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Abstract
Trypanosoma cruzi is a protozoan parasite transmitted by a triatomine insect, and causing

human Chagas disease in South America. This parasite undergoes a complex life cycle

alternating between non-proliferative and dividing forms. Owing to their high energy

requirement, replicative epimastigotes of the insect midgut display high endocytic activity.

This activity is mainly restricted to the cytostome, by which the cargo is taken up and sorted

through the endosomal vesicular network to be delivered to reservosomes, the final lyso-

somal-like compartments. In African trypanosomes tomato lectin (TL) and ricin, respec-

tively specific to poly-N-acetyllactosamine (poly-LacNAc) and β-D-galactose, allowed the

identification of giant chains of poly-LacNAc in N-glycoproteins of the endocytic pathway.

We show that in T. cruzi epimastigote forms also, glycoproteins of the endocytic pathway

are characterized by the presence of N-linked glycans binding to both ricin and TL. Affinity

chromatography using both TL and Griffonia simplicifolia lectin II (GSLII), specific to non-

reducing terminal residue of N-acetylglucosamine (GlcNAc), led to an enrichment of glyco-

proteins of the trypanosomal endocytic pathway. Incubation of live parasites with TL, which

selectively bound to the cytostome/cytopharynx, specifically inhibited endocytosis of trans-

ferrin (Tf) but not dextran, a marker of fluid endocytosis. Taken together, our data suggest

that N-glycan modification of endocytic components plays a crucial role in receptor-medi-

ated endocytosis of T. cruzi.
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Introduction

Trypanosoma cruzi is the ethiological agent of Chagas’ disease, a parasitic disease affecting
about 8 million individuals in Latin America [1]. The life cycle of this parasite involves two
intermediate hosts (a triatomine insect vector and a vertebrate host) and three well-defined
developmental stages: trypomastigote (non-replicative infectious form), amastigote (intracellu-
lar dividing form found in the vertebrate host) and epimastigote (replicative form found in the
midgut of the insect vector). The latter form has endocytic activity, which is absent from the
two other forms (reviewed in [2]). In T. cruzi, endocytosis is restricted to two specialized invag-
inations of the plasma membrane around the base of the flagellum: the flagellar pocket (FP),
which is devoid of subpellicularmicrotubules, and the cytostome, which is linked to few special
microtubules that penetrate deeply into the cell [3] (reviewed in [2] and [4]). The cytostome is
observedonly in epimastigote and amastigote forms and is absent from the related kinetoplas-
tids T. brucei and Leishmania. As opposed to T. brucei bloodstream forms, in which the endo-
cytic turnover from the FP area is exceptionally high [5, 6], in the insect forms of T. cruzi the
endocytic rate is much lower and the cytostome is the major site of endocytosis [7, 8]. In these
parasites, the cargo is taken up through a system of pleomorphic tubular and cisternal struc-
tures constituting the early endosomes, which localize near the FP. Afterwards, the endocy-
tosedmaterial is delivered through tubular-vesicular endosomes to terminal lysosomal-like
organelles, termed reservosomes,which contain an electron-dense protein matrix with inner
membranes and an electron-lucent lipid inclusions [2] accumulatingmostly near the posterior
end of the cell [8, 9]. These organelles represent the ultimate stage of the endocytic pathway
wherein accumulate digestive enzymes (hydrolases) and crystalloid lipid inclusions of neutral
lipids such as cholesterol, which the parasite is able to mobilize upon serum starvation [10]. In
contrast to what occurs in African trypanosomes, endocytosis is not mediated via coated vesi-
cles and seems to be mainly clathrin-independent and cholesterol-dependent [11–13],
although T. cruzi also internalizes ligands (e. g., Tf) by receptor-mediated endocytosis [8, 11,
14, 15]. Contrarily to the heterodimeric TfR encoded by ESAG6/7 in T. brucei, the nature of
the elusive TfR is still matter of debate in T. cruzi. Albeit the presence of a saturable TfR was
suggested in amastigote stages, which possesses a Tf binding protein that cross-reacts with a
band of around 200 KDa using an anti-human TfR, it is still unclear whether this protein is not
merely a host contaminant [16]. Freeze fracture studies demonstrated that the plasma mem-
brane between the cytostome and the FP is distinct from the rest of the plasma membrane and
contains a glycocalyx-like structure that appears rough in high-resolution field emission SEM
[2]. This peculiar aspect is due to the presence of a high concentration of surface glycoconju-
gates that strongly bind concanavalin A (ConA), but fail to bind lectins that label the rest of the
plasma membrane, such as Ricinus communis agglutinin I (RCA-I) orWisteria floribunda
agglutinin (WFA) [17]. These observations resemble those made in African trypanosomes,
where ConA-binding proteins are abundantly present in the FP of both stages of the parasite
[18]. In contrast ricin-binding glycoproteins were found to bind exclusively to the anterior
membrane of the FP (flagellar adhesion zone), while wheat germ agglutinin (WGA) was uni-
formly distributed throughout the cell surface, including the free flagellum and flagellar adhe-
sion zone [19]. Moreover, the entire endocytic pathway of T. brucei contains giant poly-N-
acetyllactosamine (poly-LacNAc) side chains recognized by tomato lectin (TL) and ricin [20].
TL binds with high affinity to trimers and tetramers ofN-acetyllactosamine (Gal β1–4 GlcNAc)
repeats [21]. TL has also been shown in lectin blot analysis to recognize different sugar chain
units in complex-type and oligomannose-typeN-glycans, in particular the residual Man3-
GlcNAc2 (Manα1–3(Manα1–6)Manβ1–4GlcNAcβ1–4GlcNAc) pentasaccharide of complex-
typeN-glycans sequentially treated with exoglycosidases (sialidase, β-galactosidase, and β-N-
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acetylhexosaminidase) and to the exposedManGlcNAc2 (Manβ1–4GlcNAcβ1–4GlcNAc) tri-
saccharide core of oligomannoseN-glycans treated with α-mannosidase [22]. The latter find-
ing, confirmed by pulldown experiments under denaturing conditions, indicated that in T.
brucei TL binds to Manβ1-4GlcNAcβ1-4GlcNAc trisaccharide core of Man5GlcNAc2 pauci-
mannoseN-glycans [23]. However, the observation that glycopeptides with triantennary com-
plex-typeN-glycans lacking the LacNAc repeat are not retained on an TL-Sepharose column,
suggests that TL blot analysis detects relatively weak interactions betweenTL and glycoproteins
that are not modified by poly-LacNAc [24] and that expose some cryptic glycotopes (e. g.: pau-
cimannoseN-glycans) in folded proteins [23].
A few surface receptors have been characterized in T. brucei, such as those for transferrin

(TfR) [25, 26] and haptoglobin-hemoglobin (HpHbR) [27], whereas no receptor and only a few
proteins of the endocytic pathway have been fully identified in T. cruzi to date. Among these
proteins are two lysosomal proteases (cathepsin L-like cysteine protease (TcrCATL (cruzipain))
[28], serine carboxypeptidase [29]), a cysteine-protease inhibitor (chagasine) [30], two P-type
H+-ATPase isoforms (TcHA1 and TcHA2 [31]) and TcRab11 [32]. In T. brucei, it was initially
postulated that proteins belonging to the endocytic pathway (glycosyl-phosphatidyl inositol
(GPI)-anchored receptors such as the ESAG6 subunit of the TfR [25, 26, 33]) are posttransla-
tionally modified by poly-LacNAc addition, which has been proposed to act as sorting signal for
endocytosis [34]. However, recent data revealed that the TfR subunits ESAG6 and 7 are devoid
of poly-LacNAc structures and are modified by oligomannose and paucimannoseN-glycans, so
that their association with glycoproteins bearing poly-LacNAc must allow their binding to ricin
and TL [35]. Thus, a direct link betweenTfR-linked modification and endocytosis can be
excluded [35]. Although giant chains of poly-N-LacNAc (~ 54 LacNAc repeats /glycan) have
been identified as a gel-like matrix able to bind both ricin and TL in the lumen of both the FP
and the endosomal/lysosomal compartment [20], inhibition of the synthesis of almost all com-
plex-typeN-glycans, which includes poly-LacNAc, only marginally affected the in vitro growth
rate of bloodstream forms in either TbSTT3A or TbSTT3BCknock-down cells [36]. Albeit these
data contrasted with the previous data suggesting a role of poly-LacNAc in the uptake of Tf,
LDL and HDL as the latter was significantly reduced with highmolar excess of chito-oligosac-
charides (chitotriose and chitotetraose) [34], they demonstrated that, at least in vitro, T. brucei
does not require poly-LacNAc glycans for receptor-mediated endocytosis [36].
Using three different lectins, TL that is mainly specific to poly-LacNAc units, ricin that is

specific to terminal β-D-galactose units and GSLII that specifically binds to the non-reducing
terminal residue of N-acetylglucosamine (GlcNAc), we evaluated whetherN-glycans binding
to TL and ricin characterize the endocytic components of T. cruzi as they do in T. brucei. Both
TL and ricin specifically targeted the endocytic compartments of the parasite (mainly cytos-
tome and endosomal network), and GSLII labeled ER structures. In addition, the uptake of Tf,
but not of dextran, was inhibited by TL in a process competed out by a molar excess of chitin
hydrolysate, suggesting that in T. cruzi poly-LacNAc glycans and/or paucimannose/oligoman-
nose derived structures are involved in receptor-mediated endocytosis.

Methods

Parasite culture

Epimastigotes: T. cruzi epimastigotes (Dm28c, culture collection of Fundação Oswaldo Cruz)
[37] were grown in Liver Infusion Tryptose (LIT) (Difco) medium at 28°C [38] and harvested
after three to four days of growth (phase log). Around 8 x 107 parasites are equivalent to 1 mg
proteins [39].Metacyclic trypomastigotes: Epimastigotes were allowed to differentiate into
metacyclic trypomastigotes in vitro by incubation under chemically defined conditions [40].
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Epimastigote parasites were harvested at saturation (5 days) and centrifuged at 1,500 x g for 15
min at 4°C, resuspended at 2 x 108 cells/ml in Triatomine ArtificialUrine (TAU) medium (190
mMNaCl, 8 mM phosphate buffer, 17 mMKCl, 2 mMMgCl2, pH 6.0), and incubated for 2 h
at 37°C. The parasites were then diluted to 5 x 106 cells/ml in TAU3AAG medium (TAU sup-
plemented with 0.035% sodium bicarbonate, 10 mM L-proline, 50 mM sodium glutamate, 2
mM sodium L-aspartate and 10 mM glucose) and incubated for 72 h at 28°C. The relative per-
centages of metacyclics/intermediate epimastigotes were determined by microscopic examina-
tion of parasites. Tissue culture trypomastigotes: Metacyclic trypomastigoteswere incubated
with Vero cells (ATCC) in RPMI (GIBCO)medium supplemented with 2% fetal bovine serum
(FBS) (Sigma) for 6 h at 37°C. Cells were then washed 5 times with RPMI and incubated in
RPMI supplemented with 2% non-decomplemented FBS in 5% carbon dioxide humidified air
at 37°C. Until the fourth day, supernatants containing trypomastigoteswere collected and used
to re-infect Vero cells and the parasites resulting of this double infectionwere collected.
Around 2 x 108 parasites are equivalent to 1 mg proteins [39]. Amastigotes: Amastigote-like
forms were obtained from a 9-days old culture of infectedVero cells in axenic conditions. After
3 days, the Vero cells were lysed and the medium centrifuged at 500 x g for 10 min to remove
cellular debris. Amastigotes were collected by centrifugation at 2,500 x g for 10 min at 4°C.
Around 2 x 108 parasites are equivalent to 1 mg proteins [39].

Fluorescence microscopy

Epimastigote forms harvested in log phase were washed with PSG pH 8.0 (2.5 mMNaH2PO4,
47.5 mMNa2HPO4, 36.5 mMNaCl, 15% Glucose) at 4°C and fixed in PBS (pH 7.4) containing
paraformaldehyde 4% (w/v) for 1h on ice. Cells were then permeabilizedwith 0.1% Triton X-
100 for 10 min and the reaction was stopped with TBS-glycine. Cells immediately resuspended
in ice-cold PBS to a final concentration of 5 x 106 cells/ml were settled onto poly-L-lysine-
coated glass slides in a humid chamber at room temperature and blocked with 5% BSA in TBS
for 1h to prevent non-specific binding. Parasites were labeled with either biotinylated TL (1%
BSA in TBS, 1 mMCaCl2, 40 μg/ml biotinylated-TL (Sigma)) or biotinylated ricin (Sigma) and
then revealed by streptavidin conjugated to Alexa 488 or Alexa 594 (Molecular Probes). For
GSLII, the parasites were labeled with GSLII-Alexa 488 (1% BSA (Roche)) in TBS, 1 mM
CaCl2, 20 μg/ml fluorescent Alexa Fluor 488 conjugate of GSLII (Invitrogen)) and washed with
TBS. Co-localizationof GSLII with anti-BiP (kindly provided by J. D. Bangs, University of Wis-
consin Medical School,Madison) or anti-TcJ6 polyclonal rabbit antibodies were performed by
labeling the parasites with 20 μg/ml of GSLII-Alexa Fluor 488 (1% BSA and 1 mMCaCl2) in
TBS, in presence of 4 μg/ml of purified anti-TcJ6 IgGs or anti-BiP diluted 1:5,000. Primary
antibodies were detectedwith an Alexa Fluor 594-conjugated goat anti-rabbit IgG (Life Tech-
nologies) washed three times in TBS. The slides were rinsed sequentially in 70%, 85% and
100% ethanol before beingmounted in PBS, 50% (w/v) glycerol and 4,6-diamidino-2-pheny-
lindole (DAPI) stain (0.1 μg/ml). Images were captured on a Zeiss Axioplan 2 microscope cou-
pled to a CCD camera and processed by ISIS 3 and Adobe Photoshop softwares. The specificity
of TL and GSLII was probed by incubating the lectins with 0.2 mM chitin hydrolysate (Vector
Laboratories, SP-0090) at 37°C for 30 min prior to their addition to the cells [41]. Similarly the
specificity of ricin was assessed by incubating the lectin with a molar excess of galactose (200
mM) at 37°C for 30 min prior to be added to the cells.

Fluorescence microscopy on live cells in agarose pad

Log phase Dm28c clone cells were incubated with 25 μg/mLDyLight 488 labeled tomato lectin
(Vector Laboratories) together with 20 μM protease inhibitor (Mu-Phe-hPhe-FMK, Sigma),
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for 5 min at 28°C in PSG + 1% BSA. 0.2 mM of chitin hydrolysate was added together or not.
50 μg/mL of transferrin-594 was then added. Cells were harvested and washed after 60 min
and mounted on a 1% low melting point agarose pad sealed with rubber glue. Parasites were
imaged with an Axioimager M2 widefield fluorescencemicroscopewith a 100x Plan-APOC-
HROMAT 1.4 objective.

Flow cytometry

Cells treatments and conditions were similar as for live cells microscopy except transferrin-633
was used instead of transferrin-594 to avoid compensation issues. 20,000 live cells were ana-
lyzed based on the gating. One morphological FSC/SSC gate followed by one FSC-H/FSC-A
gate for effective singlet isolation was performed.Mean fluorescence intensity (mfi) of the
gated cells was measured for 488 labeled-tomato lectin (TL) signal (FITC filter) and transfer-
rin-633 (Tf) (Molecular Probes) signal or Dextran-647 (Molecular Probes) (APC filter). Sam-
ples from various conditions were displayed either in histograms or in quadrants.

Electron microscopy

For immunogold detection by ultrathin cryosectioning,cells were fixed in 3% paraformalde-
hyde, 0.5% glutaraldehyde, 0.1 M cacodylate buffer (pH 7.2), embedded in 10% gelatin and 2.3
M sucrose, and frozen in liquid nitrogen. Sectioningof frozen samples was done on a Leica EM
UC7 ultramicrotome [42]. Sections on carbon-formvar grids were probed sequentially with
biotinylated TL, rabbit anti-biotin antibodies (Bethyl Laboratories) and protein A-gold conju-
gate (5 nm), and finally mounted in methyl cellulose—1%uranyl acetate films. Observations
were made on a Tecnai 10 electronmicroscope (FEI) and images were captured with a Veleta
camera and processedwith AnalySIS and Adobe Photoshop softwares.

Western blotting

Parasites were washed twice with PSG at 4°C and lysed in Laemmli buffer to a final concentra-
tion of 5 x 105 parasites/μl. 10 μl of total protein extracts were separated on a 7.5% SDS-PAGE
gel. Protein transfer was realized onto Hybond-P membrane (Amersham) by electrotransfer in
TGM (20% methanol) buffer for 1h at 100V. Membranes were blocked by incubation with 5%
skimmilk powder in PBS and were then incubated with anti-TcrCATL antibodies (kindly pro-
vided by Ana Paula C. A. Lima, UFRJ) in TBS and 3.5%milk powder overnight at 4°C. Second-
ary antibodies, peroxidase-conjugatedmonoclonal mouse anti-rat IgG (Serotec), were diluted
in TBS buffer 1:5,000, and the bound antibodies were detected by chemiluminescence (Perkin
Elmer).

Lectin blotting

Total parasite protein extracts or CHAPS- and Triton-soluble cell lysate fractions were sepa-
rated on either a 7.5% SDS-PAGE gel or a 4–12% gradient gel (NuPAGE, Invitrogen). Similarly
iron-saturated bovine Tf (Sigma) or glycophorin (Sigma) were separated on a 4–12% gradient
gel. Blots blocked with 3% BSA were incubated overnight at 4°C with PBS containing respec-
tively, either 4 μg/ml biotinylated TL or 4 μg/ml biotinylated GSLII in 0.1 mMCaCl2 and 2%
(w/v) Polyvinylpyrrolidone, followed by two washes TBS with 0.05% Tween 20 and 0.1 mM
CaCl2. The blots were incubated at room temperature for 30 min with streptavidin peroxidase
(Sigma) in 50 mMTris (pH 7.5) and washed two times with TBS containing 0.05% Tween 20,
0.1 mMCaCl2 and once with TBS with 0.1 mMCaCl2.
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Transferrin endocytosis

Epimastigotes were taken in log-phase, washed in DMEM + 1% BSA and then incubated in the
same medium for 30 min at 28°C. After 15min, 20 μM protease inhibitor (Mu-Phe-hPhe-
FMK, Sigma) was added to inhibit the cysteine proteases. The parasites were resuspended to 5
x 107 cells/ml in DMEM + 1% BSA, 20 μM protease inhibitor (Mu-Phe-hPhe-FMK, Sigma)
and 50 μg/ml Alexa Fluor 594-conjugated to transferrin (Invitrogen). Cells (5 x106) were incu-
bated for 2, 5, 10 and 30 min at 28°C and washed in ice-cold PSG at 4°C and then immediately
fixed in PBS containing 4% (w/v) paraformaldehyde for 1h on ice before examination by fluo-
rescencemicroscopy. Blocking of endocytosiswas performed by incubating cells at 4°C in pres-
ence of 50 mM deoxyglucose, 0.02% Azide, and 20 μM protease inhibitor (Mu-Phe-hPhe-
FMK, Sigma).

Poly-LacNAc-glycoproteins enrichment by lectin affinity

chromatography

2 x 1010 parasites were taken in log phase, washed twice in PSG at 4°C and lysed in 25 mM
Tris-HCl (pH7.5), 150 mMNaCl, 1% CHAPS supplemented with protease inhibitor (complete
Protease Inhibitor Cocktail, Roche) for 1h at 4°C. The extract was first centrifuged at 16,000 x g
for 15 min at 4°C and the supernatant was then centrifuged at 120,000 x g for 80 min at 4°C.
After centrifugation, the supernatant was applied to a column of either TL or GSLII coupled to
agarose beads (Vector Laboratories). Binding was allowed overnight at 4°C on a rotating
device. The above pellets were washed 3 times with 100 mMNaHCO3 buffer (pH 11.0) to dis-
rupt protein-protein interactions. Proteins were then extracted twice with 25 mMTris-HCl
(pH 7.5), 150 mMNaCl, 1% CHAPS and 1% Triton X-114 supplemented with protease inhibi-
tor for 30 min at 4°C and then overnight at -20°C. Extracted proteins were applied to a column
of either TL or GSLII coupled to agarose beads overnight at 4°C. Bound glycoproteins were
eluted with a chitin hydrolysate (either 0.05 M or 0.02 M in 25 mMHEPES (pH 7.8) for GSLII
and TL, respectively) and precipitated with 4 volumes of ice-cold acetone overnight at -20°C.
Glycoproteins were then resuspended in Laemmli buffer, separated on a 4–12% gradient
NuPAGE gel (Invitrogen) and revealed by SafeStain Coomassie Blue (Invitrogen) in order to
detect proteins of sufficient amount for furtherMS analysis.

PNGase F treatment

TL-enriched glycoproteins were denatured in 100 mM potassium phosphate buffer (pH 7.8),
1% SDS for 5 min at 95°C. Glycoproteins were then diluted to a final concentration of 100 mM
potassium phosphate, 10 mM EDTA, 0.1% SDS, 1% NP-40, 1% β-mercaptoethanol supple-
mented with protease inhibitors (Roche) and digested with PNGase F (2 units) (Roche) for 4h
at 37°C.

Protein identification by LC-MS2

The protein bands from SDS-PAGE were excised, reduced, alkylated, and trypsin digested
according to Shevchenko A et al. [43]. The resulting peptides were fractionated by nano-flow
LC using a 10 cm long × 75 μm ID × 3 μm C18 capillary columns connected to an EASY-nLC
(Proxeon) in tandem to a Waters Q-TOF Ultima Global mass spectrometer (Waters, Zellik,
Belgium). The elution was performedwith a flow rate of 300 nl/min with a gradient of 10–50%
solvent B for 35 min followed by 50–100% for 15 min (solvent A: 2% ACN /0.1% FA; solvent B:
98% ACN /0.1% FA) and directly analyzed on the Q-TOF. The full MS scan was collected in
the positive mode in the mass range from 300–1200 m/z. The three most intense ions (doubly
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and triply charged ions) were submitted to CID with 15–40 V collision energy. Acquired MS
data were processed by Mascot Distiller (v.2.3.2.0) using default settings in order to generate
peak lists that can be submitted to database search. Derived peak lists were searched against T.
cruzi protein database (TC_Tcruzi release 6.0, 91482 protein entries: http://tritrypdb.org)
using in-housemascot software (matrixscience).Database search parameters were the follow-
ing: trypsin (lysine and arginine-specific enzyme) as the digestion enzyme (one miscleavage
site allowed), 150 ppm for peptidemass tolerance, 0.8 Da for fragments mass tolerance, carba-
midomethylation of cysteine residues and oxidation of methionine residues as fixed and vari-
able modifications, respectively. Only proteins that matched to a minimum of two different
peptides identifiedwith highly significant database matching scores (p-value of 0.05) were
assigned as conclusively identified. Those identifiedwith a single peptide had their spectra
manually inspected for the presence of at least three y and b consecutive and most intense ions.

Bioinformatic analysis of identified proteins

Subcellular localization, GPI and glycosylation were annotated using either literature references
or prediction tools. GPI-modificationwas predicted using FragAnchor (http://navet.ics.hawaii.
edu/~fraganchor/NNHMM/NNHMM.html), glycosylation using NetNGlyc (http://www.cbs.
dtu.dk/services/NetNGlyc/) and subcellular localization prediction using PSORT II (http://
wolfpsort.org/). For hypothetical proteins homologs, a blastp search was performed against the
NCBInr database. Only homologs with e-values� 10−10 were accepted.

Results

Detection of T. cruzi TL-binding glycoproteins

To reveal the presence of TL-binding glycoproteins of T. cruzi, total protein extracts of the par-
asite were probed with TL. Three main life stages of T. cruziwere assessed by TL blotting attest-
ing the presence of TL-binding sites in dividing epimastigote forms and to a lower extent in
amastigote forms (Fig 1A). The presence of TL-binding sites in dividing epimastigote forms
was confirmed using biotinylated-TL followed by streptavidin-conjugated Alexa 594 on fixed
cells, but not in quiescent metacyclic trypomastigote or culture trypomastigote forms (Fig 1B).
A weak labeling was observed in proliferative amastigote forms suggesting that this latter form
could contain few TL-binding sites. These findings suggest that in T. cruzi TL-binding sites are
developmentally regulated and are specifically expressed in the endocytically active epimasti-
gote forms. The amount of TL binding sites in these parasites was much lower than that of the
T. brucei bloodstream form, which contains giant poly-LacNAc [20, 34] (Fig 1C). We next
investigated the nature of the glycan linkage by lectin affinity chromatography followed by
PNGase F treatment. A similar set of TL-bound proteins, different from that observed in total
protein extracts (Fig 1A and 1C), ranging in molecular weight from 30 to over 130 kDa, was
found in epimastigote lysate fractions extractedwith CHAPS (CHAPS-soluble fraction) and
CHAPS + Triton X-114 (Triton-soluble fraction) (Fig 1D, upper panel). Digestion with
PNGase F allowed the demonstration that in these proteins poly-LacNAc glycans and/or pauci-
mannose structures are bound via an N-glycosidic linkage to asparagine residues. As expected,
this protein fraction contained the major lysosomal cysteine protease TcrCATL (previously
named cruzipain), which is modified by a sulfated high-mannose oligosaccharide reported to
contain 2 to 4 N-acetyllactosamine repeats in the glycan part of the C-terminal domain [44]
(Fig 1D, lower panel). Whereas two major bands were recognized by an anti-TcrCATL anti-
body in the total lysate fraction from epimastigotes, likely due to variable posttranslational
modifications [45, 46] including carbohydrate heterogeneity [47], only one band of around 53
kDa was detected in the soluble TL-binding fraction (CHAPS) [46]. Upon PNGase F treatment
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Fig 1. Tomato lectin blotting and fluorescence microscopy analyses. (A) TL blotting on total protein

extracts of three developmental forms of T. cruzi. Similar amounts of proteins (around 50 μg) from three T.

cruzi stages were loaded (see Material and Methods). The same membrane blot was revealed with ponceau

red as loading control. The lectin blot analyses indicate that TL-binding glycoproteins are significantly present

in epimastigote forms. E: epimastigote, T: trypomastigote, A: amastigote. (B) Fluorescence microscopy of
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of this fraction the band shifted down to ~ 50 kDa, which corresponded to the expectedmolec-
ular weight of the amino acid sequence. Interestingly, in membrane-bound enriched fraction
(Triton-soluble) the apparent molecular weight of TcrCATL was lower than in the CHAPS-sol-
uble fraction presumably due to the presence of a GPI anchor as previously suggested [48, 49]
although TcrCATL does not display clear GPI anchor addition signal.

T. cruzi TL- and ricin-binding glycoproteins follow the parasite endocytic

pathway

The cellular fluorescent labeling observedwith the endocytic tracer Alexa Fluor 594-conjugated
to Tf was compared with that obtained using biotinylated TL bound to streptavidin Alexa 488
(Fig 2A). The specificity of TL binding was assessed by incubating epimastigotes with biotiny-
lated TL in the presence of an excess of chitin hydrolysate, which abolished the TL signal (Fig
2A, bottom). In the absence of Tf uptake (incubation for 30 min at 4°C in presence of deoxy-
glucose (50 mM) and azide (0.02%)), the green TL labeling was co-localizing as a punctuated
signal with Tf in the anterior region of the cell, which presumably corresponds to the cystos-
tome. After 2 min of Tf internalization at 28°C, a Tf signal was still observed in the anterior
region of the cell, close to cytostome and FP, partially co-localizingwith that of TL. After 5
min, the Tf signal was in the perinuclear region and after 10–30 min it migrated to the poste-
rior part of the cell, where it concentrated into reservosomes that appeared to be equally labeled
by biotinylated TL (arrows in Fig 2A). In order to assess the specificity of the TL labeling we
used a terminal β-D-galactose-specific lectin ricin, which is supposed to recognize a larger set
of glycoproteins including those bound by TL [20, 35]. Similar co-localization of the Alexa
Fluor 594-conjugated Tf with the biotinylated ricin bound to streptavidin Alexa 488 was
observed along the antero-posterior cell axis (Fig 2B) and the ricin signal was abolished when
cells were pretreated with galactose, attesting the carbohydrate binding specificity of the lectin.
The observation that TL/ricin labeling localized almost exclusively to the endocytic pathway
suggests that poly-LacNAc structures are present in the endocytic compartments (see next sec-
tion), such was demonstrated for TcrCATL [44]. We next attempted to localize, among theN-
glycans exposing terminal GlcNAc residues, the precursor forms of poly-LacNAc glycans by
using a GlcNAc-binding lectin (GSLII) reported for its ability to recognize exclusively N-acetyl-
glucosamine residues on the non-reducing terminal end of oligosaccharides [50]. GSLII stain-
ing showed a perinuclear distribution that did not co-localizewith Tf, as expected (Fig 2C). No
significant staining was observedwith cells co-incubatedwith an excess of chitin hydrolysate
(Fig 2C, lower panel) attesting the labeling specificity. The green GSLII signal co-localizedwith
that obtained with an antibody against TCJ6 co-chaperone, a hsp40-like involved in translation
initiation, a marker with a punctate pattern distributed throughout the cytosol of the cell,
which preferentially concentrated in the perinuclear region [51], suggesting an unexpectedER
distribution for GSLII-binding sites (Fig 2D), although we can not exclude a Golgi distribution

three developmental forms of T. cruzi probed with biotinylated tomato lectin. Arrows indicate the position of

nucleus (N) and kinetoplast (K) stained in blue by DAPI. E: epimastigote; M: metacyclic, T: trypomastigote, A:

amastigote. Bars scales represent 2μm. (C) TL blotting on total extract of T. brucei bloodstream forms (106

cells) vs T. cruzi epimastigote forms (5 x106 cells). (D) TL blots of T. cruzi CHAPS- and Triton-soluble (CHAPS

+Triton X-114) cell lysate fractions. Fractions were enriched by TL chromatography and then treated (+) or not

(-) with PNGase F and T represents the total cell lysate. Blots were either probed with TL (upper panel) or anti-

TcrCATL (lower panel). The TL blot indicates the presence of N-glycan modification in both soluble and

membrane fractions. Treatment of the fractions with PNGase F abolished the reactivity of TL confirming N-

glycoprotein type modification. The lower panel shows the presence of TcrCATL, a poly-LacNAc-modified

glycoprotein, in both fractions. PNGase F treatment results in the appearance of a lower band corresponding

to the loss of the N-glycosylation. Apparent molecular weights are indicated in kDa on the left.

doi:10.1371/journal.pone.0163302.g001
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Fig 2. Localization of TL and GSLII binding sites in T. cruzi. Endocytosis kinetics of fluorescent Alexa Fluor 594

conjugated Tf was performed in order to follow T. cruzi endocytic pathway from the flagellar pocket/cytostome to the

reservosomes. Parasites were fixed at different time points and probed with biotinylated TL (A), biotinylated ricin (B) or Alexa

488 conjugated GSLII (C). The addition of chitin hydrolysate clearly shows inhibition of TL and GSLII staining. (A) Co-

localization of biotinylated-TL (green) and Tf (red). (B) Co-localization of biotinylated-ricin (green) and Tf (red). Addition of
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as well. This result was confirmed using an anti-BiP antibody, which is currently used as
marker for ER in T. brucei (Fig 2E) [52]. To assess the nature of the glycan linkage, GSLII-
enriched glycoproteins fractions treated with PNGase F decreased significantly the GSLII-bind-
ing indicating that GlcNAc terminal residues are incorporated into N-linked glycoproteins and
probably to a lower extent into O-linked glycoproteins (Fig 2F).

Subcellular localization of TL-binding sites in T. cruzi

In order to investigate the subcellular localization of TL-binding sites in T cruzi, a transmission
electronmicroscopy (TEM) TL-gold analysis was performed on ultrathin cryo-sectionsof epi-
mastigote forms probed with biotinylated TL followed by rabbit anti-biotin Ab and protein-A
gold (5 nm). Most TL-binding sites were localized at the posterior end of the cells, in single
membrane vesicular structuresmost probably corresponding to reservosomes (Fig 3A). Signifi-
cant labeling was also found at the anterior region and close to the kinetoplast. The labeling at
this region was found on membrane-bound tubular structures corresponding those of the
Golgi apparatus (Fig 3B and 3C) and on early endosomes neighboring the FP, but not in the
lumen of the FP (Fig 3B, 3C and 3D). Significant labeling was detected on the electron-dense
region corresponding to the cytostome, more prominent at its opening at the cytoplasmic
membrane (Fig 3B and 3D). This labeling may correspond to that observedby fluorescence
microscopy at the anterior end of epimastigotes (Figs 1B and 2A). At this cytostome entry site,
the TL-binding was clearly on an electron-dense diffusematrix that sometimes protruded out
of this organelle (Fig 3C, 3D and 3E; asterisks). Co-localizationof BSA-gold (10 nm, arrow-
head), used as endocytic tracer with protein-A gold (5 nm, arrow), demonstrated that TL-bind-
ing sites are present in vesicular structures belonging to the endocytic apparatus (Fig 3F). Thus,
TL-binding-sites are concentrated in the endocytic pathway.

Identification of TL- and GSLII-enriched glycoproteins of T. cruzi by

mass spectrometry

Assuming that TL labeling localizes almost exclusively to the endocytic pathway, we used a lec-
tin affinity chromatography strategy to characterize endocytic glycoproteins by proteomic
analysis. A similar approach was used for the characterization of GSLII binding glycoproteins
supposed to characterize a largest spectrumof glycoproteins exposing terminal GlcNAc resi-
dues including poly-LacNAc N-glycans. Proteins from epimastigote lysates extracted sequen-
tially by CHAPS and CHAPS-Triton X-114, respectively, were applied to either TL or GSLII
columns. A clear difference in the protein pattern of TL and GSLII eluates, compared to the
total extracts or the flow-through, indicated protein enrichment after lectin chromatography
(Fig 4).
TL and GSLII-enriched bands were digested with trypsin and analyzed by LC-MS/MS.

Searching against T. cruzi TriTrypDB protein database (http://tritrypdb.org) resulted in the
identification of a total of 234 proteins (S1 Table). Genome annotation of the identified pro-
teins predicted that they are involved in diverse biological processes (S1 Table and Fig 5A)

200 mM galactose abolished the ricin staining. (C) Co-localization of Alexa 488 conjugated GSLII (green) and Tf (red). (D)

Co-localization of Alexa 488 conjugated GSLII (green) and TcJ6 (red). (E) Co-localization of Alexa 488 conjugated GSLII

(green) and anti-BiP (red). (F) GSLII blotting of cell extracts enriched by GSLII chromatography. GSLII blots of T. cruzi

CHAPS- and Triton-soluble (CHAPS+Triton X-114) cell lysate fractions were enriched by GSLII chromatography and then

treated (+) or not (-) with PNGase F. Blots were probed with biotinylated-GSLII. The GSLII blot indicates the presence of N-

acetylglucosamine modification in both soluble and membrane fractions. Treatment of the fractions with PNGase F

decreased the reactivity of GSLII confirming N-glycoprotein type modification.

doi:10.1371/journal.pone.0163302.g002
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while up to 27% and 41% of TL and GSLII proteins, respectively, were hypothetical with so far
unknown functions.
As expected, the comparison of the identified protein families (beyond hypothetical and

others) in TL and GSLII subproteome fractions with that of both epimastigote global proteome

Fig 3. Subcellular localization of TL-binding sites in T cruzi by transmission electron microscopy

(TEM). Parasites were incubated for 5 min in PSG medium in presence (F) or absence (A-E) of BSA-gold as

endocytic tracer (10 nm). Cells were fixed and processed for ultrathin frozen sectioning (Tokayasu method,

[42]). Cryosections were sequentially probed with biotinylated TL, rabbit anti-biotin antibodies, protein A-gold

(5 nm) and finally mounted in methyl cellulose-uranyl acetate films. Representative images are shown. K:

kinetoplast, M: mitochondrion, R: reservosome, N: nucleus, FP: flagellar pocket, F: flagellum, G: golgi, Cy:

cytostome. Arrows and arrowhead, point to gold particles that mark the presence of TL binding sites and

BSA-gold particles, respectively. Asterisk show TL-binding matrix near the opening of the cytostome.

Bars = 200 nm.

doi:10.1371/journal.pone.0163302.g003
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[53] and reservosomeproteome [54] (Fig 6) showed an enrichment of proteins implicated in
the endocytic pathway such as proteolysis and peptidolysis (19.1% and 27.5%, respectively, in
TL and GSLII subproteomes versus 9.5% in the reservosomeand 5.6% in the global proteome).
Enrichment was also observed for vesicular and trafficking proteins (4% and 10% in TL and

GSLII, respectively, versus 11.9% in the reservosome and 3.2% in the global proteome), cyto-
skeletal proteins (5% in GSLII, 5.5% in the reservosomeversus 1.2% in the global proteome),
proteins of the carbohydrate metabolism (22.2% in TL, 17.4% in the reservosomeversus 6.2%
in the global proteome), signal transduction (4% and 7.5% in TL and GSLII, respectively, versus
7.1% in the reservosome and 2.2% in the global proteome), and stress response and cell defense
(8% in TL, 10% in GSLII, 19.8% in the reservosomeversus 6.4% in the global proteome). Pro-
teins involved in the proteasome, lipid metabolism and purine/pyrimidinemetabolismwere
either absent or underrepresented in our work compared to both other studies, while proteins
involved in DNA/RNA processing were highly represented in our work, although still less than
the global proteome, compared to the reservosome study (22.2 and 20%, respectively, in TL

Fig 4. Enrichment of glycoproteins from T. cruzi epimastigote using TL and GSLII affinity chromatography. T.

cruzi epimastigote proteins were fractionated by detergent extraction into CHAPS and CHAPS + Triton X-114 fractions.

These fractions were loaded either onto agarose-coupled TL or GSLII beads columns and left overnight at 4˚C on a

rotating device. Whole cell extracts, columns flow-through and eluates were then separated on NuPAGE gels (4–12%)

and proteins were revealed by SafeStain blue staining.

doi:10.1371/journal.pone.0163302.g004
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Fig 5. Pie charts (A) displaying protein families function distribution and Venn diagram (B) showing the repartition

of the identified proteins in the different lectin-binding fractions. (A) Functional classification of proteins in TL- and

GSLII-enriched fractions. The chart shows the different metabolic pathways to which the identified proteins with known or

hypothetical function were assigned. The percentages within each group are indicated. (B) Numbers of identified proteins

(with the exception of the proteins grouped under others and hypothetical) in TL and GSLII fractions are represented by a
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and GSLII, 2.3% in the reservosome and 43.4% in the global proteome). Comparable numbers
were obtained in the three studies for chaperones and proteins involved in folding (5.1% in TL,
0% in GSLII, 5.6% in the reservosome and 5.8% in the global proteome). From a total of 176
proteins matched in the two subproteomes (Fig 5B), a subset of 25 proteins were common to
both TL and GSLII Triton-soluble fractions, encompassing 6 lysosomal proteins (cysteine pro-
teases including the bona fide cruzipain (TcrCATL), a lysosomal alpha-mannosidase and a
cytosolic leucyl aminopeptidase), the lysosomal/endosomalmembrane protein p67, a glyco-
protein molecularmarker of the T. brucei lysosome [41, 54], a vacuolar ATPase found in the
subcellular fraction of T. cruzi reservosomes [54]), 11 hypothetical proteins, and some probable
contaminants (3 ribosomal proteins, one protein match for activated protein kinase C receptor,
glyceraldehyde-3-phosphate dehydrogenase glycosomal, paraflagellar rod protein 3, ATPase
beta subunit and tryparedoxin peroxidase) (S1 Table and Fig 5B). Some additional putative

4-tiered Venn diagram indicating the level of protein overlap between the different lectin-binding fractions. Notable regions

include protein groups specific to only one lectin-type: blue (TL-CHAPS + Triton) and yellow (TL-CHAPS), violet

(GSLII-CHAPS + Triton) and pink (GSLII-CHAPS) as well as groups identified across lectins and fractions (mixed color

regions).

doi:10.1371/journal.pone.0163302.g005

Fig 6. Comparisons of the identified protein families in three independent proteomic studies [53, 54]. The percentages of different protein families

identified in three different studies are compared. The stacked bar chart represents the cumulative distribution of the different fractions shown for each

protein family. Functional classification of T. cruzi proteins was performed according to Atwood et al. [53]. Proteins grouped under others and hypothetical

were discarded from this comparison.

doi:10.1371/journal.pone.0163302.g006
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lysosomal proteins were found specifically in the TL membrane-bound fraction, such as the
serine carboxypeptidaseCBP1, a marker of the T. cruzi endocytic compartment and reservo-
somes [29, 55]. Interestingly, most of the proteins identified in TL- and GSLII-binding frac-
tions were found in CHAPS+Triton X-114 extractions (72.7% and 79.4%, respectively),
suggesting that most proteins were enriched in the Triton-soluble fractions which correspond
to a selectively enrichedmembrane protein fraction [56].

Specific inhibition of Tf uptake by TL in T. cruzi

In order to assess the role of TL-binding components in T. cruzi endocytosis,we incubated live
parasites with TL in the presence or not of 0.2 mM chitin hydrolysate as competitor, and fol-
lowed the kinetics of Tf endocytosis. Remarkably, most of the cells with lectin-bound cytos-
tome/cytopharynxwere devoid of Tf, and conversely in the presence of chitin hydrolysate, Tf
was taken up in the absence of TL signal (Fig 7A). The use of the GSLII as negative control
showed that this lectin did not interfere with Tf endocytosis (Fig 7B). Moreover, the chitin
hydrolysate competed for GSLII binding only after short incubation with the lectin (5 min)
(Fig 7B). Similar results were obtained using live cells incubated in the presence of TL directly
coupled to the fluorochrome (Fig 7C). Quantitative analysis performed by flow cytometry (Fig
7D) revealed that TL inhibited the uptake of Tf by 93.6%, and this inhibition was almost
completely reverted in the presence of chitin hydrolysate, linked to 70% decrease of TL uptake
(S1 Fig). In order to assess whether TL is also able to inhibit fluid endocytosis,we incubated
live T. cruzi cells with TL in the presence or not of chitin hydrolysate as competitor, and quan-
tify by flow cytometry the Dextran endocytosis (Fig 8A). TL did not affect Dextran uptake in
conditions where TL binding was highly effective.While addition of chitin hydrolysate
dropped down TL binding by 78.1%, uptake of Dextran decreased by 28.5%. This slight
decrease of the fluid phase cargo is not directly linked to the competition by chitin oligosaccha-
rides alone (6,9%) (Fig 8B) and probably results from a steric hindrance.We finally checked
the possibility that Tf, which in the case of human Tf contains two major glycosylation sites
harboringmainly bi- and triantennary complex type glycans, could directly bind TL (Fig 9).
Whereas lectin blot analysis showed a clear reaction with different amounts of glycophorin
used as positive control with biotinylated TL, no reaction was observed for Tf even with high
amount of protein (up to 1 μg) [57]. This result strongly suggests that inhibition of Tf uptake
by TL does not result from a direct lectin interaction with the ligand.

Discussion

Cytostomal endocytosis versus flagellar pocket endocytosis

Much of the research on the molecular process of endocytosis in trypanosomatids has been
focused on African trypanosomes [6], and has shown that essential growth factors are rapidly
internalized via the FP through highly specific receptors coupled to a polarized endocytic path-
way with an extremely high rate of traffic and sorting [25–27]. This situation contrasts with
that of the closely related species, the Stercorarian South American trypanosome,which proba-
bly diverged from the Salivaria parasites about 100 million years ago [58]. This parasite exhibits
several peculiarities in its endocytic/exocyticpathway that distinguishes it from T. brucei, such
as the presence of a cytostome, a surface area dedicated to macromolecule ingestion, where the
plasma membrane invaginates deeply into the cytosol as a funnel-like structure forming the
cytopharynx [59]. Hence, endocytosis in T. cruzi is mostly concentrated on a smaller surface
area at the bottom of the cytopharynx [7, 8, 60, 61], although it was recently shown that the
“naked” side of the cytopharynx, devoid of underlyingmicrotubules, possesses endocytic
activity [3]. The cargo is finally delivered via the tubulo-vesicular endosomal system to
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Fig 7. Inhibition of uptake of Tf by TL in epimastigote forms of T. cruzi. Trypanosomes preincubated with biotinylated TL in the

presence of 20 μM FMK-024 (25 μg/ml) and in the absence (A, left panel) or presence of competing chitin hydrolysate (A, right panel),

were then incubated with Tf Alexa-594 for 5 or 30 min at 27˚C. Cells were then fixed and treated for fluorescence microscopy. Similar

incubations wherein TL was substituted by GSLII (B) were performed to assess the specificity of the TL labeling. Furthermore, live

parasites preincubated with DyLight 488-TL and 20 μM protease inhibitor (FMK-024) for 5 min and then incubated for 60 min in the

presence of Alexa Fluor 594 conjugated Tf showed a lectin labeling in the cytostome/cytopharynx (arrowhead), while no Tf labeling (red

signal) was observed in these conditions (C, upper panel). In presence of a molar excess of chitin hydrolysate an intense labeling of Tf

exclusively concentrate into reservosomes (arrow) while no green signal corresponding to TL was observed anymore (C, lower panel).
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reservosomes, specialized terminal lysosomes where ingested macromolecules are stored [9].
Our ultrastructural analyses of epimastigote forms indicated that TL-binding sites were associ-
ated with the endocytic compartment (cytostome/cytopharynx structures, early endosomes
and reservosomes), as an electron-dense diffusematrix of glycoproteins similar to that found
in both the FP and the endosomal lumen of bloodstreamAfrican trypanosomes [25, 62]. We
also found a very weak signal of biotinylated-TL in amastigote intracellular parasites, which
possess a cytostome-like structure, but apparently lack endocytosis [15, 63]. In TEM, no TL-
binding sites were found in the lumen or limiting membrane of the FP. The observation that
ricin-binding sites specifically locate in similar endocytic structures (e. g., reservosomes) sug-
gests that TL labeling restricted to endocytic compartments/Golgimay be specific to poly-Lac-
NAc units [20, 35]. These observations suggest that complex modification of N-glycoproteins,
possibly by poly-LacNAc chains (e. g., TcrCATL, [44]), is linked to entry sites where endocytic
activity is very intense (FP in bloodstreamAfrican trypanosomes versus cytostome in T. cruzi
insect-stage).However, whereas in T. cruzi thisN-glycans modification is stage-specific, lyso-
some-related organelles of the endocytic pathway are present in all parasite stages [63]. There-
fore, it appears that even in the absence of such N-glycans modification, the localization of
endocyticmarkers (TcrCATL, chagasin and serine carboxypeptidase) through the endocytic
pathway is kept unaltered in absence of detectable endocytic activity.

Inhibition of trypanosomes Tf uptake with TL was furthermore quantified by flow cytometry (D). The TL signal was dropping from 913 to

273 of mfi in the absence or presence of chitin hydrolysate, respectively (D, left histogram). Conversely, Tf signal was increasing from

597 to 3793 of mfi in the absence or presence of chitin hydrolysate, respectively (D, right histogram).

doi:10.1371/journal.pone.0163302.g007

Fig 8. Uptake of Dextran in the presence of TL in epimastigote forms of T. cruzi. Flow cytometry profiles of uptake of Dextran Alexa-647 by

trypanosomes in the presence or absence of biotinylated TL. Trypanosomes preincubated (A) or not (B) with biotinylated TL in the presence of 20 μM

FMK-024 (25 μg/ml) and in absence (A, left histogram) or presence of competing chitin hydrolysate (A, right histogram), were then incubated with

Dextran Alexa-647 for 30 min at 27˚C.

doi:10.1371/journal.pone.0163302.g008
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Elusive role of poly-LacNAc modification in endocytic trafficking of

trypanosomes

As observed for the T. brucei lysosomal type I membrane glycoprotein p67 (analogous to
LAMP in mammals) [41], in T. cruzi the poly-LacNAc modification of N-glycans, as reported
for TcrCATL, probably takes place in the Golgi apparatus. However, GSLII labeling suggested
that addition of GlcNAc might also occur early in the ER. Accordingly, a dolichol-indepen-
dent N-acetyglucosaminyltransferasewas isolated from both ER and Golgi of trypanosoma-
tids [64] suggesting that in T. cruzi, GlcNAc might be added to nascent side-chains of N-
glycans very early during the glycoprotein biosynthetic process. This observation is reminis-
cent of the intracellular apicomplexan parasites, such as Plasmodium falciparum, where GSLII
labeled ER, rhoptries, and surface of plasmodia, and no apicoplast [65]. LAMP proteins have
been identified as the major carriers for poly-LacNAc in many eukaryotic cells. Among these
proteins, the ubiquitous LAMP-1 and LAMP-2, which are structurally and functionally
related, are the major components of the lysosomal membrane (reviewed by [66, 67]). It was
proposed that the poly-LacNAc chains attached to lysosomal membrane glycoproteins might
play a critical role in maintaining the protein stability in lysosomal compartment [68, 69].

Fig 9. TL blotting on Tf and glycophorin. Different amounts of proteins (up to 5 μg) were loaded. The

lectin blot analysis indicates that TL does not recognize Tf but reacts with the sialoglycoprotein glycophorin.

doi:10.1371/journal.pone.0163302.g009
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Similarly, the giant poly-LacNAc structures harbored by some LAMP-related glycoproteins in
T. brucei (e. g., the membrane protein p67 analogous to LAMP)may form a continuous coat
on the inner surface of the lysosomal membrane that serves as a barrier to soluble hydrolases.
However, in T. cruzi the number of poly-LacNAc repeats harbored by N-glycoproteins, such
as identified in TcrCATL (~ 2–4 repeats/glycan), might be considerably lower in comparison
with T. brucei (~ 54 repeats/glycan). This view is consistent with the observation that T. cruzi
epimastigote forms contain much less TL-binding sites than T. brucei bloodstream forms.
Interestingly, short poly-LacNAc chains (on average ~ 5 repeats) of the surface lipoglycan
from in Trichomonas vaginalis were shown to be involved in parasite binding to host cells
arguing that similar short chains can play functional role in protein binding [70]. In T. cruzi,
short poly-LacNAc linear chains that transit between the cell surface and the endocytic appa-
ratus might be involved in other biological processes such as glycoprotein trafficking/sorting
of lysosomal proteins. Nolan et al. hypothesized that in T. brucei bloodstream form, poly-Lac-
NAc chains might act as sorting signals in the endocytic pathway via a poly-LacNAc recogni-
tion by a putative lectin-like receptor [34]. In this respect, our data did not show any effect of
chitin hydrolysate on either Tf or dextran endocytosis in T. cruzi ruling out the role of a lec-
tin-binding glycoprotein in protein sorting and trafficking in this organism. In addition, poly-
LacNAc may also play a role as a tag for targetingN-glycoproteins to trypanosomal lysosomes
because these organisms lack the classical cation-independentmannose-6-phoshate pathway
for delivery of soluble proteins bearing the mannose 6-phosphate modification to lysosomes
[71, 72]. However, it is very unlikely that poly-LacNAc modification of N-glycans was
involved in routing of glycoproteins to the lysosomes in T. cruzi because the localization of
endocytic glycoproteins continues unaltered during all cell cycle whereas poly-LacNAc modi-
fication appears to be stage-specific [63].

A possible role of lectin-sugar interactions in trypanosomal endocytic

efficiency?

In T. brucei bloodstream forms, knock-down of components involved in N-glycan biogenesis,
either TbSTT3A or TbSTT3BColigosaccharyltransferase, led to a severe in vivo growth phe-
notype, while in vitro growth was only slightly affected, suggesting that N-glycosylation
could be required for parasite growth in the host [36]. This phenotype may be linked to the
arrest of poly-LacNAc modification of N-glycans as shown by the significant decrease in
ricin-binding sites upon RNAi induction. Therefore, non-optimal endocytosismight be criti-
cal in vivo, but not in vitro, as was also reported following mild alteration of endocytic recy-
cling via rab11 knock-down [73]. In addition, two observations suggest that poly-LacNAc N-
glycan modificationmight be involved in endocytosis of T. brucei: (i) in the presence of high
concentration of competing chitin hydrolysate the uptake of Tf is reduced of about 5-fold
[34]; (ii) the binding of TfR to TL, whether directly through paucimannoseN-glycans [23] or
indirectly via others glycoproteins [35], could explain the observed accumulation of this
receptor in the lumen of the FP [74], and account for the presence of electron-densematrix
in this lumen [25]. Such local concentration of ligand-loaded receptors would obviously
improve the efficiencyof ligand uptake, possibly more important under in vivo than in vitro
growth conditions. This mechanismmight be important for parasite-host fitness allowing the
trypanosome to optimize growth and feed efficiency. Our EM observations showing the pres-
ence of TL-binding sites associated to an electron-densematrix in the T. cruzi cystostome,
the functional analog of the T. brucei FP, are in favor of this model. Moreover, our finding
that in T. cruzi TL strongly inhibits Tf uptake in a process reverted by competing chitin
hydrolysate, further points to functional linkage betweenN-glycan modification of endocytic
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components and ligand uptake. Because of the elusive nature of the T. cruzi TfR, we cannot
postulate on the mechanism by which the parasite internalizes its ligand but the observation
that dextran uptake is unaffected by TL highly suggests that complex and/or paucimannose
N-glycans are involved in a RME specific process, which is not linked to a fluid-phase
mechanism.

Endosomal origin of TL-binding proteins

TL-binding fraction of T. cruzi did not contain highly abundant surface glycoproteins such as
members of the transialidases superfamily (Tc-85), mucin-like glycoproteins or MASPs.
This could be due either to the low abundance of these proteins in the epimastigote form as
reported by Atwood et al. [53] and/or to the extensive O-glycosylation of these proteins
(~ 60% of their molecularmass) preventing them from tryptic digestion [75]. Both TL and
GSLII proteomes of T. cruzi contained ~ 80% of putative N-glycoproteins (TL and GSLII frac-
tions, CHAPS and Triton fractions, 81%, 79%, 81% and 77%, respectively). This percentage is
significantly higher than N-glycoprotein encoded in eukaryotic genomes (64% of putative
proteins containing the sequon NXS/T in SWISS-PROT protein database [76]), suggesting an
enrichment in putative N-glycoproteins. In comparison with the global T. cruzi proteome
[53], endosomal/lysosomal proteins represented around 23–37% versus 8.8%, which is nearly
similar to that found in the sub-proteome of the reservosome [54]. Several of them were not
detected in the whole proteome studies such as the vacuolar ATPase (V0 complex subunit D
(TcCLB.508397.10) and a V1 subunit A of vacuolar ATPase (TcCLB.503929.10) which could
be involved in endosome acidification, although it has been reported that in T. cruzi this
role is played by P-type ATPases [31]. In this respect, we found a P-type ATPase isoform
(TcCLB.505763.19) already identified in the reservosome analysis and the global T. cruzi pro-
teome (TcHA2) [54]. Other proteins specifically detected in our proteome as the carbonic
anhydrase-like protein (TcCLB.508817.130; TcCLB.509597.20) and the cytosolic leucine
aminopeptidase (TcCLB.509859.40) were also identified in the proteome of T. brucei blood-
stream plasma membrane [77]. Trypanosomal carbonic anhydrase might localize in endocy-
tic compartments as already described in higher eukaryotes [78]; in addition, this protein was
also detected in GPI-anchored proteins-enriched fraction from T. cruzi epimastigote ([75], S1
Table). Finally, several hypothetical proteins that we identifiedwere either found in the
proteome of the reservosomes (TcCLB.511283.290; TcCLB.506637.20; TcCLB.511759.30,
TcCLB.510329.10, TcCLB.509683.10, TcCLB.507711.200, TcCLB.509647.13, TcCLB.510099.20)
or were specific to our proteome (i. e., not found in the global proteome), and might constitute
interesting candidates as endocytic glycoproteins for further studies (TcCLB.506239.20,
TcCLB.503855.50, TcCLB.510717.40, TcCLB.437121.9, TcCLB.509857.60, TcCLB.506303.80,
TcCLB.507641.50, TcCLB.508777.110, TcCLB.508175.100, TcCLB.510299.10, TcCLB.511231.69,
TcCLB.510889.170, TcCLB.510421.130) as illustrated by the identification of a C-type lectin-like
(TcCLB.503855.50), which is homologous to lectin-likemannose receptors. This protein could
interact with carbohydrate-containingN-glycoproteins of the host, similarly to a lectin-like scav-
enger receptor. Interestingly, some enzymes of the carbohydrate metabolismwere highly repre-
sented in our TL subproteome such as a hypothetical protein (TcCLB.511759.30) sharing 98%
identity with an UDP-GLcNAc:polypeptide N-acetylglucoaminyltransferase from T. cruzi. Its
presence is not unexpectedbecause these enzymes could be trapped and purified together during
the glycan biosynthesis wherein poly-LacNAc residues are added to linear side-chains ofN-gly-
can in the Golgi apparatus. In the proteomic analyses of TL-binding fractions several proteins
not strictly related to endocytic compartments were detected.Most of them are ribosomal pro-
teins (~ 22%) or are components of the cytoskeleton, flagellum,mitochondrion, glycosome, or
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acidocalcisome.Despite stringent pellet washing with alkaline sodium carbonate buffer we did
not succeed to reduce the level of hydrophobic membrane-associated proteins in the Triton frac-
tions. Finally, the presence of contaminants is probably due to their high abundance as deduced
from their highmascot scores in the global proteome (S1 Table) [53]. Among them, we found
structural protein (α-tubulin), several stress proteins (hsp85, tryparedoxinperoxidase), proteins
involved in energeticmetabolism (pyruvate phosphate dikinase 1, glutamate dehydrogenase,
enolase, glyceraldehyde-3-phosphatase dehydrogenase, D-isomer specific 2-hydroxyacid dehy-
drogenase), and DNA/RNA processing (poly(A)-binding protein and ribosomal proteins).

Main Conclusions

Our study suggests that similarN-glycan modifications of proteins belonging to the endocytic
pathway occurs in T. cruzi epimastigotes as it does in T. brucei, with however a major differ-
ence: in T. cruzi these modifications are involved in Tf endocytosis,which takes place mainly at
the level of the cytostome, representing the major entry site for endocytosis.Although the
nature of the T. cruzi TfR remains elusive, we propose that in this parasite, lectin-sugar interac-
tions, such as those involving potentially poly-LacNAc modification of N-glycans, are impli-
cated in receptor-mediated endocytosis of macromolecules, such as Tf. In addition, we showed
that blockade of Tf uptake by TL is not directly mediated by the presence of an endogenous gly-
can modification of the cargo itself suggesting that Tf internalization could be indirectlymedi-
ated via some trypanosomeglycoproteins harboringN-glycans required for Tf binding.
Further characterization of theseN-glycans in T. cruziwould allow getting insights into the
molecularmechanisms by which the parasite internalize its ligand, which could constitute an
unexpectedpoint of attack against the Chagas disease.

Supporting Information

S1 Fig. Representative flow cytometryprofiles of the TL-488 and Tf-633 signals in T. cruzi.
Full representation of Fig 7D experiment (representative experiment) showing the gating and
the quadrant plots of the TL signal (ordinate) and the Tf signal (abscissa) from live cells treated
under different conditions. UC represents the uncolored cells.
(EPS)

S1 Table. List of LC-MS/MS identified proteins of TL- and GSLII-enriched fractions from
T. cruzi.Detailed legend is reported on the table.
(XLS)
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