

Length of ICU stay ↔
Mortality ↔

Thomas et al., 2021 [66] USA RCT COVID-19 Group 1: 58,
group 2: 48,
group 3: 58/50

Group 1: Zn gluconate
(50 mg)
Group 2: ascorbic acid
(8000 mg)
Group 3: both
supplement

Standard of care 10 days Fever ↔
Cough ↔
Shortness of breath ↔
Fatigue ↔
Hospitalization ↔
Death ↔

Abd-Elsalam et al.,
2021 [67]

Egypt RCT COVID-19 96/95 Chloroquine/
hydroxychloroquine
and Zn sulfate
(220 mg contains
50 mg Zn/twice daily)

Chloroquine/
hydroxychloroquine

15 days Hemoglobin ↔
Platelets ↔
WBCs ↔
Direct bilirubin ↔
Indirect bilirubin ↔
Albumin ↔
ALT ↔
AST ↔
D-dimer ↔
Ferritin ↔
Creatinine ↔
CRP ↔
Duration of hospital stay in days ↔
Recovery after 28 days ↔
Need for mechanical ventilation ↔
Survived ↔

Patel et al., 2021 [68] Australia RCT COVID-19 15/18 Elemental Zn
concentration,
0.24 mg/kg/day

Saline placebo 7 days Serum Zn [

Mean daily peak oxygenation
requirement ↔
Number of patients with
supplemental oxygen ↔
Number of patients with NIV,
and/or HFNC ↔
Number of patients with
mechanical ventilation ↔

RCT, randomized controlled trial; Spo2, Peripheral capillary oxygen saturations; ICU, intensive care unit; WBC, white blood cell; ALT, alanine aminotransferase; AST, aspartate amino-
transferase; CRP, C-reactive protein; HFNC, high-flow nasal cannula, NIV, noninvasive ventilation.
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period e 1) Zn gluconate (50 mg); 2) Vitamin C (800 mg); 3) Zn gluconate (50 mg) þ Vitamin C (800
mg); and 4) a placebo control e assessed fever, cough, shortness of breath, fatigue, hospitalization and
death, and found no differences in the outcome variables [66]. Moreover, supplementation with 220
mg Zn gluconate (contains 50 mg Zn) twice daily for 15 days did not improve any of the assessed
biochemical, hematological and clinical outcomes [67]. Lastly, an RCT in which 0.24 mg/kg/day of
elemental Zn was administered to patients for a maximum of 10 days, found that respiratory param-
eters did not differ between patients supplemented with Zinc or the placebo control [68]. Accordingly,
the results published thus far regarding the influence of Vitamin C and Zn supplementation on COVID-
19-related symptoms suggest that these strategies may not be effective; however, wemust wait for the
results of the ongoing RCTs.

Concern about toxicity with Vitamin C and Zn

Vitamin C is a water-soluble vitamin, and excess can be excreted by the kidneys; however, in high
doses Vitamin C can increase the formation of oxalate stones. Currently, no Vitamin C-related toxicity
has been reported in RCTs in patients with COVID-19 [65,66]. However, a case report of two patients
with COVID-19 reported oxalate nephropathy due to high doses of Vitamin C (>100 g total) [69]. Crit-
ically ill patients with COVID-19 are at increased risk of acute kidney injury due tomultiplemechanisms,
including: i) renal hypo-perfusion which occurs as a result of decreased blood circulation and sepsis
[70]; ii) activation of the inflammatory cascade that damages renal epithelial cells [70]; iii) potential
mechanisms associated with acute renal impairment in patients with acute respiratory distress syn-
drome (e.g., high intrathoracic pressures due to mechanical ventilation, hypoxemia, and systemic
acidosis that affect renal vascular resistance and alter renal blood pressure; and facilitates the release of
proinflammatory cytokines [71]); iv) and drug toxicity. In addition, Vitamin C increases the likelihood of
hyperoxaluria through endogenous conversion of ascorbic acid to oxalate [72]. Oxalate crystals are
excreted rapidly in healthy individuals but may be retained in patients whose renal epithelial cells are
damaged [73]. Therefore, oxalate nephropathymay be present in patients with COVID-19 for the reasons
mentioned previously. Currently, there is no known toxic dose of Vitamin C, but the dose of 1000mg per
day can increase oxalate excretion up to 13e16 mg/day and may cause calcium oxalate stones [74].

Acute high dose Zn supplementation (300 mg/day for 6 weeks) [75], as well as long-term treatment
[64], can have adverse effects on immune system function. Furthermore, a study in older adults showed
that high doses of Zn increased circulating levels of IL-1a [58]. As well, an in vitro study has shown that
high concentrations of Zn reduced IFN regulatory factor 1 expression in regulatory T cells and conse-
quently reduced IFN- g [76]. Therefore, we need further studies to establish the therapeutic efficacy (or
lack thereof) of Zn supplementation.

Conclusion

Adequate intake of immune-enhancing nutrients (Vitamin C and Zn) in conjunction with phar-
macological agents is necessary during the COVID-19 pandemic. To specifically clarify the role of
supplementation with Vitamin C and Zn in the management of coronavirus we must wait for the
completion of the ongoing RCTs. The effects of the toxicity of these micronutrients should also be
considered to prevent over-supplementation.
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