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O R G A N I S M A L  B I O L O G Y

Automated audiovisual behavior recognition 
in wild primates
Max Bain1*, Arsha Nagrani1†, Daniel Schofield2, Sophie Berdugo2,3, Joana Bessa4, Jake Owen4, 
Kimberley J. Hockings5, Tetsuro Matsuzawa6, Misato Hayashi‡§, Dora Biro4,7, 
Susana Carvalho2,8,9,10, Andrew Zisserman1

Large video datasets of wild animal behavior are crucial to produce longitudinal research and accelerate conser-
vation efforts; however, large-scale behavior analyses continue to be severely constrained by time and resources. 
We present a deep convolutional neural network approach and fully automated pipeline to detect and track two 
audiovisually distinctive actions in wild chimpanzees: buttress drumming and nut cracking. Using camera trap 
and direct video recordings, we train action recognition models using audio and visual signatures of both behav-
iors, attaining high average precision (buttress drumming: 0.87 and nut cracking: 0.85), and demonstrate the 
potential for behavioral analysis using the automatically parsed video. Our approach produces the first automated 
audiovisual action recognition of wild primate behavior, setting a milestone for exploiting large datasets in ethology 
and conservation.

INTRODUCTION
The field of ethology seeks to understand animal behavior from both 
mechanistic and functional perspectives and to identify the various 
genetic, developmental, ecological, and social drivers of behavioral 
variation in the wild (1). It is increasingly becoming a data-rich sci-
ence: Technological advances in data collection, including biolog-
gers, camera traps, and audio recorders, now allow us to capture 
animal behavior in an unprecedented level of detail (2). In particu-
lar, large data archives including both audio and visual information 
have immense potential to measure individual- and population-level 
variation as well as ontogenetic and cultural changes in behavior 
that may span large temporal and spatial scales. However, this po-
tential often goes untapped: The training and human effort required 
to process large volumes of video data continue to limit the scale 
and depth at which behavior can be analyzed. Automating the mea-
surement of behavior can transform ethological research, open 
up large-scale video archives for detailed interrogation, and be a 
powerful tool to monitor and protect threatened species in the wild. 
With rapid advances in deep learning, the novel field of computa-
tional ethology is quickly emerging at the intersection of computer 
science, engineering, and biology, using computer vision algorithms 
to process large volumes of data (3).

The aim of this paper is to automate animal behavior recogni-
tion in wild footage. Deep learning–based behavior recognition has 
thus far been shown in constrained laboratory settings (4, 5) or 
using still images (6) and has yet to be effectively demonstrated on 
unconstrained video footage recorded in the wild. Measuring 
animal behavior from wild footage presents substantial challenges—
often, behaviors are hard to detect, obscured by motion blur, occlu-
sion, vegetation, poor resolution, or lighting. If successful, then the 
tools would enable exploration of a multitude of research questions 
in ethology and conservation. Increasingly, research is revealing 
fine-scale variation between individuals and populations of wild 
animals (7); however, capturing this variation is often laborious and 
not feasible on the large scale through manual annotation. Auto-
mated approaches allow us to examine in more detail the variation, 
through cross comparison of animal groups in a wide variety of 
contexts. Detailed time series data of individual behavior enables 
integration of time depth perspectives into field research to more 
comprehensively reconstruct how behavior develops across the life 
span (ontogenetically) as well as examine how other processes such 
as social transmission, demography, and ecology interact to drive 
behavior change over time (8). These detailed behavioral data are 
also a crucial component of conservation research: They enable us 
to investigate how anthropogenic pressures such as climate change 
and habitat fragmentation disrupt animal behavior (9) (migratory 
patterns, foraging, reproduction, etc.) and to develop novel behav-
ioral metrics to monitor the risks to and viability of threatened pop-
ulations (10, 11). Here, we demonstrate the potential of such an 
approach by developing a system for the automated classification of 
two distinct wild chimpanzee behaviors with idiosyncratic audiovi-
sual features: nut cracking and buttress drumming. We also analyze 
pilot data of sex and age differences in percussive behaviors (nut 
cracking and drumming) from longitudinal archive and camera 
trap datasets. Chimpanzees are an ideal species for testing behavior-
al recognition; owing to their large fission-fusion societies, complex 
sociality, and behavioral flexibility, they exhibit exceptionally rich 
behavioral repertoires (12). Our target behaviors, nut cracking and 
buttress drumming, differ in their function—extractive tool use ver-
sus long-distance communication, respectively—but both involve 
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percussive actions that produce distinctive sounds, i.e., the pound-
ing of a hammer stone against a nut balanced on an anvil stone and 
the pounding of hands or feet against large buttress roots. Whereas nut 
cracking is limited to some West African and Cameroon chimpanzees 
(Pan troglodytes verus and Pan troglodytes ellioti), buttress drumming 
is a universal behavior across all chimpanzee communities (12).

In relation to previous works using deep learning, individual 
reidentification has been a critical first step toward full automation 
(13, 14), but this alone cannot capture the full complexity of behav-
iors that animals perform in the wild across space and time. Existing 
methods have used deep learning for markerless pose estimation to 
track the movement of animal body parts (15), but pose estimation 
models perform poorly at recognizing actions using posture and 
limb movements alone (16). Other approaches have used single- 
image analysis to identify basic activities of wild animals using tagged 
information from camera traps, but these fail to capture the dynam-
ic sequences of behavior required for detailed analysis (17). Recent 
advances in human action recognition in the field of computer 
vision have used three-dimensional (3D) convolutional neural net-
works (CNNs) (18), which incorporate spatiotemporal information 
across video frames (19), but thus far have only been applied to animal 
species to produce broad behavioral classification limited to the vi-
sual domain (20).

Given that both behaviors have strong audio and visual signa-
tures, we recognize actions using both audio and visual streams. 
Our automatic framework consists of two stages: (i) body detection 
and tracking of individuals through the video (localization in space 
and time) and (ii) audiovisual action recognition (Fig. 1 and movie 
S1). Audio allows us to determine temporal segments where the nut 
cracking and buttress drumming occur (“scene level”) but does not 
pinpoint the individual responsible. By visually detecting and track-
ing all chimpanzees that appear in the video, frame by frame, we are 
able to determine the spatial position of each individual present. 

The next stage of our framework uses both the scene level audio and 
the visual content of each track to specify which individual is per-
forming the behavior (“individual level”). Both stages in our pipe-
line use a deep CNN model (see Materials and Methods).

The audio stream can also be used to provide a preview mecha-
nism to filter out behavioral sequences for human annotators to label 
(21), substantially reducing the time required to collect annotations. 
This is achieved using an audio-only action recognition model (which 
operates at the scene level) and can identify “proposals” or short 
video sequences where the action is likely to occur. A human annotator 
then only verifies whether the sequence contains the action or not. 
This allows us to efficiently create a labeled action recognition dataset 
that can be used to train the second stage of our automatic pipeline.

Our method is able to identify where fine-grained movements 
such as striking and drumming are occurring in time and space auto-
matically. It consists of a deep CNN model, which predicts actions 
using audio only, visual only, and both audio and visual modalities 
together. We demonstrate the use of our pipeline on two different 
data sources: For nut cracking, we use part of a longitudinal video 
archive recorded by human-operated camcorders at an “outdoor 
laboratory” in Bossou, Guinea (14, 22); while for buttress drumming, 
data were collected between 2017 and 2019 by 25 motion triggered 
cameras in Cantanhez National Park, Guinea-Bissau (23). Last, we 
also demonstrate possible next steps in behavioral analysis enabled 
by the automatically parsed video. This approach represents the first 
automated audiovisual action recognition of species in the wild.

RESULTS
For nut cracking, we apply our pipeline to 40.2 hours of video con-
taining 2448 nut cracking sequences (see Materials and Methods for 
definition of a sequence), resulting in a total of 24,700 individual 
body tracks (linked detections through video frames of the same 

Fig. 1. Fully unified pipeline for wild chimpanzee behavior recognition and analysis from raw video footage. The pipeline consists of the following stages: (A) Frames 
and audio are extracted from raw video. (B) Body detection is performed over the video frames using a deep CNN single-shot detector (SSD) model, and the detections 
are tracked using a Siamese tracker. (C) The body tracks are classified (e.g., is this individual cracking nuts?) using the audio data and spatiotemporal visual information 
for the track by a deep CNN audiovisual behavior model. The system only requires the raw video as input and produces labeled body tracks and metadata as temporal 
and spatial information. This automated system can be used to perform large-scale analysis (D) of behavior. Photo credit: Kyoto University, Primate Research Institute.
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individual; Fig. 1C and fig. S1B). The training set for our model 
consists of data taken from three years (2004, 2008, and 2012), while 
we test the performance of our model entirely on data from a differ-
ent year (2013) to demonstrate generalizability over time. Our 
audio-only nut cracking recognition CNN model obtains high average 
precision (85%; Table 1) at the scene level. Results at a scene level 
only detect time periods where nut cracking is being performed in 
the video, but they do not isolate the nut cracker, given that multi-
ple individuals may be nut-cracking in the video at the same time 
(Fig. 2). We also predict results at an individual level, identifying 
whether a particular individual is nut-cracking or not. Our chim-
panzee body detector achieved an average precision of 92% (fig. S1), 
and our nut cracking recognition model performed well on differ-
ent poses and lighting conditions typical of videos recorded in the 
wild (Fig. 2 and movie S1), achieving an overall average precision of 
77% at an individual level (Table 1 and Fig. 3).

For buttress drumming, 10.8 hours of camera trap footage are 
analyzed, resulting in a total of 1251 drumming sequences. We trained 
our model on data from two chimpanzee communities (Cabante 
and Caiquene-Cadique) and evaluated our model on manually labeled 
held-out test data from a third community (Lautchandé). Data from 
an additional community (Cambeque) are included in the analysis. 
Our drumming recognition CNN model achieved 87% average pre-
cision at a scene level (using audio only) and 86% average precision 
at an individual level (Table 1 and Fig. 3).

To demonstrate the potential applications of this framework, we 
used the output of our automatic pipeline to further characterize 
nut cracking and buttress drumming behaviors. For nut cracking, 
we trained a visual classifier to identify eating events: This model 
followed the protocols of the visual-only drumming and nut crack-
ing classifiers and sought to identify instances when food was passed 
from hand to mouth (an indication of successful nut cracking). Given 
that an individual typically eats in conjunction with nut cracking, 
our audio prescreening narrowed down the search space, allowing 
us to efficiently label 896 body tracks of individuals consuming nuts. 
This enabled us to analyze, as a function of age/sex class, the average 
time spent nut cracking per eating event (a proxy for the number of 
nuts successfully cracked and consumed) (Fig. 4). For buttress 
drumming, we automatically detect the first and last beats of 
each drumming bout to precisely measure drumming bout length 
as a function of age/sex class, allowing us to map the distribution 
of drumming events throughout the day (Fig. 5; details of the 

automatic beat detection method are found in the “Analysis” sec-
tion in Materials and Methods).

For Bossou chimpanzees, nut cracking bouts were predominantly 
performed by adult males (n = 4665 bouts) followed by adult fe-
males (n = 5485 bouts) and juveniles (n = 2134 bouts), while infants 
(n = 1) were not observed nut-cracking. The mean time spent nut- 
cracking and the proportion of time spent nut-cracking differed 
between age/sex groups. Adult males spent a greater proportion of 
their time nut-cracking than adult females (males, mean ± SD = 9.21 ± 
9.49%; and females, mean ± SD = 7.97 ± 9.19%), while juveniles re-
quired longer nut cracking sequences per nut consumed than adult 
males and females (males, mean ± SD =16.8 ± 6.46 s; females, mean ± 
SD =15.7 ± 10.41 s; and juveniles/infants, mean ± SD = 43.4 ± 39.0 s) 
(Fig. 4C and table S3), confirming previous reports on the ontogeny 
of nut cracking (24). This suggests that adult males consumed the 
greatest number of nuts.

For buttress drumming, we analyzed 992 drumming bouts; the 
majority of bouts were performed by adult males (n = 845), con-
firming previous observations that this is a predominantly male activity 
(25), and occurred throughout the day, following a bimodal distri-
bution with peaks in the morning and in the afternoon (Fig. 5B). 
When analyzing bout duration, adult males had, on average, shorter 
bouts (mean ± SD = 2.21 ± 1.80 s) than immature individuals (mean ± 
SD = 2.72 ± 2.39 s) and adult females (mean ± SD = 2.75 ± 1.79 s). 
There is a marked variation within each age/sex group, especially in 
adult males (min = 0.21 s and max = 19.48 s). In addition, drum-
ming context (travel, feeding, and agonistic display) was analyzed 
for both adult males and adult females. In both groups drumming, 
during “travel” was the most common (509 bouts for males and 
34 bouts for females), followed by “agonistic display” (225 bouts for 
males and 25 bouts for females), and lastly “feeding” (111 bouts for 
males and nine bouts for females). The proportion of drumming 
events for different contexts was approximately equal for both adult 
males and females (fig. S3). All drumming performed by immature 
individuals was done in a “play” context. Drumming bout duration 
varied between contexts in both adult males and adult females as 
well as between sexes. Feeding drumming bouts were, on average, 
shorter (males, mean ± SD = 1.74 ± 1.13 s; and females, mean ± SD = 
2.17 ± 1.09 s) than agonistic display (males, mean ± SD = 2.31 ± 
2.61 s; and females, mean ± SD = 2.78 ± 1.78 s) and travel drumming 
bouts (males, mean ± SD = 2.27 ± 1.35 s; and females, mean ± SD = 
2.89 ± 1.97 s).

DISCUSSION
Overall, our model demonstrates the efficacy of using deep neural 
network architectures for a biological application: the automated 
recognition of percussive behaviors in a wild primate. Unlike older, 
rule-based automation methods, our method is entirely based on 
deep learning and is data-driven. It also improves on previous single- 
frame methods by being video-based: It uses 3D convolutions in 
time (18) to reason about temporal information, which is important 
for action detections, and exploits the multimodality of video to use 
the audio and visual streams jointly to classify behaviors.

Often, it is challenging to curate datasets large enough to train 
action recognition models without sifting through a significant 
amount of footage (20 and 4.1% of footage yielded our behaviors of 
interest for the nut cracking and buttress drumming data, respectively). 
A key aspect of our approach is the use of audio as a prescreening 

Table 1. Recognition results for both nut cracking and buttress 
drumming. We provide a baseline (random), which shows the chance 
performance of a random classifier. Bold indicates the highest performing 
method for the task. 

Task Method
Average precision

Nut cracking Buttress 
drumming

I. Scene level Random 0.09 0.11

Audio 0.85 0.87

II. Individual 
level

Random 0.12 0.13

Audio 0.30 0.81

Visual 0.76 0.64

Audiovisual 0.77 0.86
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mechanism, which substantially cuts down the large search space of 
video for annotation.

Furthermore, we do not constrain the video data in any way, as 
is done commonly for deep learning methods applied to primate 
recognition and analysis by aligning individual detections or selecting 

for age, resolution, or lighting (26). Instead, we are able to perform 
the task “in the wild” and ensure an end-to-end pipeline that will work 
on raw video with minimum preprocessing (Fig. 2). We also demon-
strate that our method is applicable to both long-term targeted field 
video recordings (including in a field experimental setting) and to 

Fig. 2. Behavior recognition results demonstrate the CNN model’s robustness to variations in pose, lighting, scale, and speed of action. Example of correctly 
labeled body tracks from unseen and unheard videos (nut cracking and drumming for the top two and bottom two rows, respectively). Middle two rows: Multiple individuals 
nut-cracking and buttress-drumming showing variations in lighting, pose, background, and number of chimpanzees. Photo credit: Kyoto University, Primate Research 
Institute; The Cantanhez Chimpanzee Project.
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remote monitoring camera trap datasets, demonstrating its useful-
ness across different data collection protocols.

The pipeline can be applied to data where only audio or only 
visual information is available (e.g., camera trap recordings where 
the behavior occurs off-screen, video recordings with noisy or cor-
rupted audio, or microphone-only recordings). The benefits of our 
audio method are that it is not affected by visual distractors such as 
lighting, pose, size, and occlusion and is also computationally cheaper 
to run. Certain actions (such as buttress drumming) are also more 
discriminative in the audio space than the visual space (Table 1) and 
hence require less training data. Audio also allows greater coverage, 
by detecting actions beyond the field of view of the camera. Our 
visual-only method, on the other hand, provides the added benefit 
of allowing localization at an individual level, predicting which in-
dividuals are performing particular actions. This is a key advantage 
for potential future applications in, for example, the monitoring of 
individual behavior and welfare, both in the wild and in captive set-
tings. Our audiovisual model combines the benefits of both modalities. 
For drumming, we demonstrate that our model works well even on 
camera trap data from locations unseen by our model during train-
ing (which therefore might contain different tree species) and com-
munities of chimpanzees.

Our model’s performance demonstrates the effectiveness of us-
ing multimodal deep learning for behavioral recognition of individ-
ual animals in longitudinal video archives and camera trap datasets 
in the wild. Using a novel combination of data collection methods 
(automated classifiers and manual annotations) and video datasets 
(archival footage and camera traps), we validate our approach by 
reproducing known findings on the ontogeny of nut cracking from 
the existing literature (24) and go further to gain preliminary insights 
into drumming behavior in unhabituated communities as well as 
revealing potential sex and age differences in different contexts (pre-
viously neglected in published work). Ultimately, the integration of 

computer vision and ethology using automated behavior recogni-
tion can aid behavioral research and conservation, moving beyond 
inferences of social structure and demographics that can be inferred 
using individual identification [e.g., (14)] to capturing the full com-
plexity and dynamics of social interactions and behaviors. Typically, 
the time and resources required for manual data collection of mul-
tiple behaviors (either through in situ observation or retrospective 
video coding) prohibits analysis of large scale datasets. Adopting 
automated behavioral recognition is scalable, increasing the speed, 
quantity, and detail of data that can be collected and analyzed. Once 
classifiers have been trained, such work can move beyond broad 
classification of general behavioral states (eating, resting, etc.) to in-
clude fine-grained analysis at multiple layers/dimensions of behavior 
(27)—for example, using pose estimation to quantify postural kine-
matics or detect the number and order of elements in a behavioral 
sequence (e.g., nut cracking strikes) or investigating temporal co- 
occurrences between the behavior of individuals in the same group. 
We also envisage that our method could have a large impact in con-
servation science. Anthropogenic pressures are increasingly affecting 
animal behavior, with habitat fragmentation and population loss posing 
an imminent threat to “cultural species” through the erosion of be-
havioral diversity (28). Automating the measurement of behavioral 
diversity and activity budgets could be crucial for developing more 
sophisticated metrics to monitor the health and stability of wild 
populations (10).

There are some limitations to our study, notably that the audio 
preview step is limited to actions that contain a distinctive sound 
(such as percussion). Nonetheless, none of the pipeline steps are 
specific to primate behavior, and the method can be readily applied 
to other animal species and behaviors. Furthermore, behaviors that 
are audio distinctive exist in multiple domains, and we envisage 
possible applications for our pipeline in, for example, marine and 
terrestrial animal communication (vocalizations), movement (wing 

Fig. 3. Performance of the audio, visual, and audiovisual models for individual-level behavior classification. The curves for nut-cracking (left) and buttress-drumming 
(right) demonstrate that audiovisual outperforms single-modality methods. Instances where the behavior is either visually or audibly occluded can be compensated 
by using the other modality (AP: Average Precision).
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flapping and stepping), self-maintenance (scratching), aggression 
(hitting, slapping, and screaming), and foraging (tearing, smashing, 
and chewing). These analyses could be performed on data not only 
from remote sensors but also from animal-borne audio-only biolog-
gers. Another limitation concerns the fact that, for individual-level 
recognition, our method is heavily reliant on the performance of 
the body detector: Individuals that are not detected or tracked can-
not have their behavior classified. For example, the detector often 
fails to detect infants on their mother’s backs, although for our pres-
ent analyses, this poses no problem, because young chimpanzees do 
not nut-crack or buttress-drum while being carried. For behaviors 
that specifically require a visual classifier (such as successful nut crack-
ing being identified through the hand-to-mouth motion of eating), 
visual occlusion or motion blur poses challenges. However, we note 
that the body detector has far fewer missed individual detections than 
other methods that are reliant on face detection (14, 22). Future 

directions to improve our pipeline include adopting active learning, 
which minimizes annotator effort by automatically selecting infor-
mative samples from a pool of unannotated data for a human to an-
notate to retrain the network (29). In addition, self-supervised learning 
enables label-free pretraining, initializing the model in such a way 
that reduces the annotation requirement for training (30).

Our pipeline provides a critical first step in large-volume auto-
mated behavioral coding and represents a breakthrough in measur-
ing behavior. It will permit detailed intraindividual, interindividual, 
and cross-site comparisons, automated collection of activity bud-
gets, and longitudinal studies of behavior at individual and popula-
tion levels, enabling detailed investigation into ontogeny, cultural 
evolution, and the persistence/decline of behavioral variation over 
time and how these relate to environmental change. It has transfor-
mative potential to science, setting a milestone for exploiting large 
datasets in ethology and conservation.

Fig. 4. Nut cracking analysis. (A) An example activity sequence following a single individual over the course of a video. The blank white spaces are any activities that are 
not nut cracking or eating. Note that eating typically follows nut cracking events. (B) Proportion of time spent nut cracking as a fraction of total time visible. (C) Average 
time spent nut cracking per eating event. Computed by dividing the cumulative time spent nut-cracking over the total number of eating events as a function of age and 
sex. Photo credit: Kyoto University, Primate Research Institute.
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MATERIALS AND METHODS
Video archive
Description of actions
Nut cracking has been described as the most complex tool-use be-
havior in wild chimpanzees, with the nut cracker typically combin-
ing three objects (31, 32). It involves placing a hard-shelled nut on 
an anvil and then using a hammer to pound the nut until the edible 
kernel is exposed—sometimes one or two wedges are used to stabilize 
the anvil. We defined nut cracking “sequences” as beginning when the 
hammer is raised before the initial strike of a nut and ending when 
the hammer makes contact with the nut or anvil for the final time 
before the nut is consumed or abandoned or the camera is moved 
away. Sequences often included multiple strikes for a single nut.

Buttress drumming is a universal and frequent behavior across 
all chimpanzee communities, but there is much left to understand 
about its functions and potential cross-community variation. Drum-
ming occurs when a chimpanzee slaps or stamps rhythmically on 
the buttress of a tree, often accompanied by a distinct vocalization 
called a pant hoot. Multiple functions of drumming have been proposed, 

including long-distance communication (25, 33) and intimidation 
accompanying agonistic displays (34). Distinctive individual drum-
ming patterns and pant hoot vocalizations are thought to act as signals 
that coordinate group movement and distribution when traveling, 
as well as containing information about the individual’s identity (35). 
These distinct drumming patterns have been described for both males 
and females (36), but male chimpanzees appear to drum more fre-
quently when traveling (35). We defined buttress drumming se-
quences as beginning when the first beat was detected and ending 
with the last beat; any behavior, such as pant hoots, occurring imme-
diately before the first beat or immediately after the last beat were 
not included. Beats were detected visually, when at least one hand 
or foot was in contact with the buttress, and auditorily, when the 
distinct beat sound was heard.
Structure of the data
Nut cracking at Bossou, Guinea. Data used were collected in the Bossou 
forest, southeastern Guinea, West Africa, a long-term chimpanzee 
field site established by Kyoto University in 1976 (14). Bossou is home 
to an outdoor laboratory: A natural forest clearing (7 m by 20 m) 

Fig. 5. Buttress drumming analysis. (A) Spectrogram showing a detected drumming bout delineated by the first and last beats, with video frames visualized. (B) Kernel 
density estimation plot showing the diel distribution of buttress drumming bouts, based on hh:mm:ss data captured by camera traps. (C) Duration (in seconds) of buttress 
drumming bouts by context (agonistic display, travel, and feeding) and by age/sex (adult females and adult males). Photo credit: The Cantanhez Chimpanzee Project.
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located in the core of the Bossou chimpanzees’ home range (07°39′N 
and 008°30′W) where raw materials for tool use—stones and nuts—
are provisioned, and the same group has been recorded since 1988 
(14, 22). The use of standardized video recording over many field 
seasons has led to the accumulation of more than 30 years of video 
data, providing unique opportunities to analyze chimpanzee be-
havior over multiple generations. In total, we analyzed 43.1 hours 
of video footage.

Buttress drumming in Cantanhez National Park, Guinea-Bissau. Data 
used were collected by camera traps (n = 25) deployed in the home 
ranges of four different communities (Caiquene-Cadique, Lautchandé, 
Cambeque, and Cabante) in Cantanhez National Park, Southern 
Guinea-Bissau, West Africa (11°14′17.2″N and 15°02′16.9″W) be-
tween February 2017 and December 2018. Chimpanzees in Cantanhez 
National Park inhabit an agroforest landscape and are not habituated 
to researchers. The camera traps were set up in areas that chimpan-
zees’ frequented and pointed to trees with large buttress roots with 
clear signs of wear from chimpanzee buttress drumming. Some 
cameras were moved during the study period to account for seasonal 
changes in chimpanzee ranging patterns and when a new area of 
interest was located. Cameras were motion sensitive and were set 
to record 1-min video clips when triggered. Approximately 41,000 
video clips were collected over the study period, of which 4745 contained 
footage of chimpanzees, spanning a total of 47.2 hours of video footage.

Dataset splits: Training, testing, and analysis. We divide the data-
set into different sections. Part of the data is manually annotated by 
human annotators, which provides data for training and testing our 
automated framework (described in the “Methods” section). The 
remaining data are unlabeled by humans. Our framework is ap-
plied to these unlabeled data automatically (this stage is referred to 
as inference) for analysis (described in the “Analysis” section). 
Dataset statistics are provided in table S1.

Methods
Our pipeline for the detection of audio-discriminative percussive 
behaviors consists of the following two stages: (i) chimpanzee de-
tection and tracking and (ii) audiovisual action recognition (Fig. 1).

To efficiently collect annotations for the second stage (ii) audio-
visual action recognition, we also use an additional “audio preview 
stage” (described below in the “Audio action recognition” section) 
only when collecting training data. This optional audio preview 
stage uses audio only to determine temporal segments where the 
behaviors (nut cracking and drumming) occur at a scene level. This 
markedly reduces the total search space of the video, allowing for 
efficient annotations, used to train a model on both scene-level 
audio and the visual content of each track to determine which indi-
vidual is carrying out the behavior.

With this trained model, our pipeline can then be applied direct-
ly to previously unseen videos without any human input. At this 
point, we do not require the audio preview stage and only use (i) 
detection and tracking and (ii) audiovisual action recognition.

All stages in the method are implemented using deep CNNs. For 
audio previewing, we train a CNN on the spectrogram image of the 
audio. For detection, we use a single-shot detector (SSD) object 
category detector (37) to detect individuals. The detections for an 
individual are then grouped across frames (time) using a pretrained 
tracker. The final audiovisual action recognition stage involves a 
spatiotemporal CNN for the visual features and a spectrogram 
CNN for the audio. The training data were obtained by using the 

VGG Image Annotator (VIA) annotation tool (38). We provide a 
detailed description for each stage of the pipeline in the following 
sections and then describe how the analysis is carried out given the 
detected behaviors.
Audio action recognition
With the audio data alone, our framework is able to classify actions 
at the scene level. The nut cracking and buttress drumming audio 
classifier achieved 85 and 87% average precision, respectively, on 
unseen test data (Table 1).

Network architecture. For the audio model, we use a 2D CNN 
(ResNet-18), pretrained on VGGSound (39). The output is passed 
through two linear layers and then a final predictive layer with two 
neurons and a softmax activation function, resulting in a binary 
classifier for each target action.

Inputs. We use short-term magnitude spectrograms as input to a 
ResNet-18 model. All audio is first converted to single-channel, 16-bit 
streams at a 16-kHz sampling rate for consistency. Spectrograms 
are then generated in a sliding window fashion using a hamming 
window with a width of 32 ms and a hop of 10 ms, with a 512-point 
fast Fourier transform. This gives spectrograms a size of 257 × 201 
for 3 s of audio. The resulting spectrogram is integrated into 64 mel-
spaced frequency bins with a minimum frequency of 125 Hz and a 
maximum frequency of 7.5 kHz, and the magnitude of each bin is 
log-transformed. This gives log mel spectrogram patches of 64 × 
201 bins, used as input to the CNN.

Augmentations. Temporal jittering of 0.5 s is used as well as aug-
mentation to positive samples by randomly adding background 
audio samples (audio that does not contain nut cracking and buttress 
drumming).

Training. Binary cross-entropy is used as the training objective, 
along with an Adam optimizer with a learning rate of 5 × 10−3.

Audio preview for manual annotation. Videos in the wild (in-
cluding from camera traps) contain a lot of dead footage, where 
the actions of interest may be captured rarely. Manually searching 
through all this footage is a labor-intensive task. Hence, we use an 
inexpensive and computationally efficient prescreening method to 
automatically sift through many hours of footage, proposing short 
videos that contain the action and discarding the rest. This is done 
using the audio alone, because our actions of interest are all percus-
sive and make a distinct sound.

The audio model is applied using a sliding window of size 3 s, 
with a stride of 0.5 s over the raw video footage. This produces a 
probability score P(action) of the action of interest being present 
within each temporal window. We then use the most confident 7% 
of windows (using the probability score as the confidence) for dis-
crete video labeling, resulting in 2418 discrete, 3-s long video pro-
posals to be annotated. The more expensive body detection and 
tracking is performed only on these “audio proposals.” The body 
tracks are visualized on the proposals, allowing the annotators to 
label each actor in the proposal with a binary label denoting whether 
or not they are performing the action. Given that the drumming 
video footage is already segmented into short clips and annotated, 
the audio preview step was not required for the buttress drumming 
data at training time, so it was only used for nut cracking here.

At inference time, the audio preview can be used as a filtering 
step first before the full framework, providing computation savings. 
Because audio is much cheaper computationally than the full frame-
work (detection, tracking, and audiovisual classification), this can 
be useful in resource-constrained environments such as running 
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the framework on the camera traps themselves. Because this work 
was not constrained in terms of compute, we did not use the audio 
preview step at inference. For buttress drumming, the trade-off is 
minimal; a computation saving of 64% still captures 97% of drum-
ming events. For nut cracking, the trade-off is greater; a computa-
tion saving of 64% captures 70% of nut cracking events. As there are 
many off-screen nut cracking events, the sound of nut cracking is 
not definitively on-screen.
Visual detection and tracking
A prerequisite for our method of automated detection of primate 
behavior is the detection and tracking of the target animal, produc-
ing spatiotemporal tracks following individuals through time. Deep 
learning has proved to be highly successful at object detection and 
tracking, and previous works describe the protocol and results of 
this applied to footage of wild animals (13, 14, 40, 41).

In more detail, we follow the same protocol as in (13), which 
involves fine-tuning an SSD object detector (37) on bounding box 
annotations of chimpanzee bodies. Because the two datasets con-
tain very different sources of footage, including camera traps for 
drumming and direct longitudinal recordings for nut cracking (the 
former containing night vision, varied lighting, and out of focus 
blur; with the latter having higher quality video but consisting of 
close-ups as well as medium shots), we separately fine-tune the two 
object detectors, one for each dataset.

For the nut cracking dataset, we fine-tune on 16,000 bounding 
box annotations across 5513 video frames. For the buttress 
drumming dataset, we fine-tune on 2200 bounding box annota-
tions across 2137 video frames. All video frames were sampled 
every 10 s.

Tracking. The object tracker used to link the resulting detections 
through time is a pretrained Siamese network. Pairs of detections in 
consecutive frames with a Jaccard overlap greater than 0.5 are given 
as input to the network. Detection pairs with a similarity score 
greater than 0.5 are deemed to be from the same track.

Evaluation for the detectors. Evaluation is performed on a held-
out test set using the standard protocol outlined in (42). The precision- 
recall curve is computed from a method’s ranked output. Recall is 
defined as the proportion of all positive examples above a given 
rank, while precision is the proportion of all examples above that 
rank, which are from the positive class. For the purpose of our task, 
high recall is more important than high precision (i.e., false posi-
tives are less dangerous than false negatives) to ensure that no chim-
panzees are missed. The Bossou and Cantanhez detectors achieved 
average precision scores of 0.92 and 0.91 on their respective test 
sets. Precision-recall curves for both detectors are shown in fig. S1A.

Programming implementation details. The detector was imple-
mented using the machine learning library PyTorch and trained on 
two Titan X Graphical Processing Units (GPUs) for 20 epochs 
(where 1 epoch consists of an entire pass through the training set) 
using a batch size of 32 and two subbatches. Flip, zoom, path, and 
distort augmentation was used during preprocessing with a zoom 
factor of 4. The ratio of negatives to positives while training was 3, 
and the overlap threshold was 0.5. The detector was trained without 
batch normalization. The tracker was also implemented in PyTorch.
Audio-visual action recognition
Network architecture. For the visual stream, we use a 3D ResNet-18, 
with 3D convolutions (30). The output is passed through two linear 
layers and then a final predictive layer, with two neurons and a soft-
max activation function. For the audiovisual fusion model, 512 di-

mensional embeddings from the ResNet backbone in each stream 
are concatenated and then passed to the final predictive layer, with 
two neurons and a softmax activation function.

Inputs. For the audio stream, the preprocessing is identical to the 
“Audio action recognition” stage. Video frames are sampled at 25 
frames per second, and all detections are resized to 128 × 128—we 
feed in 40 frames over 2.5 s, with three red-green-blue channels 
each, sampled randomly during training and uniformly during in-
ference. This gives final inputs of size 40 × 128 × 128 × 3.

Augmentations. Standard augmentation techniques are applied 
to the visual inputs: color jittering, random cropping, and horizon-
tal flipping. For the audio, we repeat the augmentations in the 
“Audio action recognition” section.

Training.  All models are trained with a binary cross-entropy 
loss. In this stage, we use the annotations obtained from the “Audio 
action recognition” stage of the pipeline to train the model.

Evaluation. Evaluation for the action recognition models is per-
formed on a held-out test set, the statistics of which are supplied in 
Table 1. The audiovisual fusion model performed the best at the 
individual level for both nut cracking and buttress drumming 
(77 and 86%, respectively), demonstrating its robustness across 
domains and actions and demonstrating its efficacy over audio or 
vision alone.

The models are evaluated on their precision recall at either the 
scene level or individual level. For the scene level, we evaluate the 
audio-only model with a stride of 0.5 s and a forgiveness collar of 
0.5 s. For the individual level, we evaluate the audio, visual, and au-
diovisual models with a stride of 0.5 s per track and a forgiveness 
collar of 0.5 s.

Implementation details.  The networks for action recognition 
were trained on four Titan X GPUs for 20 epochs using a batch size 
of 16. We trained both models end to end via stochastic gradient 
descent with momentum (0.9) weight decay (5 × 10−4) and a loga-
rithmically decaying learning rate (initialized to 10−2 and decaying 
to 10−8). The visual stream is initialized with weights from (30), and 
the audio model is initialized with weights pretrained on VGG-
Sound (39).
Action-specific implementation details
Nut cracking analysis: Success detection.  To further analyze nut 
cracking behaviors, we additionally measure another action: pass-
ing food from hand to mouth, which is an indication of successful 
nut cracking. Here, the shell has been successfully cracked and the 
individual passes the kernel to their mouth using their hand; hence-
forth, this action is referred to as “eating.” Because this behavior has 
a strong visual signature, we train a visual classifier to determine 
this. This model follows the protocol of the visual-only drumming 
and nut cracking classifiers. The training labels for eating events 
were gathered from the audio preview proposals, totaling 896 track-
lets of individuals eating. While the audio preview searches for nut 
cracking, eating is often found shortly after successful nut cracking 
events, so the short audio proposals often contain this action as 
well. Furthermore, individuals often nut-crack together, resulting 
in multiple individuals in a video proposal. Training the model on 
data from 2004 and 2008 results in 89% accuracy in classifying eating 
on unseen tracks from 2012.

Buttress drumming duration analysis. We investigate the dura-
tion of drumming bouts by determining the start and the end beat 
in a drumming bout using audio-based beat detection. Beat detec-
tion is performed in an automated fashion by using low-pass filtering 
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and onset detection to the audio signal of the drumming bout. The 
audio sequence is first low pass–filtered using a Butterworth filter 
with a cutoff frequency of 800  Hz. Onset detection is then per-
formed on the filtered audio waveform. We use the onset detection 
method provided by the Librosa Python toolbox. The hyperparam-
eters were chosen to achieve the best beat counting accuracy on 30 
drumming bouts hand-labeled with the number of beats. During 
evaluation, we apply a forgiveness collar of 0.25 s on either side of the 
drumming event boundaries to be more lenient toward imprecise 
boundary annotation. From the beat detections, we define the dura-
tion of a drumming bouts to be the interval between the first and last 
beats. This beat detection method predicts drumming duration with 
a mean and median error of 0.205 and 0.131 s, respectively.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi4883

View/request a protocol for this paper from Bio-protocol.
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