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A new titanocenyl amide containing flavone as pendant group has been synthesized by reaction of titanocenyl carboxylic
acid chloride and 7-Aminoflavone and structurally characterized by spectroscopic methods. This species and eight previously
synthesized titanocenyl amide complexes have been tested in breast adenocarcinoma cancer cell line, MCF-7. The functionalization
of titanocene dichloride with amides enhances the cytotoxic activity in MCF-7. Two sets of titanocenyl amides can be identified,
with IC50 < 100μM and IC50 > 100μM. The most cytotoxic species is Cp(CpCO-NH-C6H4-(CH2)2CH3)TiCl2 with an IC50 of
24(2) μM, followed by Cp(CpCO-NH-C6H4-Br)TiCl2, IC50 of 46(4) μM and Cp(CpCO-NH-C6H4-OCF3)TiCl2, IC50 of 49(6) μM.
There is no correlation between the nature of the para substituent on the phenyl ring and the cytotoxic properties on MCF-7 cell
line.

1. Introduction

The development of efficient metal-based anticancer drugs
currently still is a scientific challenge. The design of such
species requires careful selection of the metal center and
ligands surrounding their coordination sphere in order
to achieve the desired biological activity but, keeping in
mind that it is also desirable to maintain low-toxic side
effects. In 1979, Köpf and Köpf-Maier opened a new
chapter in the medicinal chemistry with the discovery of
the first metallocene-based organometallic anticancer agent,
titanocene dichloride, Cp2TiCl2. The fact that it possesses
antitumor properties in cancer cell lines that are insensitive
to cisplatin as well as lower toxic effects than cisplatin, has
motivated the scientific community to continue investigating
this species [1–8].

The structure modification of titanocene dichloride to
enhance its anticancer properties requires a careful selection
of the functional group to be appended to the cyclopenta-
dienyl ring or replacement of the ancillary ligands for more
active ones. Recently, we published the synthesis, structure,
and biological activity of titanocenyl amide complexes in
colon cancer cell line HT-29 [9]. We were able to achieve

cytotoxic activities (IC50 values) on HT-29 in the micromolar
range, which are two orders of magnitude more cytotoxic
than titanocene dichloride as is the case for the titanocenyl
amide containing a trifluoromethoxy group on the para
position of the phenyl ring in Scheme 1 [9]. Apparently,
the Ti-O (amide) coordination provided more stability in
aqueous solution (resisting hydrolysis) and resulted in the
formation of more cytotoxic species [9]. Motivated by these
optimistic results, we decided to explore their activity on
breast cancer cell line MCF-7. Herein we report our findings.

2. Experimental Details

2.1. General Procedure. All reactions were run under an
atmosphere of dry nitrogen using Schlenk glassware or
a glovebox, unless otherwise stated. Reaction vessels were
flame-dried under a stream of nitrogen, and anhydrous
solvents were transferred by oven-dried syringes or cannula.
Tetrahydrofuran was dried and deoxygenated by distillation
over K-benzophenone under nitrogen. Infrared spectra were
obtained in dried KBr pellets. The NMR spectra were
obtained on a DRX-500 MHz Bruker spectrometer. For the
samples prepared on CDCl3, chemical shifts were reference
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relative to CHCl3 at 7.27 ppm (1H-NMR) and CHCl3 at
77.00 ppm (13CNMR) as internal standard. Analytical data
were obtained from Atlantic Microlab Inc.

The breast adenocarcinoma cell line MCF7 was pur-
chased from American Type Culture Collection and was
kept at 37◦C and 95% Air/5% CO2. Growth medium for
MCF7 was Eagle’s Minimum Essential Media supplemented
with 10% (v/v) fetal bovine serum, 1% (v/v) antibi-
otic/antimycotic, nonessential aminoacids, and 0.01 mg/mL
bovine insulin. MTT and Triton X-100 used for the cytotoxic
assay were obtained from Sigma. All MTT manipulations
were performed in a dark room.

2.2. Synthesis and Characterization. Titanocenyl carboxylic
acid chloride and its precursor were prepared as described by
Gansäuer and coworkers [10, 11].

Synthesis of Complex (9). Titaniumcarboxylate (0.25 mmoL,
77.4 mg) was dissolved in SOCl2 (1.0 mL), and stirred
for 2 h at rt. Excess SOCl2 was removed under high-
vacuum and dried for 24 h. The precipitate was dissolved in
CH2Cl2 (2.0 mL), added dropwise to a mixture of the NaH
(0.75 mmoL, 18 mg) and the 7-Aminoflavone (0.25 mmoL,
59.4 mg) in CH2Cl2 (6.0 mL) and stirred for another 20 h.
After filtration through celite, the solvent was washed with a
mixture of 1N HCl and NaCl (1.0 g each 10 mL) (2×5.0 mL).
The organic layer was dried in MgSO4 and the solvent
removed under reduced pressure. The crude product then
chromatographed on Bio-Bead S-X3 (200–400 mesh). Before
use, the biobeads were swollen in CH2Cl2 for 24 h and the
product was eluted with methylene chloride to give 0.121 g
(85%) of brown red solid. The product was crystallized in
dichloromethane/hexane at −20◦C and a brown red solid
could be obtained.1HNMR (500 MHz, CDCl3), δ (ppm):
13.98 (s, 1H; NH), 8.23 (d, 3J = 8.0 Hz, 1H; H-5), 8.08 (s,
1H; H-8), 7.96 (m, 2H; H-2′, 6′), 7.84 (d, 3J = 8.0Hz, 1H;
H-6), 7.56–7.54 (m, 3H; H-3′, 4′, 5′), 7.42 (m, 1H; Cp), 7.15
(m, 1H; Cp), 6.84 (s, 1H; H-3), 6.77 (s, 5H; Cp), 6.72 (m, 1H;
Cp), 6.14 (m, 1H; Cp), 5.32 (CH2Cl2), 3.76 (d, 2J = 14.0 Hz,
1H), 3.25 (d, 2J = 14.0Hz, 1H), 1.70 (H2O), 1.41 (s, 3H), 1.27
(s, 3H). 13CNMR (125 MHz, CDCl3), δ(ppm): 177.6, 177.1,
163.8, 156.4, 151.3, 139.7, 131.9, 131.3, 129.2, 126.8, 126.4,
124.9, 122.4, 121.8, 121.1, 119.3, 116.5, 111.3, 111.2, 107.5,
47.7, 35.6, 29.7, 25.7. IR (KBr, cm−1): 2923, 2852, 1626, 1551,
1449, 1427, 1370, 1285, 1245, 1183, 1010, 909, 829, 772. Anal.

Calcd for C30H27Cl2NO3Ti∗2/3CH2Cl2∗H2O: C, 57.33; H,
4.76; N, 2.18. Found: C, 57.77; H, 5.10; N, 2.17.

2.3. Cytotoxic Assay. Biological activity was determined
using the MTT assay originally described by Mossman [12]
but using 10% Triton in isopropanol as a solvent for the
MTT formazan crystals [13]. HT29 and MCF7 cells were
maintained at 37◦C and 95% Air/5% CO2 in McCoy’s
5A (ATCC) complete medium, which had been supple-
mented with 10% (v/v) fetal bovine serum (ATCC) and
1% (v/v) antibiotic/antimycotic (Sigma). Asynchronously
growing cells were seeded at 1.5 × 104 cells per well in 96-
well plates containing 100 μL of complete growth medium,
and allowed to recover overnight. Various concentrations
of the complexes (1–1300 μM) dissolved in 5% DMSO/95%
Medium were added to the wells (eight wells per concentra-
tion; experiments performed in quadruplicate plates). The
complexes’ solutions were prepared first by dissolving the
corresponding titanocenyl in DMSO and then Medium was
added to a final composition of 5% DMSO/95% Medium.
In addition to the cells treated with the titanocenyls, two
controls experiments were run: one without any addition
of solvent mixture (5% DMSO/95% Medium) and one
adding 5% DMSO/95% Medium to the cells. Both control
experiments behaved identical, showing that 5% of DMSO
in the Medium did not have any toxic effect on the cell
growth. The cells were incubated for an additional 70
hours. After this time, MTT dissolved in complete growth
medium was added to each well to a final concentration
of 1.0 mg/mL and incubated for two additional hours.
After this period of time, all MTT containing medium was
removed; cells were washed with cold PBS and dissolved
with 200 μL of a 10% (v/v) Triton X-100 solution in
isopropanol. After complete dissolution of the formazan
crystals, well absorbances were recorded in triplicates on
a 340 ATTC Microplate Reader (SLT Lab Instruments) at
570 nm with background subtraction at 630 nm. Concen-
trations of compounds required to inhibit cell proliferation
by 50% (IC50) were calculated by fitting data to a four-
parameter logistic plot by means of SigmaPlot software from
SPSS.

3. Results and discussion

The syntheses of eight of the nine titanocenyl amide com-
plexes presented have been reported previously by our group
[9]. We applied the synthetic methodology developed by
Gansäuer and co-workers [10, 11]. A new titanocenyl amide
complex, 9, has been synthesized and spectroscopically
characterized, to complete the series of titanocenyls with
a wide variety of substituents on the para position of the
phenyl ring (see experimental). The 1H NMR spectrum
shows a signal at 13.98 corresponding to the NH group
and four multiplets from 7.42 to 6.14 ppm attributed to
the substituted Cp ring. In the 13C NMR spectrum shows
three peaks at 177.6, 177.1, and 163.8 ppm corresponding
to the three carbonyl groups. The IR spectrum corrobo-
rated the presence of the carbonyl groups with a band at
1626 cm−1.
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Table 1: Cytotoxicities of titanocenyl amides studied on MCF-7 breast cancer cell line at 72 h, as determined by MTT assay. IC values are
the average of four independent measurements with their standard deviations ( ).
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Figure 1: Dose-response curves for selected Amide-Functionalized
Titanocenyls complexes against MCF-7 breast cancer cells at 72
hours of drug exposure. Legend: complex-1 (squares), complex-6
(asterisks), complex-7 (diamonds). Experiments run in quadrupli-
cates.

The cytotoxicities of the titanocenyl complexes on breast
adenocarcinoma cancer MCF-7 cell line were measured
using a slightly modified MTT assay at 72 hours [12,
13]. As a reference, the cytotoxic activity of Cp2TiCl2 was
tested at 72 hours and an IC50 value of 570(5) μM was
obtained. In addition, two control experiments were run in
100% Medium and 5% DMSO/95% Medium. Both control
experiments behaved identically, demonstrating that 5%
DMSO in the Medium does not have any cytotoxic effect on
these cells.

The objective of this study is to investigate the role of
the substituents on the phenyl ring with different polarities,
steric and electrodonating capabilities and the resulting
anticancer properties on breast cancer. Figure 1 depicts the
dose-response curve for the most active titanocenyls and
Table 1 summarizes the results of the in vitro cytotoxicity
experiments on MCF-7 breast cancer cell line as determined
by MTT assay. The IC50 value represents the concentration of
the titanocenyl at which the cell growth is inhibited by 50%.

Upon analysis of Table 1, it can be noted that all
the functionalized titanocenyls are more cytotoxic than
Cp2TiCl2 (IC50 = 570(5)μM). Identical pattern was observed
for these species on HT-29 colon cancer cell line (see
Comparative Table in Supplementary Material) [9]. As
previously reported, the amide functionalization increases
the cytotoxic activity of the titanocenes as compared to
Cp2TiCl2 [9]. Second, the titanocenyls fall in two categories:
highly cytotoxic species with IC50 < 100 μM and mod-
erately cyctotoxic species with IC50 > 100 μM. The most
cytotoxic species is Cp(CpCO-NH-C6H4-(CH2)2CH3)TiCl2
with an IC50 of 24(2)μM, followed by Cp(CpCO-NH-
C6H4-Br)TiCl2, IC50 of 46(4)μM and Cp(CpCO-NH-C6H4-
OCF3)TiCl2, IC50 of 49(6)μM. Interestingly, these three
species are the most cytotoxic in HT-29 colon cancer cell line
[9]. Third, there is no correlation between para substituent
on the phenyl ring (polarity, steric, and electrodonation)

and cytotoxicity. Furthermore, although the titanoceneyl-
flavone derivative, 9, showed an IC50 < 100μM, we were
expecting better cytotoxic activity based on the fact that
flavones have antioxidant and anticancer properties as well
as serving as transport agent for drugs without side effects
[14].

To put in perspective these titanocenyl amides, we
should compare them with other functionalized titanocenes.
Recently, other amide-functionlized titanocenes have been
reported with anticancer properties with cytotoxicities in the
10−5 M range in six cancer cell lines: BJAB (lymphoma),
MelHo and A375 (melanoma), MCF-7 (breast carcinoma),
and Nalm-6 and Jurkat (leukemia) [15]. As it can be seen, our
most active titanocenyl amides have cytotoxicities in MCF-7
similar to those reported by Gansäuer and co-workers.
However, their cytotoxic data was obtained by measuring
apoptosis (AC50) and not IC50 and these results must be
looked carefully since the AC50 and not IC50 are determined
differently. In any event, both titanocenyl amides species,
those prepared by Gansäuer and co-workers and by our
group, have very good response in breast cancer, MCF-7, and
we believe that our species could have applications in other
cancer cell lines.

Other types of functionalized titanocenes have been
reported with enhanced cytotoxic properties and IC50

values in the micromolar range [16–22]. For instance,
McGowan and co-workers reported the anticancer activity
of a titanocene containing a cyclic amino pendant group
attached to the cyclopentadienyl ring, [C5H4(CH2)2N-
(CH2)5]2TiCl2·2HCl, on MCF-7 with an IC50 of 62 μM
[16]. Our more cytotoxic species, Cp(CpCO-NH-C6H4-
(CH2)2CH3)TiCl2, Cp(CpCO-NH-C6H4-Br)TiCl2 and
Cp(CpCO-NH-C6H4-OCF3)TiCl2, have IC50 of value below
50 μM demonstrating higher cytotoxic activity than this
water soluble [C5H4(CH2)2N-(CH2)5TiCl2·2HCl].

Beckhove and co-workers have reported anticancer prop-
erties of bis-[p-methoxybenzyl)cyclopentadienyl] titanium
dichloride (Titanocene Y). This is active against a wide
variety of cancer cell lines. Moreover, Titanocene Y has
been tested in explanted human breast tumor cells and
in xenografted MCF-7 tumors in mice with promising
results in terms of doses, low toxicity, and reduction of
tumor volume [21]. Also it has been tested in MCF-7
incubated in presence of serum albumin and showed good
cytotoxic activity at micromolar concentrations [22]. Lately,
fluorinated derivatives of Titanocene Y have been synthesized
and their cytotoxic properties have been examined in
Caki-1 and LLC-PK cell lines [23]. They have evidence that
incorporation of fluorine on the benzyl group improves
substantially its cytotoxicity when compared to the parent
compound, Titanocene Y. In particular, the trifluoromethoxy
group on the para position has demonstrated to increase
the cytotoxic of the corresponding titanocenes as compared
to the parent ones. While we have found similar evidence
for our titanocenyl amides in colon cancer, HT-29 cell line,
such correlation for MCF-7 cell line cannot be extrapolated.
In our case, the titanocenyl with the less polar and more
hydrophobic substituent (complex 7), with a propyl group
on the para position of the phenyl ring, exhibited the highest
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cytotoxic activity. Finally, other strategies are currently being
pursued such as replacement of chlorides by fluorides as
ancillary ligands on Titanocene Y and derivatives [24]. It
has been found that due to the increased hydrolytic stability
in the Ti–F bond, these species improved 4–7 times their
cytotoxic activities in Hela and Hep cell lines when compared
to the chlorides derivatives, but there are no cytotoxic studies
on MCF-7 cell line on these complexes to compare with our
complexes [24].

4. Conclusion

The functionalization of titanocene dichloride with amides
(phenyl amides) increases the cytotoxic activity of the result-
ing titanocenyl amide complexes. One possible explanation
could be the Ti-O(amide) bond which provides stability
in aqueous environment and makes the complex more
resistant to hydrolysis. Although this is highly speculative,
based on the structural features of these titanocenyl amides
and the hypothesis that albumin is the carrier protein of
titanocene into the target place inside the cell [22, 25],
we can envision that the phenyl ring could provide the
hydrophobic environment to incorporate the titanocenyl
into the hydrophobic cavities where the fatty acid docks
and N–H moiety could be involved in hydrogen bonding
with nearby amino acids. Another scenario could be that
these cationic species are uptaken by the cells by mean of
organic cation transporters [26]. Mechanistic studies and
cytotoxicity of these complexes in other cell lines will be
investigated in the future.
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[3] P. Köpf-Maier and H. Köpf, “Organometallic titanium, vana-
dium, niobium, molybdenum and rhenium complexes early
transition metal antitumor drugs,” in Metal Compounds in
Cancer Therapy, S. P. Fricker, Ed., pp. 109–146, Chapman and
Hall, London, UK, 1994.

[4] M. M. Harding and G. Mokdsi, “Antitumour metallocenes:
structure-activity studies and interactions with biomolecules,”
Current Medicinal Chemistry, vol. 7, no. 12, pp. 1289–1303,
2000.

[5] E. Meléndez, “Titanium complexes in cancer treatment,”
Critical Reviews in Oncology/Hematology, vol. 42, no. 3, pp.
309–315, 2002.

[6] F. Caruso and M. Rossi, “Antitumor titanium compounds,”
Mini-Reviews in Medicinal Chemistry, vol. 4, no. 1, pp. 49–60,
2004.

[7] F. Caruso and M. Rossi, “Antitumor titanium compounds and
related metallocenes,” Metal Ions in Biological Systems, vol. 42,
pp. 353–384, 2004.

[8] I. Kostova, “Titanium and vanadium complexes as anticancer
agents,” Anti-Cancer Agents in Medicinal Chemistry, vol. 9, no.
8, pp. 827–842, 2009.

[9] L. M. Gao, J. Matta, A. L. Rheingold, and E. Meléndez,
“Synthesis, structure and biological activity of amide-
functionalized titanocenyls: improving their cytotoxic proper-
ties,” Journal of Organometallic Chemistry, vol. 694, no. 26, pp.
4134–4139, 2009.
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