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UnitedMet harnesses RNA–metabolite 
covariation to impute metabolite levels in 
clinical samples
 

Amy X. Xie    1,2, Wesley Tansey    1  & Ed Reznik    1 

Comprehensively studying metabolism requires metabolite measurements. 
Such measurements, however, are often unavailable in large cohorts of tissue 
samples. To address this basic barrier, we propose a Bayesian framework 
(‘UnitedMet’) that leverages RNA–metabolite covariation to impute otherwise 
unmeasured metabolite levels from widely available transcriptomic data. 
UnitedMet is equally capable of imputing whole pool sizes and outcomes of 
isotope tracing experiments. We apply UnitedMet to investigate the metabolic 
impact of driver mutations in kidney cancer, identifying an association 
between BAP1 and a highly oxidative tumor phenotype. We similarly apply 
UnitedMet to determine that advanced kidney cancers upregulate oxidative 
phosphorylation relative to early-stage disease, that oxidative metabolism 
in kidney cancer is associated with inferior outcomes to anti-angiogenic 
therapy and that kidney cancer metastases demonstrate elevated o xi da tive 
p ho sphorylation. UnitedMet provides a scalable tool for assessing metabolic 
phenotypes when direct measurements are infeasible, facilitating unexplored 
avenues for metabolite-focused hypothesis generation.

Changes to metabolite pool sizes and metabolic flux are fundamental 
to numerous diseases and biological phenomena1; consequently, meas-
urement of metabolites themselves is critical to the discovery of disease 
biomarkers, therapeutic vulnerabilities and mechanisms of action2–7. 
However, despite the translational value of metabolite measurement, 
large-scale profiling of metabolite levels in clinical specimens remains 
scarce because of the technical challenges associated with metabo-
lomic measurements (for example, the need for fresh, snap-frozen 
tissue and the analytical challenges of measuring chemically diverse 
compounds)8. Overcoming this data scarcity, therefore, comes with 
the potential reward of expanded access to the large space of under-
explored, metabolite-centered biological hypotheses.

Two simultaneous and recent developments have now poised 
the metabolism field to overcome the lack of large-scale metabolite 
measurements. First, recent developments in machine learning have 
demonstrated the promise of using reference multimodal data (that 
is, measurements of two or more distinct data modalities) to ulti-
mately impute measurements of interest in single-modality data9,10.  

For example, multimodal learning methods for single-cell multiomics9–11 
have been successful at cross-modal prediction for single-modality data-
sets (for example, protein prediction by jointly modeling with single-cell 
RNA sequencing (RNA-seq) in TotalVI (ref. 12) and single-cell ATAC pre-
diction through modeling with single-cell RNA-seq in MultiVI (ref. 13)). 
Second, we and other groups have identified both cancer-type-specific 
and lineage-agnostic patterns of RNA–metabolite covariation14–19. 
Together, these developments suggest that suitably designed machine 
learning models may, by lever aging strong covariation between tran-
scripts and metabolite pools, be able to predict otherwise unmeasured 
metabolite levels from matched single-modality transcriptomic data. 
Such a joint framework for modeling metabolic and RNA measurements 
would also produce a unified, low-rank representation of multimodal 
metabolite and RNA data, enabling downstream sample clustering, 
visualization and integration in a latent space.

Three key quantitative challenges must be addressed by 
multimodal models of metabolite and RNA levels. First, mass- 
spectrometry-derived metabolomics and isotope labeling data are 
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UnitedMet provides a unified solution for multimodal metab-
olomic data analysis at two levels. First, UnitedMet learns a shared 
representation of both transcriptomic and metabolic data, includ-
ing from samples where one type of measurement is missing,  
and integrates these data into a common low-dimensional latent 
space. Such a low-dimensional, integrated representation facilitates 
downstream tasks such as sample clustering and data visualization 
(Fig. 1b). Second, by learning a unified representation of metabolomic 
and transcriptomic features from reference data, UnitedMet enables 
the imputation of otherwise unmeasured metabolite levels and/or 
isotopolog distributions from gene expression data alone and deliv-
ers these predictions along with a quantification of their uncertainty. 
Together, these functions of UnitedMet enable the interrogation of 
metabolism and the evaluation of hypotheses relying on metabolite 
measurements in large, deeply profiled cohorts of tumors otherwise 
lacking metabolomic data.

UnitedMet accurately predicts metabolite levels from RNA-seq 
data in human tumor samples
To evaluate UnitedMet’s capacity to predict metabolite abundances 
on real-world patient-derived data, we first applied UnitedMet to four 
datasets of ccRCC samples with fully paired RNA-seq and metabolomics 
profiles. The aggregated data contained two datasets from the NIH 
Clinical Proteomic Tumor Analysis Consortium (CPTAC) project, 
CPTAC (n = 50, no. of metabolites = 183, no. of genes = 60,483)and 
CPTAC_val (n = 71, no. of metabolites = 130, no. of genes = 60,483), 
and two in-house datasets RC18 (n = 144, no. of metabolites = 783, no. 
of genes = 22,937) and RC20 (n = 76, no. of metabolites = 1,012, no. of 
genes = 22,987) (Supplementary Table 1). These data represented a 
typical use case for UnitedMet; while 20,171 genes were represented 
in all four datasets (corresponding largely to protein-coding genes 
uniformly measured across all data), only 86 (7% of the 1,148 unique 
metabolites in the entire dataset) were measured in all four datasets.

We designed a benchmarking experiment to evaluate the perfor-
mance of UnitedMet and comparator methods for the imputation of 
otherwise unmeasured metabolites. At each iteration of our bench-
marking experiment, we treated three of the four ccRCC datasets as 
‘reference’ datasets for UnitedMet (in which both metabolomic and 
transcriptomic data were available) and treated the remaining ccRCC 
dataset as a ‘target’ dataset (where only transcriptomic data were avail-
able). We subsequently trained four distinct UnitedMet models (one 
for each iteration of the benchmarking experiment, each with different 
hyperparameters λ) (Extended Data Fig. 1a) and evaluated the accuracy 
of UnitedMet metabolite predictions in the target dataset. For each 
metabolite, predicted levels from UnitedMet were compared to their 
ground-truth values by Spearman correlation (Fig. 2a). We considered 
a metabolite well predicted if the correlation between ground-truth 
and imputed abundance for that metabolite was positive and statisti-
cally significant (false discovery rate (FDR)-adjusted P value < 0.1). 
By calculating the percentage of well-predicted metabolites among 
the total number of available metabolites in the target dataset that 
were also measured in at least one other training dataset, UnitedMet 
successfully imputed between 48% and 67% of metabolites in the four 
target datasets (Fig. 2b and Supplementary Table 2). We compared the 
performance of UnitedMet to two existing methods for prediction of 
metabolite abundance from gene expression with the same datasets: 
multivariate Lasso regression21 and MIRTH22,23 (Methods). We used 
two metrics to quantify how well each method predicted metabolite 
abundance: the Spearman ρ among all predicted metabolites and the 
number of well-predicted metabolites. UnitedMet outperformed the 
other methods in all four cross-validation datasets by both metrics 
(Fig. 2c, Extended Data Fig. 1b and Supplementary Table 2). From these 
experiments, we conclude that UnitedMet can successfully impute a 
subset of metabolites directly from RNA-seq and that the accuracy of 
this imputation varies significantly across metabolites.

predominantly reported in semiquantitative relative abundances, 
impeding comparisons of identical metabolites and isotopologs across 
datasets (and of different metabolites within the same dataset). Second,  
different metabolomic measurement platforms often detect a subset of 
metabolites with limited overlap. As a result, each metabolic reference 
dataset exhibits a varying degree of missing measurements. Third, both 
metabolic and RNA modalities possess distinct sources of technical 
errors and noise that need to be suitably modeled. Prior attempts at 
predicting metabolic profiles from RNA-seq data had limited success, in 
part because of their inefficacy in addressing the aforementioned chal-
lenges. One method, reliant on correlation networks, struggled with 
missing values, resulting in a limited ability to predict cross-dataset 
outcomes for only 34 metabolites, with the highest Pearson’s ρ below 
0.5 (ref. 20). Similarly, a different approach using multivariate Lasso 
regression yielded poor performance, with a median R2 value of 0  
for within-dataset prediction and an inability to perform cross- 
dataset prediction21.

Here, we present UnitedMet, a Bayesian probabilistic method  
for joint modeling of metabolic and RNA-seq data. UnitedMet addresses 
the above challenges by mapping both RNA and metabolite data onto 
a shared rank-transformed scale and inferring missing metabolic 
measurements in reference datasets. UnitedMet operates as a com-
prehensive framework at two levels. In the latent space, it learns a uni-
fied representation for both metabolic and RNA data, facilitating tasks  
such as sample clustering and dataset integration. At a higher level, 
UnitedMet seizes on the strength of RNA–metabolite covariation 
to impute either metabolite pool sizes or isotopolog distributions 
from isotope labeling experiments directly from RNA abundance. 
We demonstrate that UnitedMet performs well on both imputation 
of pool sizes and imputation of isotope tracing experiments. We 
subsequently apply UnitedMet to identify the metabolite phenotypes 
of driver mutations in clinical specimens from persons with clear 
cell renal carcinoma (ccRCC) and study the metabolic phenotypes 
associated with metastatic disease in ccRCC.

Results
UnitedMet: a Bayesian model for multimodal metabolic data 
analysis
UnitedMet is a Bayesian generative method that jointly models 
RNA-seq and metabolite data. The input to UnitedMet comprises the 
paired matrices of RNA counts (X) and total ion counts of metabolites 
or isotopologs (Y) from samples with both RNA-seq and metabolite 
data measured (defined as reference datasets) and single-modality 
matrices with only RNA-seq data available (defined as target datasets) 
(Fig. 1a). To map metabolite relative abundances and gene expres-
sion levels onto a shared measurement scale, we rank-transform  
the metabolite or isotopolog and gene expression levels across  
all the samples within each dataset. Such a rank transformation  
places the distribution of values for metabolite features onto a com-
mon, nonparametric scale that naturally accounts for the semiquan-
titative nature of mass-spectrometry-based metabolomics data. 
UnitedMet then takes in an aggregate multiple-dataset matrix (R) 
containing the rankings data from both paired and single-modality 
samples. UnitedMet assumes observations are generated from a 
Plackett–Luce ranking distribution of a latent variable Z, which is 
the matrix product of a latent sample embedding matrix (W) and a 
latent feature embedding matrix (H) (Fig. 1b). UnitedMet infers pos-
terior distributions of gene expressions and metabolic profiles for 
all samples in the aggregate matrix and predicts metabolic profiles 
for single-modality samples using stochastic variational inference 
(SVI). A hyperparameter λ, the number of latent embedding dimen-
sions, is selected by grid search. The output of UnitedMet is a fully 
imputed multimodal data matrix, where any missing measurements 
from single-modality data in the input matrix R are replaced with 
their posterior estimates.

http://www.nature.com/natcancer
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As targeted mass spectrometry can only measure a specific class of 
metabolites, a related challenge is imputing a large panel of metabolites 
from a subset of measured metabolites and RNA-seq data. To address 
this, we extended UnitedMet’s capabilities by introducing a weighted 
loss function to address the imbalanced metabolomics and RNA-seq 
modalities. To benchmark the imputation accuracy, we randomly 
selected 50% of all measured metabolites as simulated missing in each 
dataset. Once again, we found UnitedMet was the top performer on all 
datasets in terms of the same metrics mentioned above (Extended Data 
Fig. 1c,d and Supplementary Table 3).

We next investigated the consistency of prediction accuracy 
across the four ccRCC datasets in UnitedMet. For each pair of two 
datasets from the four, we observed strong correlation between their 
metabolite-level prediction performances (Spearman ρ = 0.32–0.83 

in all pairwise comparisons, P < 0.001 in all pairwise comparisons; 
Extended Data Fig. 2a). The highest concordance was observed 
between the two in-house datasets, likely because of the larger over-
lap in measured metabolites that could be used for training and the 
larger sample sizes in these datasets. These results together confirmed 
that well-predicted metabolites were highly consistent across all 
four datasets. For instance, kynurenine (average Spearman ρ = 0.64, 
FDR-adjusted P value < 0.1 in all four datasets) and N-acetylneuraminate 
(average Spearman ρ = 0.64, FDR-adjusted P value < 0.1 in all four data-
sets) exhibited robust prediction results across four datasets (Fig. 2d). 
Combining these prediction results in four datasets, we labeled 59 
metabolites as ‘reproducibly’ well-predicted metabolites, indicating 
that they were well predicted in at least three of four target datasets 
(Supplementary Table 4). Reproducibly well-predicted metabolites 
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Fig. 1 | Overview of the UnitedMet method. a, Workflow of a metabolite 
imputation pipeline with UnitedMet. UnitedMet takes paired matrices of RNA 
counts (X ) and total ion counts of metabolites or isotopologs (Y ) (defined as 
reference datasets) and single-modality matrices with only RNA-seq data available 
(X0) (defined as target datasets) as inputs. UnitedMet then normalizes and 
rank-transforms both RNA-seq and metabolic data. By probabilistic modeling, 
UnitedMet infers posterior distributions of metabolic profiles for single-modality 
target samples, which can be used in downstream analysis for biological 

hypothesis testing. b, Architecture of the UnitedMet model. An aggregate matrix 
(R) containing ranking data from both paired and single-modality samples is 
modeled with a Plackett–Luce ranking distribution based on latent variables 
derived from embedding matrices W  and H . UnitedMet integrates transcriptomic 
and metabolic data into a common low-dimensional space for tasks such as 
clustering and visualization. Next, UnitedMet imputes missing metabolite levels 
from gene expression data, offering predictions and uncertainty quantification 
(some icons in the figure were created with BioRender.com).

http://www.nature.com/natcancer
https://www.biorender.com


Nature Cancer | Volume 6 | May 2025 | 892–906 895

Technical Report https://doi.org/10.1038/s43018-025-00943-0

were enriched for amino acids and carbohydrates but depleted of 
lipids relative to the full panel of metabolites (Fig. 2e). We also explored 
UnitedMet’s capacity to estimate model uncertainty by evaluating 
the s.d. of 1,000 draws from the posterior distribution of metabolite 
levels. We found that prediction uncertainty was negatively correlated 
with the prediction accuracy (Extended Data Fig. 2b), indicating that 
posterior uncertainty could guide the selection of reliable predictions 
for downstream analyses.

To further validate UnitedMet’s reliability, we conducted an  
external validation using three independent breast cancer 
cohorts24–26. Training on two breast cancer datasets24,25 and testing 
on a triple-negative breast cancer (TNBC) dataset26,27, UnitedMet suc-
cessfully predicted 42% of available metabolites in the TNBC dataset 
(Extended Data Fig. 2c), demonstrating its ability to generalize across 
different cancer types. Importantly, these predictions preserved 
well-characterized metabolic alterations of TNBC subtypes, such as 
elevated lipid metabolism in the C1 subtype and increased carbohy-
drate and glutathione metabolism in the C2 subtype (Extended Data 
Fig. 2d), highlighting the biological relevance of the model.

UnitedMet can predict isotopolog distributions from RNA-seq 
data in vitro and in vivo
Unlike measurements of metabolite pool sizes, isotopolog distri-
butions produced from steady-state isotopic labeling experiments 
capture the flow of nutrients through cellular metabolism. However, 
labeling experiments are technically challenging; consequently, there 
are even less publicly available isotopic labeling data (both in cell lines 
and in tissue specimens) compared to conventional metabolomic data.  
Motivated by the ability of UnitedMet to predict metabolite levels by 
jointly modeling metabolomics and RNA-seq data and the generaliz-
ability of our model, we hypothesized that UnitedMet might be able to 
predict isotopolog distributions from RNA-seq data. To test this hypoth-
esis, we obtained three datasets with paired RNA-seq data and isotopic 
labeling data (measured by mass spectrometry). Dataset RCC contained 
RCC tumor samples obtained from 76 participants receiving infusions 
of [U-13C]glucose before surgery28. A total of 64 isotopologs and 12,300 
genes were measured in the RCC dataset28. The other two datasets 
were composed of human non-small cell lung cancer (NSCLC) cell lines 
labeled with either [U-13C]glucose or [U-13C]glutamine: NSCLC-G (n = 85, 
no. of isotopologs = 28, no. of genes = 16,383) and NSCLC-Q (n = 85, no. 
of isotopologs = 21, no. of genes = 16,383) (Supplementary Table 1)3.

To evaluate UnitedMet’s performance of predicting isotopolog 
distributions, we conducted a simulation where 50% of the samples in 
a given dataset were randomly selected and treated as target data for 
UnitedMet (that is, with isotopolog measurements masked) (Fig. 3a). 
The remaining 50% of samples were treated as a reference dataset 
for UnitedMet. We trained three distinct UnitedMet models (one 
for each dataset) with different hyperparameters λ (Extended Data 
Fig. 3a). UnitedMet was able to successfully impute 52% (RCC), 56% 

(NSCLC-G) and 63% (NSCLC-Q) of the held-out isotopologs (Spearman 
ρ > 0, FDR-adjusted P value < 0.1) (Fig. 3b and Supplementary Table 5). 
Citrate M + 2, which reflects the contribution of glucose-derived car-
bon to the tricarboxylic acid (TCA) cycle through pyruvate in [U-13C]
glucose-labeled data, was reproducibly predicted with high accuracy in 
both the in vitro NSCLC dataset (Spearman ρ = 0.44, P = 0.003) and the 
in vivo RCC dataset (Spearman ρ = 0.39, P = 0.01) (Fig. 3c). In contrast, 
gene expression scores of either oxidative phosphorylation signature 
or TCA cycle signature, calculated directly from RNA-seq data, were 
not correlated to citrate M + 2 labeling in these datasets (oxidative 
phosphorylation signature: Spearman ρ = 0.16, P = 0.3 (NSCLC) and 
Spearman ρ = 0.22, P = 0.19 (RCC), Fig. 3c; TCA cycle signature: ρ = 0.06, 
P = 0.3 (NSCLC) and ρ = 0.25, P = 0.13 (RCC); Extended Data Fig. 3b). 
Similarly, lactate M + 3, which reflects glucose contribution to glycoly-
sis in [U-13C]glucose-labeled data, was accurately predicted in the RCC 
dataset (Spearman ρ = 0.43, P = 0.007), while a glycolysis gene expres-
sion signature was not correlated to lactate M + 3 (Spearman ρ = 0.05, 
P = 0.8; Extended Data Fig. 3c). Together, these results demonstrate 
that UnitedMet can accurately predict isotopologs that characterize 
specific metabolic phenotypes, an achievement not possible with 
standard gene set enrichment analysis of RNA-seq data.

Human kidney cancer arises in a variety of subtypes, including 
ccRCC, papillary RCC (pRCC) and chromophobe RCC (ChRCC), present-
ing with functionally distinct metabolic activity. To further benchmark 
the capacity of UnitedMet to impute isotopolog distributions, we 
assessed its capacity to capture histology-associated differences in 
metabolism across RCC subtypes. To do so, we applied UnitedMet, 
using multimodal RNA-seq and isotopolog data from Bezwada et al.28 as 
a reference dataset and 1,020 RCC tumor and adjacent normal samples 
from The Cancer Genome Atlas (TCGA) pan-kidney cohort (KIPAN) 
(encompassing ccRCC, pRCC and ChRCC) as a target dataset (Extended 
Data Fig. 3d and Supplementary Table 6). At the low-dimensional 
latent space learned by UnitedMet, we found that UnitedMet suc-
cessfully embedded samples in both the reference and the target 
datasets according to their subtype, despite missing measurements 
of isotopologs in TCGA KIPAN (Fig. 3d). Furthermore, imputed labe-
ling patterns in TCGA KIPAN dataset preserved ground-truth dif-
ferences between ChRCC and ccRCC samples (Spearman ρ = 0.85, 
P = 4.2 × 10−15) and between pRCC and ccRCC samples (Spearman 
ρ = 0.79, P = 5.0 × 10−12) (Fig. 3e). Consistent with prior findings28, ccRCC 
samples demonstrated higher glycolytic labeling, such as lactate M + 3/
glucose M + 6, while ChRCC and pRCC samples displayed higher ratios 
of TCA cycle labeling, such as citrate M + 2/glucose M + 6 and succinate 
M + 2/glucose M + 6 (Fig. 3e and Supplementary Table 7). While ChRCC 
displays increased use of the TCA cycle, loss-of-function alterations 
to mitochondrial DNA (mtDNA)-encoded complex I genes can result 
in loss of oxidative phosphorylation and metabolic reprogramming 
in favor of glycolysis29. Consistent with these findings, we found that 
ChRCC samples with complex I alterations demonstrated a shift to an 

Fig. 2 | UnitedMet achieves high accuracy predicting metabolite levels in 
human tumor samples. a, Schematic of the benchmarking experiment to 
evaluate model performance in a cross-validation scenario. Each time, three of 
four ccRCC datasets were designated as reference datasets, while the fourth 
dataset served as the target dataset with only transcriptomic data. The accuracy 
of UnitedMet’s predictions was then evaluated by comparing predicted 
metabolite abundances to their ground-truth levels. X , RNA-seq data; Y , 
metabolomics data. b, The imputation performance for each dataset was 
assessed by Spearman ρ values between predicted values and their ground  
truths across all simulated missing features. Metabolites with predicted  
ranks that showed a significant positive correlation (two-sided FDR-adjusted 
P < 0.1 and Spearman ρ > 0) with the actual ranks are labeled red. c, Performance 
of UnitedMet, multivariate Lasso regression and MIRTH based on the  
Spearman ρ among all predicted metabolites. Significance was assessed using  
a two-sided Wilcoxon signed-rank test. (CPTAC, n = 156 participant samples, 

PLasso_UnitedMet = 2.1 × 10−11, PMIRTH_UnitedMet = 2.7 × 10−8; CPTAC_val, n = 129 participant 
samples, PLasso_UnitedMet = 6.4 × 10−12, PMIRTH_UnitedMet = 6.8 × 10−4; RC18, n = 709 
participant samples, PLasso_UnitedMet = 6.6 × 10−6, PMIRTH_UnitedMet = 2.1 × 10−11; RC20, 
n = 718 participant samples, PLasso_UnitedMet = 1.7 × 10−33, PMIRTH_UnitedMet = 4 × 10−3).  
In the box plots, the center line represents the median, the bounds of the box 
indicate the interquartile range (25th to 75th percentiles) and the whiskers 
extend to the minima and maxima within 1.5 times the interquartile range. Data 
points outside this range are shown as individual outliers. d, Correlation between 
actual and predicted metabolite ranks for two reproducibly well-predicted 
metabolites: kynurenine (top) and N-acetylneuraminate (bottom). Each point 
represents one sample in which the metabolite was measured and predicted.  
e, The imputation performance for each metabolite is summarized across 
datasets, with average Spearman ρ values plotted. A subset of consistently 
well-imputed metabolites is labeled and those that are reproducibly well 
predicted are marked in blue.
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alternative glycolytic metabolic pathway with higher levels of lactate 
M + 3/glucose M + 6 (P = 0.02) and lower levels of citrate M + 2/glucose 
M + 6 (P = 0.04), evaluated using the Wilcoxon rank-sum test) (Fig. 3f 
and Supplementary Table 8). This suggested that UnitedMet captured 
mutation-driven metabolic reprogramming in ChRCC, which further 
validated UnitedMet’s capability to generate biologically meaningful 
predictions.

In total, the analysis presented in Figs. 2 and 3 demonstrates that 
UnitedMet is capable of accurately imputing both metabolite levels and 
isotopolog distributions from RNA-seq data through joint, multimodal 
modeling with reference datasets.

BAP1 mutations are associated with an oxidative metabolic 
phenotype in ccRCC
Although both oncogenes (such as MYC and PIK3CA) and tumor sup-
pressor genes (PTEN and VHL) are well-recognized regulators of 
metabolism30,31, the functional consequences of driver alterations on 
tumor metabolism in vivo are poorly studied32,33. In fact, the lack of 
population-scale metabolomic profiling in contemporary cohorts of 
molecularly profiled tumors renders a direct evaluation of the association 
of either metabolite levels or metabolic flux with the presence of specific 
driver alterations infeasible. We reasoned that we could apply UnitedMet 
to impute both metabolite levels and isotope labeling patterns in richly 
profiled cohorts of tumors, such as those from TCGA, to assess whether 
genomic alterations were associated with specific metabolite changes.

We focused our efforts on understanding the genome–metabo-
lome covariation in ccRCC, for which we have several reference datasets 
with both transcriptomic and metabolomic or labeling data. The canon-
ical founder mutation in ccRCC is the biallelic inactivation of the tumor 
suppressor gene VHL (affecting between 50% (ref. 34) and 80% (ref. 35) 
of ccRCC cases) and the subsequent activation of a pseudohypoxic 
transcriptional and metabolic program. The subsequent evolution of 
ccRCC includes the acquisition of secondary driver mutations in genes 
(such as PIK3CA, PTEN, MTOR and BAP1), whose functions are (at least 
in part) metabolic2. To understand the associations between genetic 
mutations and metabolic variations in ccRCC, we applied UnitedMet 
to large-scale multiomics TCGA kidney ccRCC (KIRC) cohort (n = 606), 
which has paired RNA-seq and whole-exome sequencing (WES) data. 
Training the RNA-seq data from TCGA KIRC with four ccRCC reference 
datasets (CPTAC, CPTAC_val, RC18 and RC20; n = 341) containing paired 
RNA-seq and metabolomics data, UnitedMet predicted metabolite 
levels for TCGA KIRC samples (Fig. 4a and Supplementary Table 9).

We first studied associations between the predicted metabolite 
abundances and genetic mutations in TCGA KIRC cohort. For each 
of the 14 key driver mutations in ccRCC (VHL, PBRM1, SETD2, BAP1, 
MTOR, KDM5C, PTEN, TP53, PIK3CA, TSC2, TCEB1, TSC1, PIK3R1 and 
SDHB), we compared metabolite levels (considering only reproducibly 
well-predicted metabolites) between mutant and wild-type samples, 

using an FDR-corrected Wilcoxon test (Fig. 4b). We identified signifi-
cantly higher or lower mutation-specific abundance of metabolites in 
BAP1 (n = 38 metabolites), PBRM1 (n = 37), VHL (n = 22), SETD2 (n = 15) 
and TP53 (n = 3) mutations. The BAP1 mutation showed the strongest 
association with the largest variety of predicted metabolites despite a 
relatively low mutation rate (~10%) in participants with ccRCC (Fig. 4b). 
For example, BAP1-mutant samples exhibited lower levels of β-alanine, 
glutamine, glutamate and oxidized glutathione, which aligns with 
the loss of BAP1 impairing cellular redox homeostasis and weaken-
ing antioxidant defense mechanisms36–38. Additionally, prior studies 
showed that BAP1 mutations have a role in several aspects of cellular 
metabolism including glucose metabolism37–39. Mass spectrometry 
measurements demonstrated that germline BAP1 mutations induced 
the Warburg effect in human fibroblasts, including depleted TCA cycle 
activity and increased aerobic glycolysis40. Additionally, transcrip-
tome analysis showed that BAP1-mutant ccRCC samples were enriched 
in glycolytic gene expression41. To gather insight into the interplay 
between BAP1 mutation and metabolite abundance, we performed 
a pathway-based differential abundance (DA) analysis of predicted 
metabolic changes in BAP1-mutant and wild-type samples in TCGA 
KIRC. BAP1-mutant samples showed significant depletion in the TCA 
cycle metabolism (DA score = −1), including drops in the levels of cit-
rate (P = 0.03), fumarate (P = 0.007) and malate (P = 0.008) (Fig. 4c,d). 
BAP1-mutant samples also demonstrated lower levels of free, unphos-
phorylated glucose (P = 3 × 10−7), suggesting that these tumors may 
upregulate glucose uptake from the microenvironment (Fig. 4d). Con-
sistent with these findings, similar trends of BAP1 mutation-specific 
changes were observed in the directly measured metabolite abun-
dances from both CPTAC and CPTAC_val datasets, further validating 
the metabolite-level differences between BAP1-mutant and wild-type 
samples (Extended Data Fig. 4a,b).

To more granularly understand the metabolic flux patterns asso-
ciated with the above-described pool size changes, we trained the 
RNA-seq data from TCGA KIRC with the [U-13C]glucose-labeled refer-
ence dataset RCC (Fig. 4e and Supplementary Table 10) and lever-
aged imputed [U-13C]glucose-labeled isotopolog distribution data 
from TCGA KIRC. Relative to BAP1 wild-type tumors, BAP1-mutant 
tumors demonstrated increased levels of citrate M + 2/pyruvate M + 3 
(P = 3 × 10−4), succinate M + 2/pyruvate M + 3 (P = 0.003) and malate 
M + 2/pyruvate M + 3 (P = 0.03) (Fig. 4f), indicating an elevated contri-
bution of glucose to TCA cycle activity in BAP1-mutant ccRCC. These 
data indicated that pool size drops in TCA cycle metabolites are not 
caused by decreased entry of glucose into the TCA cycle. Instead, they 
suggest that BAP1-mutant tumors undergo reduced entry of other 
anapleurotic sources of TCA cycle intermediates, such as glutamate, 
or alternatively increase diversion of TCA cycle intermediates into 
alternate pathways, such as the use of acetyl-CoA for fatty acid syn-
thesis. Such hypotheses are directly testable by analogous infusion 

Fig. 3 | UnitedMet accurately predicts isotopolog distributions from RNA-seq 
data. a, Schematic of the benchmarking experiment to assess model 
performance on isotopolog predictions. Here, 50% of the samples in a given 
dataset were randomly selected and treated as target data for UnitedMet (that is, 
simulated as unmeasured). The remaining 50% of samples were treated as a 
reference dataset for UnitedMet. X , RNA-seq data; Y , Isotopolog data.  
b, Imputation performance for each dataset was evaluated using Spearman ρ 
values between predicted values and their ground truths across all simulated 
missing features. Isotopologs with predicted ranks that exhibited a significant 
positive correlation with the actual ranks are marked in red. c, True ranks of citrate 
M + 2 were well predicted by UnitedMet but not by the gene expression signature of 
the Hallmark oxidative phosphorylation pathway. For each sample in the [U-13C]
glucose-labeled NSCLC (top) and RCC (bottom) datasets, true ranks of citrate M + 2 
were compared to predicted ranks from UnitedMet (left) and oxidative phosphory-
lation pathway scores calculated from gene expressions in the corres ponding 
Hallmark gene set (right). Significance was assessed using a two-sided Spearman 
correlation. d, Uniform manifold approximation and projection plots of sample 

embedding matrix W (posterior means) learned by UnitedMet reveal integration of 
batches (top) and clustering across renal cell carcinoma subtypes in TCGA KIPAN 
batch (bottom). Each dot represents a participant sample. RCC and TCGA KIPAN 
samples overlap in the latent space. e, UnitedMet captures histology-associated 
differences in metabolism across RCC subtypes. DA of imputed isotopologs across 
RCC subtypes in TCGA KIPAN were compared to ground-truth differences in the 
measured RCC cohort. Significance was assessed using a two-sided Spearman 
correlation. Isotopologs in blue were consistently and significantly enriched 
(FDR-adjusted P < 0.1, two-sided Wilcoxon rank-sum test) in both measured and 
predicted cohorts. f, UnitedMet captures mutation-driven metabolic 
reprogramming in ChRCC. For each sample in the ChRCC cohort (n = 61), predicted 
levels of lactate M + 3/glucose M + 6 (left) and citrate M + 2/glucose M + 6 (right) are 
shown. Error bars represent ±1 s.d. The x axis is sorted by predicted abundances of 
corresponding isotopologs. Samples with complex I insertions or deletions are 
labeled red. Samples with complex I single-nucleotide variations are labeled green. 
P values show the results of a two-sided Wilcoxon rank-sum test between complex I 
indel samples and the other samples.
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experiments using, for example, labeled glutamine, and suggest that 
BAP1 tumors may harbor metabolically distinct (and potentially thera-
peutically targetable) metabolic alterations.

Lastly, we sought to evaluate whether other diseases may similarly 
display associations between genotype and metabolic phenotype.  
To do so, we trained UnitedMet on a reference dataset containing  

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

Cancer type
ChRCC
ccRCC

pRCC
Normal

e

Lactate m + 3

Alanine m + 3
Malate m + 3

Aspartate m + 3−0.5

0

0.5

−0.5 0 0.5

RCC (measured)

KI
PA

N
 (p

re
di

ct
ed

)

Not significantSignificantly consistent Significantly inconsistent

Malate m + 2
Aspartate m + 2

Glutamate m + 2
Citrate m + 2

Succinate m + 2

Glutamine m + 2

−0.25

0

0.25

0.50

−0.2 0 0.2 0.4

Enriched in ChRCCEnriched in ccRCC

RCC (measured)

KI
PA

N
 (p

re
di

ct
ed

)

Enriched in pRCCEnriched in ccRCC

r = 0.79
P = 5 × 10–12

r = 0.85
P = 4 × 10–5

RCC
NSCLC_glc

Batch

a

d

c

f

0

0.4

0.8

1 10 20 30 40 50 60

Samples
Sample type Complex I indel Complex I SNV WT

1.2
Lactate m + 3/Glucose m + 6 Citrate m + 2/Glucose m + 6

1 10 20 30 40 50 60

Samples

0

0.4

0.8

Pr
ed

ic
te

d 
ab

un
da

nc
e

P = 0.01 P = 0.03

0

0.25

0.50

0.75

1.00

0 0.25 0.50 0.75 1.00

C
itr

at
e 

m
 +

 2
 p

re
di

ct
ed

 ra
nk

900

950

1,000

1,050

1,100

0 0.25 0.50 0.75 1.00

O
XI

PH
O

S 
sig

na
tu

re

1,650

1,680

1,710

1,740

1,770

0 0.25 0.50 0.75 1.00

O
XP

H
O

S 
si

gn
at

ur
e

Batch

TCGA KIPAN
RCC

RCC + TCGA KIPAN TCGA KIPAN

Citrate m + 2 true rank Citrate m + 2 true rank

Citrate m + 2 true rank

0

0.25

0.50

0.75

1.00

0 0.25 0.50 0.75 1.00

Citrate m + 2 true rank

C
itr

at
e 

m
 +

 2
 p

re
di

ct
ed

 ra
nk

r = 0.44
P = 0.003

r = 0.39
P = 0.01

r = 0.22
P = 0.19

r = 0.16
P = 0.30

–0.1

Citr
ate

 m
 + 

1

0

0.1

0.2

0.3

0.4

0.5

Mala
te m

 + 
1

Glutam
ate

 m
 + 

1

Succinate
 m

 + 
2

Mala
te m

 + 
2

La
ctat

e m
 + 

3

 Asp
art

ate
 m

 + 
1

Citr
ate

 m
 + 

2

Glucose
 m

 + 
6

Asp
art

ate
 m

 + 
2

Glutam
ate

 m
 + 

2

Succinate
 m

 + 
1

Sp
ea

rm
an

 rh
o

RCC ([U-13C]glucose labeled)

Citr
ate

 m
 + 

2

Serin
e m

 + 
3

Citr
ate

 m
 + 

4

Fu
mara

te m
 + 

2

Mala
te m

 + 
3

–0.1
0

0.2

0.4

Sp
ea

rm
an

 rh
o

NSCLC ([U-13C]glucose labeled)

0

0.2

0.4

Citr
ate

 m
 + 

4

Citr
ate

 m
 + 

1

Citr
ate

 m
 + 

2

Fu
mara

te m
 + 

1

Fu
mara

te m
 + 

4

Sp
ea

rm
an

 rh
o NSCLC ([U-13C]glutamine labeled)

Significant positive correlation 

b
< isotopologue> <transcripts>

X1/2Y1/2

X1/2Y1/2

50%

50%

<transcripts>

X1/2

X1/2

Y1/2

< isotopologue>

Randomly mask 
half samples 
as unmeasured 

50%
Target

50%
Reference

Sa
m

pl
es

Sa
m

pl
es

http://www.nature.com/natcancer


Nature Cancer | Volume 6 | May 2025 | 892–906 899

Technical Report https://doi.org/10.1038/s43018-025-00943-0

ccRCC driver mutations–predicted metabolites
Association analysis

BAP1–metabolites
PBRM1–metabolites
VHL–metabolites

......

TCA cycle
Alanine and aspartate metabolism

Glutamate metabolism
Histidine metabolism

Tryptophan metabolism
Glutathione metabolism
Glycerolipid metabolism

Nicotinate and nicotinamide metabolism
Xanthine metabolism

Aminosugar metabolism
Creatine metabolism

Lysine metabolism
Nucleotide sugar

Glycolysis, gluconeogenesis, and pyruvate metabolism
Phospholipid metabolism

Purine metabolism, adenine containing
Pyrimidine metabolism, cytidine containing

Urea cycle; arginine and proline metabolism
Glycine, serine and threonine metabolism

Polyamine metabolism
Purine metabolism, guanine containing

Valine, leucine and isoleucine metabolism
Phenylalanine and tyrosine metabolism

Carnitine metabolism

−1.0 −0.5 0 0.5 1.0

Mutation

0

10

20

30

40

BAP1

PBRM1
VHL

SETD
2

TP
53

MTO
R

KDM5C

PIK3CA

PIK3R1
PTE

N
TS

C1
TS

C2
TC

EB1
SDHB

Mutation

M
ut

at
io

n 
fr

eq
ue

nc
y

in
 T

C
G

A 
(%

)
GLUT2
Glucose↓

Glucose 6-phosphate

Fructose 6-phosphate

Mitochondria

Pyruvate Lactate

Acetyl-CoA

Citrate↓

α-KG

Oxaloacetate

↓Fumarate

TCA
cycle↓Malate

Glycolysis

N
o.

 o
f s

ig
ni

fic
an

tly
as

so
ci

at
ed

 m
et

ab
ol

ite
s

BAP1

PBRM1
VHL

TP
53

MTO
R

KDM5C

PIK3CA

PIK3R1
PTE

N
TS

C1
TS

C2
TC

EB1
SDHB

SETD
2

0

10

20

30

↓in BAP1MUT←DA→↑in BAP1MUT

<isotopologue> <transcripts>

X TCGA-KIRC

XccRCCYccRCCReference

TCGA KIRC

<BAP1>
Isotopologue distribution prediction

0

0.25

0.50

0.75

1.00

MUT BAP1 WT BAP1

Ab
un

da
nc

e

Glucose

0

0.25

0.50

0.75

1.00

MUT BAP1 WT BAP1

Ab
un

da
nc

e

Citrate

0

0.25

0.50

0.75

1.00

MUT BAP1 WT BAP1

Ab
un

da
nc

e

Fumarate

0

0.25

0.50

0.75

1.00

MUT BAP1 WT BAP1

Ab
un

da
nc

e

Malate

0

0.25

0.50

0.75

1.00

Ab
un

da
nc

e

Citrate m + 2/Pyruvate
m + 3

0

0.25

0.50

0.75

1.00

Ab
un

da
nc

e

Succinate m + 2/Pyruvate
m + 3

0

0.25

0.50

0.75

1.00
 A

bu
nd

an
ce

Malate m + 2/Pyruvate
m + 3

P = 3 × 10–7 P = 0.03

P = 0.007 P = 0.008

P = 3 × 10–4
P = 0.003 P = 0.03

a

c d

b

e f

MUT BAP1 WT BAP1 MUT BAP1 WT BAP1 MUT BAP1 WT BAP1

Sa
m

pl
es

< meta
bolites>

<transcripts>

YCPTAC

YCPTAC_val

YRC18

YRC20

XTCGA-KIRC 

XCPTAC

XRC20

XCPTAC_val

XRC18
Reference

TCGA KIRC

<genes>

Metabolic abundance prediction

Sa
m

pl
es

Fig. 4 | BAP1 mutations in ccRCC are associated with a unique metabolic 
phenotype. a, Schematic of the metabolite-level prediction and downstream 
analysis for TCGA KIRC samples with UnitedMet. RNA-seq data (XTCGA) of TCGA 
KIRC cohort (target dataset) were trained with four ccRCC reference datasets 
(CPTAC, CPTAC_val, RC18 and RC20; n = 341) containing paired RNA-seq and 
metabolomics data. X , RNA-seq data; Y , metabolomics data. Predicted 
metabolite levels (YTCGA) are leveraged for association analysis with ccRCC driver 
mutations. b, BAP1 mutation demonstrates the strongest association with a 
broad range of predicted metabolites. Top, distribution of the total number of 
significantly associated metabolites across 14 key driver mutations in ccRCC. The 
x axis is sorted by the number of significantly associated metabolites. Bottom, 
mutation frequency of 14 driver genes. The x axis is sorted by mutation 
frequency. c, Pathway-based analysis of predicted metabolic changes in 
BAP1-mutant versus BAP1 wild-type samples in TCGA KIRC cohort. MUT, mutant; 
WT, wild type. d, Predicted metabolite-level changes in BAP1-mutant versus BAP1 
wild-type samples in TCGA KIRC cohort. Left, diagram of glucose metabolism 
pathways: glycolysis and TCA cycle (created with BioRender.com). α-KG, 
α-ketoglutarate. Right, box plots comparing predicted unphosphorylated 

glucose, citrate, fumarate and malate levels in mutant BAP1 (n = 38) versus 
wild-type BAP1 (n = 330) participant samples. P values were calculated using 
unpaired two-tailed parametric t-tests. In the box plots, the center line represents 
the median, the bounds of the box indicate the interquartile range (25th to 75th 
percentiles) and the whiskers extend to 1.5 times the interquartile range. 
Individual data points are shown as dots. e, Schematic of the isotopolog 
distribution prediction for TCGA KIRC samples with UnitedMet. RNA-seq data 
(XTCGA) of TCGA KIRC cohort (target dataset) were trained with ccRCC samples in 
the [U-13C]glucose-labeled RCC dataset containing paired RNA-seq and isotope 
labeling data. X , RNA-seq data; Y , isotopolog data. f, Predicted isotopolog 
changes in BAP1-mutant versus BAP1 wild-type samples in TCGA KIRC cohort.  
Box plots compare the predicted citrate M + 2/pyruvate M + 3, succinate M + 2/
pyruvate M + 3 and malate M + 2/pyruvate M + 3 ratios in mutant BAP1 (n = 38) 
versus wild-type BAP1 (n = 330) participant samples. P values were calculated 
using unpaired two-tailed parametric t-tests. In the box plots, the center line 
represents the median, the bounds of the box indicate the interquartile range 
(25th to 75th percentiles) and the whiskers extend to 1.5 times the interquartile 
range. Individual data points are shown as dots.
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paired RNA-seq and [U-13C]glucose-labeled isotopolog distribution 
data from 42 NSCLC samples42 and used TCGA lung adenocarcinoma 
(LUAD) cohort (n = 576) as a target dataset (Supplementary Table 11). 
Partitioning the reference data into 50% training and 50% testing, we 
found that UnitedMet was able to successfully impute 7/29 isotopologs. 
We subsequently studied associations between the well-predicted 
isotopolog distributions and genetic mutations in TCGA LUAD cohort. 
Consistent with a prior study3, EGFR-mutant tumors demonstrated 
decreased levels of citrate M + 2/pyruvate M + 3 (P = 2 × 10−6) and glu-
tamate M + 2/pyruvate M + 3 (P = 2 × 10−4) (Extended Data Fig. 5a) rela-
tive to EGFR wild-type tumors, indicating a diminished contribution 
of glucose to the pool sizes of TCA cycle constituents in EGFR-mutant 
LUAD. Functionally, this suggests that EGFR mutations in persons  
with cancer are associated with a less oxidative phenotype, although 
additional data from tracing of other nutrient sources such as glu-
tamine and acetate are necessary to more completely resolve TCA  
cycle flux. Together, our findings suggested that, in diverse settings, 
driver mutations induce specific metabolic phenotypes.

Shift to oxidative metabolism correlates with disease 
progression and poorer clinical outcome
Recent work suggested that, although ccRCC tumors generally 
downregulate mitochondrial gene expression and limit entry of 
glucose-derived carbon into the TCA cycle relative to normal tissue, 
distant metastases in ccRCC upregulate oxidative phosphorylation and 
glucose entry into the TCA cycle28. However, there are no large-scale 
data available on the metabolism of metastatic tumors. We reasoned 
that high-stage, aggressive ccRCC tumors, which ultimately seed dis-
tant metastases, should exhibit signatures of upregulation of oxida-
tive glucose metabolism. To test this hypothesis, we again leveraged 
predicted isotopolog distribution data from TCGA KIRC and compared 
isotopolog levels of [U-13C]glucose-labeled TCA cycle intermediates 
normalized by pyruvate M + 3 in ccRCC tumors from different patho-
logical stages. Aggressive ccRCCs with a higher stage demonstrated 
higher levels of citrate M + 2/pyruvate M + 3 (P = 3 × 10−4), succinate 
M + 2/pyruvate M + 3 (P = 7 × 10−6) and malate M + 2/pyruvate M + 3 
(P = 2 × 10−4), evaluated using the Kruskal–Wallis test (Fig. 5a), consist-
ent with increased glucose-derived carbon entry into the TCA cycle. 
Motivated by this finding, we sought to evaluate whether high-stage, 
aggressive tumors in other cancers also displayed a similar shift to 
oxidative glucose metabolism. We leveraged predicted isotopolog 
distribution data from TCGA LUAD and found no significant associa-
tions between TCA cycle labelings such as citrate M + 2/pyruvate M + 3 
(P = 0.8), glutamate M + 2/pyruvate M + 3 (P = 0.8) and malate M + 2/
pyruvate M + 3 (P = 0.3) and pathological stages, evaluated using the 
Kruskal–Wallis test (Extended Data Fig. 5b). This suggested that meta-
bolic reprogramming in aggressive tumors is cancer-type-specific.

We then applied UnitedMet to predict isotopolog distribution data 
for 823 primary or metastatic tumor samples from a publicly available 
advanced ccRCC clinical trial (IMmotion151) (Supplementary Table 12). 
We trained RNA-seq data from IMmotion151 with the ccRCC samples 

from the RCC reference dataset. Predicted isotopolog levels of [U-13C]
glucose-labeled TCA cycle intermediates normalized by pyruvate 
M + 3 were compared between primary and metastatic ccRCC tumors 
in IMmotion151. Metastatic ccRCC tumor samples demonstrated 
higher levels of citrate M + 2/pyruvate M + 3 (P = 5 × 10−13), succinate 
M + 2/pyruvate M + 3 (P = 3 × 10−10) and malate M + 2/pyruvate M + 3 
(P = 2 × 10−9), evaluated using the Wilcoxon rank-sum test (Fig. 5b). 
This finding was further validated in a second set of trials (the Check-
Mate cohort43), where predictions for metastatic ccRCC tumors also 
showed increased oxidative TCA cycle labeling (Extended Data Fig. 5c). 
Together, these results indicated that, in ccRCC, increased TCA cycle 
activity is associated both with (1) high stage or disease progression 
and (2) the establishment of metastasis itself.

We next interrogated whether this oxidative metabolic phenotype 
may be linked to poor clinical outcomes. Participants with ccRCC 
in the IMmotion151 trial were treated with either atezolizumab plus 
bevacizumab (a combination of tyrosine kinase inhibitor and immu-
notherapy) or sunitinib (an antiangiogenic tyrosine kinase inhibitor). 
We evaluated the association between isotopolog levels of TCA cycle 
intermediates and progression-free survival (PFS) using multivariate 
Cox proportional hazard models (evaluating different treatment arms 
separately). In the atezolizumab + bevacizumab arm, participants with 
high levels of citrate M + 2/pyruvate M + 3, succinate M + 2/pyruvate 
M + 3 and malate M + 2/pyruvate M + 3 did not exhibit a significant 
survival difference (Fig. 5c–e). In the sunitinib arm, we observed that 
participants with high succinate M + 2/pyruvate M + 3 (P = 4.4 × 10−5) 
Fig. 5d) and malate M + 2/pyruvate M + 3 (P = 1.6 × 10−6) (Fig. 5e) had sig-
nificantly poorer PFS. These data highlighted oxidative metabolism of 
glucose as a potential druggable target to diminish cancer progression 
and metastasis in persons receiving antiangiogenic agents in ccRCC.

Discussion
This work presents an advanced methodology for the joint, probabil-
istic modeling of multimodal metabolic data. In doing so, it addresses 
the numerous challenges associated with the analysis of metabolomics 
data (including but not limited to semiquantitative data and batch 
effects) and its joint modeling with transcriptomics data. After estab-
lishing that UnitedMet accurately imputes metabolite features with 
estimates of uncertainty in benchmark datasets, we applied UnitedMet 
to study the metabolic consequences of key driver mutations and the 
metabolic adaptations associated with aggressive disease and meta-
static competency.

The era of cancer genomics has revealed that only a small number 
of metabolic enzymes (including, for example, IDH1, IDH2, FH and SDH) 
are recurrently mutated or otherwise lost in cancer. However, a much 
larger number of recurrently altered genes are so-called regulators 
of metabolism (for example, PIK3CA, MTOR and MYC) or other pro-
teins indirectly drawing on metabolites as substrates for their action  
(for example, epigenetic regulators such as DNA methyltransferases). 
Our observations here suggest that certain molecular subtypes of can-
cer, associated with the presence or absence of key driver mutations 

Fig. 5 | Shift to oxidative metabolism correlates with disease progression 
and poorer clinical outcome. a, Aggressive ccRCCs with higher pathological 
stage demonstrate higher ratios of predicted citrate M + 2/pyruvate M + 3 
(left), succinate M + 2/pyruvate M + 3 (middle) and malate M + 2/pyruvate 
M + 3 (right) in TCGA KIRC cohort (stage 1, n = 267 participant samples; stage 2, 
n = 57 participant samples; stage 3, n = 123 participant samples; stage 4, n = 84 
participant samples). The significance between any two stages was assessed 
using a pairwise two-sided t-test. P values are FDR adjusted. Citrate M + 2/
pyruvate M + 3, P1_3 = 0.0014 and P1_4 = 0.0014; succinate M + 2/pyruvate M + 3, 
P1_2 = 0.04, P1_3 = 0.0011 and P1_4 = 3 × 10−5; malate M + 2/pyruvate M + 3, P1_3 = 0.067 
and P1_4 = 0.00015. In the box plots, the center line represents the median, the 
bounds of the box indicate the interquartile range (25th to 75th percentiles) and 
the whiskers extend to 1.5 times the interquartile range. Individual data points 
are shown as dots. b, Samples from metastatic sites in participants with ccRCC 

show higher ratios (compared to samples from primary tumor sites) of predicted 
citrate M + 2/pyruvate M + 3 (left), succinate M + 2/pyruvate M + 3 (middle) and 
malate M + 2/pyruvate M + 3 (right) in the IMmotion151 cohort (primary ccRCC, 
n = 625 participant samples; metastatic ccRCC, n = 198 participant samples). 
Significance was assessed using two-sided Wilcoxon rank-sum tests. In the box 
plots, the center line represents the median, the bounds of the box indicate the 
interquartile range (25th to 75th percentiles) and the whiskers extend to 1.5 times 
the interquartile range. Individual data points are shown as dots. c, Kaplan–Meier 
plot showing PFS of ccRCC participants with a high level of citrate M + 2/pyruvate 
M + 3 (based on median level) versus a low level of citrate M + 2/pyruvate M + 3 in 
both the atezolizumab + bevacizumab arm (top) and the sunitinib arm (bottom). 
Significance was assessed using a log-rank test. d, Same as c but for succinate 
M + 2/pyruvate M + 3. e, Same as c but for malate M + 2/pyruvate M + 3.
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such as BAP1 in ccRCC or EGFR in LUAD, may themselves be associated 
with unique metabolic features. Whether these associations between 
genotype and metabolism are gene intrinsic or potentially extend 
across cancer lineages (for example, to BAP1-mutant mesothelioma) 
is an open question. While such observations have been made in the 
past24,44, the growing number of metabolomics datasets in primary 
tumors and, now, the availability of UnitedMet suggest that the field 

is now poised to carry out a more comprehensive analysis of the meta-
bolic impact of driver mutations.

Several key limitations underlie UnitedMet and represent impor-
tant challenges in the development of next-generation methods for 
joint modeling of multimodal metabolic data. First, the accuracy of 
UnitedMet varied widely across metabolites (Fig. 2), rendering a large 
fraction of the metabolite nonimputable. The successive addition of 
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relevant data for training for UnitedMet is the most direct route to 
addressing this limitation, although the possibility remains that a sub-
set of metabolites will remain nonimputable with even very large train-
ing data. Nonetheless, UnitedMet’s ability to estimate the uncertainty 
of the model for each imputed metabolite enables users to filter reliable 
predictions, which can help mitigate the variability in performance and 
ensure robust downstream analyses. Second, while rank transformation 
has proven useful in both UnitedMet and MIRTH23 for the comparison 
of semiquantitative metabolite data produced in distinct batches, the 
process of rank transformation produces a loss of information, where 
large effect sizes (that is, large fold changes between pairs of samples) 
in one metabolite feature can be equated to small effect sizes in another 
metabolite feature in the rank-transformed space. Third, the vast major-
ity of the training data for UnitedMet are derived from single-site tissue 
biopsies, leaving open the possibility that fluctuations in the global 
tumor nutrient milieu may be incompletely captured by RNA-seq from 
a single site. Multiregional sampling of both metabolites and RNA (or 
coregistered spatial metabolomics and transcriptomics) is likely nec-
essary to address this limitation. Fourth, UnitedMet requires at least 
one reference dataset of sufficient size to carry out imputation. For the 
majority of diseases, such a dataset does not exist14,45. One potential 
avenue to overcoming this challenge is to train disease-agnostic models 
to impute metabolite features. This seems feasible for at least some 
metabolite features that demonstrate lineage-agnostic covariation with 
gene expression, such as IDO1 and kynurenine14,22. However, while our 
own prior studies focused on analyzing lineage-agnostic covariation 
between individual genes and individual metabolites, such interac-
tions are rare. Conversely, it remains unknown whether generalized, 
multivariate patterns of gene–metabolite covariation (for example, a 
multidisease implementation of UnitedMet) could be used to impute 
metabolite levels in different contexts. It is reasonable to speculate 
that certain fundamental and common metabolic phenotypes (such as 
hypoxia or aerobic glycolysis) may be associated with shared transcrip-
tomic signatures across diseases, whereby cross-disease or cross-tissue 
imputation would be feasible. Encoding tissue site as an additional fac-
tor in future versions of UnitedMet may improve model performance 
in this setting. Lastly, while UnitedMet demonstrates high accuracy in 
predicting metabolic phenotypes, we acknowledge that further refer-
ence data with paired measurements of RNA-seq and metabolomics are 
required to expand its predictive capabilities comprehensively. Given 
the abundance of gene expression data in the field, we advise cautious 
interpretation to prevent overreliance on imputed metabolite predic-
tions without adequate empirical validation.

UnitedMet harnesses the covariation between the transcriptome 
and metabolome to impute otherwise unmeasured metabolite fea-
tures. In doing so, it enables the inference of pool size and tracing 
patterns (and, consequently, the evaluation of metabolite-centered 
hypotheses) in valuable clinical samples where metabolite profil-
ing is difficult or otherwise infeasible. Several valuable clinical  
use cases come to mind as natural applications of the UnitedMet  
framework where ancillary transcriptomic data are available. 
For instance, one may seek to infer metabolite levels in archival 
formalin-fixed, paraffin-embedded samples of inadequate quality for 
metabolite profiling or in biopsy samples with an inadequate quantity 
of material for metabolite profiling. Such data are commonly generated 
in the pursuit of genomic and transcriptomic biomarkers of response 
to targeted and immunotherapies (and, indeed, form the basis of our 
analysis in Fig. 5). Separately, in isotope tracing experiments where 
one is interested in more than one tracer (for example, 13C-glucose 
and 13C-glutamine tracing, where the infusion of both tracers in the 
same person is infeasible or does not provide useful data), UnitedMet 
could be used to impute the outcome of the counterpart tracer as 
long a common data modality (for example, RNA-seq) was collected. 
This would overcome fundamental limitations in the ability to resolve 
tracers using a common isotope in a single person and, in doing so, 

facilitate a more complete description of metabolic flux patterns in 
pathways driven by multiple nutrient sources. UnitedMet, therefore, 
democratizes metabolomics data for scientific discovery.

Methods
Data preprocessing
This study complies with all relevant ethical regulations and was 
approved by the institutional review board at Memorial Sloan Ketter-
ing Cancer Center (MSKCC).

The input to UnitedMet consists of reference datasets with  
paired measurements of RNA counts and total ion counts of meta-
bolites or isotopologs and a single-modality target dataset with 
RNA-seq data only (Fig. 1a). We assume that there are N different  
reference datasets, each with an RNA-seq sample × gene matrix of raw 
counts Xn ∈ ℝSn×Gn (n = 1, 2,… ,N)  and a paired sample × metabolite or 
sample × isotopolog ion count matrix Yn ∈ ℝSn×Mn (n = 1, 2,… ,N) . Let 
X0 ∈ ℝS0×M0 be the RNA-seq sample × gene matrix in a single-modality 
target dataset.

Normalization. We first normalized all input data with distinct  
techniques. We implemented total ion count normalization to raw 
ion count matrices of metabolomics data (Y) and transcripts per mil-
lion (TPM) normalization to raw count matrices of RNA-seq data (X). 
In metabolomics experiments, ion counts below a threshold were  
not detected by the mass spectrometry. This ended up with miss-
ing metabolite measurements in some samples. We treated these 
left-censored values as half of the minimum value across all metabolite 
measurements when calculating the total ion count normalizer.

For sample × isotopolog ion count matrices (Y) of isotope labeling 
data, we first calculated the fractional labeling (namely, the propor-
tion of each isotopolog relative to the sum of all isotopologs in that 
metabolite). We then divided all fractions by the fraction of pyruvate 
M + 3 or glucose M + 6. Normalization by pyruvate M + 3 allowed us to 
establish the labeling ratio of each isotopolog to pyruvate M + 3, provid-
ing insights into the contribution of glucose-derived pyruvate to that 
specific isotopolog.The labeling ratio of citrate M + 2 to pyruvate M + 3, 
for instance, suggested the contribution of glucose through the pyru-
vate dehydrogenase reaction. Normalization by glucose M + 6 instead 
revealed the contribution of glucose carbon to other metabolites.

Rank transformation. As metabolomics and isotope tracing data 
generated using mass spectrometry are reported as semiquantitative 
relative abundances, we are only able to compare measurements of 
the same metabolite or isotopolog from different samples in the same 
dataset. To map metabolic relative abundances and gene expression 
levels into a shared measurement scale across all features and datasets, 
we rank the metabolite or isotopolog and gene expression levels across 
all the samples within each dataset. Ranks enable the comparison of 
features across datasets and transfer learning from RNA-seq modality 
to metabolic modality. Samples exhibiting the maximum level for a 
specific feature within the provided dataset are assigned the highest 
rank. Conversely, samples displaying the minimum level for the  
same feature are allocated the lowest rank. Left-censored samples  
are tied, sharing the last rank in the ranking hierarchy. While we use 
unnormalized rankings for modeling, we normalize ranks by their total 
number of samples S in downstream analyses, mapping them to a 
comparable scale of ranks [0, 1) in all datasets. Here, we use 𝑆 to refer 
to the number of samples within a dataset in a general sense, without 
referring to a specific dataset. For each feature j, the normalized  
rank of a measurement fij(i = 1, 2,… , S )  in that dataset is defined by  

rankij =
∑S

k=1P[ fij>fkj]
S

. Importantly, rank transformations are performed  

separately for each metabolite, ensuring that comparisons are made 
only within the same metabolite across samples. The ranked values are 
specific to each metabolite and are not directly comparable between 
different metabolites.
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Data aggregation. Rankings data of RNA-seq matrices Xn and meta-
bolic matrices Yn(n = 1, 2,… ,N)  in reference datasets are aggregated  
into a single data matrix R along with the rankings data of meta bolic 
matrix X0 in the target dataset. While we take in the common genes  
shared across datasets to save computation costs, we aggregate  
metabolic modalities by taking the union of relevant features  
(namely, the aggregated matrix R ∈ ℝSR×FR, where SR = S0 +∑N

i=1Sn and 
FR = |GR| + |MR|,GR = G0⋂∩N

i=1Gi,MR = ∪N
i=1Mi). In the benchmarking  

test on four ccRCC datasets, R contained measurements of 1,148 meta-
bolites and 20,171 genes for 341 samples.

The UnitedMet model
UnitedMet is a probabilistic generative method that jointly models 
RNA-seq and metabolic data. UnitedMet assumes that the rankings  
in R are generated by a Plackett–Luce ranking distribution of a latent 
variable matrix Z, where Z = WH  is the product of the latent sample 
embedding matrix W ∈ ℝSR×λ  and the latent feature embedding  
matrix H ∈ ℝλ×FR. The hyperparameter λ is the number of embedding 
dimensions. We suppose all latent variables in both latent embed-
ding matrices are generated by normal prior distributions: 
Wik

iid∼ Normal(0, 1),Hkj
iid∼ Normal(0, 1),  where Wik is the entry in the ith 

sample and the kth embedding column in embedding matrix W and  
Hkj is the entry in the kth embedding row and the jth feature in embed-
ding matrix H.

Plackett–Luce ranking distribution. The Plackett–Luce distribu-
tion46,47 models a ranking of T items as an ordered series of choices. It 
begins by choosing the top-ranked item from the entire set of T options, 
followed by choosing the second-ranked item from the remaining 
options and so on48. Given a set of T options {Q1,… ,QT}, the probability  
of selecting the ith item Qi is defined as P(i|{1,… ,T}) = ui

∑T
t=1ut

 by the Luce  

choice axiom, where ui represents the utility score of Qi. The probability 
of a full ordering {σ1,… ,σT}, where we assume Qσ1 > … > QσT, is then given 
by recursively applying the Plackett–Luce distribution, choosing σ1 
from {1,… ,T}, σ2 from {1,… ,T}\{σ1} and σ3 from {1,… ,T}\{σ1,σ2}, yielding  

P({σ1,… ,σT}|{1,… ,T}) = ∏T
i=1

uσi

∑T
r=iuσr

. Given the latent variable matrix  

Z = WH  in UnitedMet, we suppose the utility score of the item in the  
ith sample and the jth feature is defined as exp(Zij) = exp(WiH j). Exten-
ding this to censored rankings in UnitedMet, the likelihood of  
obser ving a censored ordering {σ1,σ2,… ,σK, {σK+1,… ,σS}}  in the jth  
feature of a batch is then defined by P (Rj = {Zσ1 , j > Zσ2 , j > … > ZσK , j >   

{ZσK+1 , j,… ,ZσS , j}} |{Z1, j,… ,ZS, j})=∏K
i=1

exp(Zσi , j)

∑S
r=iexp(Zσr , j)

. Detailed definitions of 

UnitedMet are described below.

(ith sample, kth column in embeddingmatrixW )Wik
iid∼ Normal(0, 1)

(kth row, jth feature in embeddingmatrixH )Hkj
iid∼ Normal(0, 1)

(TransformedparametermatrixZ)Z = WH

(PLmodel return aprobabilistic permutationRj
for jth column inbatchb) Rj ∼ PL(Zj),

whereRj = (Zσ1 , j,Zσ2 , j,… ,ZσK , j,ZσK+1 , j,… ,ZσS , j),

andweassumeZσ1 , j > Zσ2 , j > … > ZσK , j > ZσK+1 , j,… ,ZσS , j.

p(Rj) =
K
∏
i=1

exp(Rij)
∑S

r=i exp(Rrj)

=
K
∏
i=1

exp(Zσi , j)

∑S
r=i exp(Zσr , j)

=
K
∏
i=1

exp(Wσi Hj)

∑S
r=i exp(Wσr Hj)

Cross-validation. To determine the optimal number of embedding 
dimensions ( λ) of latent matrices W  and H , we use tenfold cross- 
validation. The range of λ to be tested is contingent on the total number 
of samples SR. For instance, performance evaluation spans a λ range 
of [1, 351] with a step of 10 in the benchmarking test on ccRCC datasets. 
For each batch, cross-validation features that are used to test model 
performance are selected separately. Only metabolic features (metabo-
lites or isotopologs) that are measured in at least one other batch are 
included. These features are then randomly distributed into ten folds. 
We treat one fold at a time as unmeasured and hold out the fold’s fea-
tures in the corresponding batch. Masked features are then predicted 
by UnitedMet. In the end, we calculate the mean absolute error (MAE) 
between the true ranks of held-out features in the fold and their pre-
dicted ranks. The MAE scores across all folds are averaged to obtain a 
final performance score. We evaluate the MAE scores for all λ values 
and the one resulting in the elbow of the MAE score curve is chosen as 
the optimal number of embedding dimensions for the factorization.

Inference. The likelihood is computed from observed rankings in 
both paired modalities of reference datasets and only in the respec-
tive RNA-seq modality of the target dataset. We use SVI within the 
Pyro49 package for inference. Variational distributions are generated 
using the AutoNormal function. Optimization is executed through 
the Adam optimizer, with a default learning rate set to 0.001. Conver-
gence is ascertained when the relative change in evidence lower bound 
(ELBO) falls below 0.01. To address the inherent imbalance between 
the RNA-seq and metabolomics modalities in scenarios where we 
want to impute a large panel of metabolites from a subset of measured 
metabolites and RNA-seq data, we introduced a weighted loss function 
in UnitedMet. Typically, RNA-seq data contains measurements for 
approximately 20,000 genes, whereas metabolomics data comprises 
around 1,000 measured metabolites. This large difference in the num-
ber of features between the two modalities can disproportionately 
affect the likelihood computation, leading to biases in the inferred 
rankings. To mitigate this issue, we applied modality-specific weighting 
when computing the log-likelihood using the Plackett–Luce distri-
bution. Specifically, we assigned equal weight to the metabolomics 
features, while down-weighting the gene features proportionally by 
the ratio of the number of metabolites to genes. Given a log-likelihood 
matrix L of shape (ngenes + nmetabolites) × S, where S is the number of sam-
ples. We defined a weight matrix C of the same shape such that: C:,j = 1, 
if j corresponds to a metabolite; C:,j = nmetabolites/ngenes, if j corresponds to 
a gene. The weighted log-likelihood matrix was computed as: Lweighted = 
C ⊙ L. The final total log-likelihood was obtained by summing over all 
observed values in Lweighted.

Posterior prediction. UnitedMet estimates the joint posterior distri-
bu tion of the latent embedding matrix W  and H. For every latent variable 
in W  and H , we draw 1,000 samples from their estimated posterior 
distribution. Given posterior samples of the latent matrix Z(= WH), 
posterior rankings are then generated by the Plackett–Luce ranking 
distribution. To sample in a computation-efficient way, we implemented 
the Gumbel–Max trick50, which generates ordered samples from the 
Plackett–Luce ranking distribution by sorting the perturbed log prob-
ability through the addition of independent variables from the Gumbel 
distribution51 (G1, j,… ,GS, j ∼ Gumbel(0), iid). Let Z, j  be the jth column  
of the latent matrix Z . Set perturbed log probability Ui,j = Zi,j + Gi,j. The 
ordered indices of the jth column returned by sorting the perturbed 
log probabilities {U1, j,… ,US, j}  are equivalent to the orderings gene-
rated by the Plackett–Luce model given probabilities (utility scores) 
{Z1, j,… ,ZS, j} . Specifically, if {Uσ1 , j > Uσ2 , j > … > UσK , j > {UσK+1 , j,… ,UσS , j}} ,  
then we observe {Zσ1 , j > Zσ2 , j > … > ZσK , j > {ZσK+1 , j,… ,ZσS , j}}.

Estimates of the rankings can be found as the mean of the 1,000 
posterior draws, while the s.d. of posterior samples represents a  
quantification of the prediction uncertainty.
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Benchmarking
Multivariate Lasso regression. We implemented multivariate  
Lasso regression on four ccRCC datasets according to Li et al.21. In 
each dataset, metabolomics data were preprocessed by total ion 
count normalization, while transcript levels were converted into TPM  
units. At each time in the benchmarking experiments, one ccRCC 
dataset was treated as the testing set while the other three were train-
ing sets. All RNA-seq data were scaled before training or testing. For 
every metabolite (y), we used gene expressions (x) to predict it in the  
training set. LassoCV in Python package scikit-learn was used to  
select the best penalizer α by fivefold cross-validation. The maxi-
mum number of iterations fitting along the regularization path was  
set to default 1,000. After selecting the best model for each metabo-
lite, we assessed model accuracy by calculating Spearman corre-
lation coefficients between predicted metabolite levels and their  
ground truths.

MIRTH. MIRTH is a matrix factorization approach aimed at predicting 
the levels of unmeasured metabolites by collectively analyzing the 
covariation of metabolites across multiple datasets23. We extended 
MIRTH to the cross-modality prediction problem as previously 
described22. Metabolomics and RNA-seq data were preprocessed in 
the same way mentioned above.

MSKCC ccRCC datasets
We obtained two datasets, RC18 (n = 144) and RC20 (n = 76), each 
with matched RNA-seq and mass spectrometry metabolomics meas-
urements from fresh frozen high-quality tumor or adjacent normal 
specimens of persons with ccRCC that underwent partial or radical 
nephrectomies at MSKCC22. Samples were collected under the approval 
of MSKCC’s institutional review board. The alignment of RNA-seq 
reads was performed using STAR two-pass alignment against human 
genome assembly hg19. Metabolites were identified on the basis  
of the criteria according to Benedetti et al.14. RC18 had measurements 
for 783 metabolites and 22,937 genes. RC12 had measurements for  
1,012 metabolites and 22,987 genes.

CPTAC ccRCC datasets
Metabolite raw count matrices of CPTAC (n = 50) and CPTAC_val 
(n = 71) were downloaded from Li et al.1. Transcriptomic and WES data  
were downloaded from Genomic Data Commons (https://portal.gdc.
cancer.gov/projects/CPTAC-3; project: CPTAC-3, primary site: kidney).  
CPTAC contained only ccRCC tumor samples, while CPTAC_val con-
tained tumor and adjacent normal samples of persons with ccRCC. 
Mass spectrometry peaks were quantified using Thermo Scientific 
Compound Discoverer software to generate raw counts. HTSeq ver-
sion 0.11.2 was implemented to calculate the gene-level stranded read  
count. We then performed total ion count normalization and TPM  
normalization on metabolite and gene expression count matrices, 
respectively. CPTAC had measurements for 183 metabolites and  
60,483 genes. CPTAC_val had measurements for 130 metabolites and 
60,483 genes.

Breast cancer datasets
Matched TPM-normalized RNA-seq and bulk metabolomic data (raw 
count matrices) of two breast cancer datasets BrCa1 (ref. 24) (n = 108, 
no. of metabolites = 533, no. of genes = 20,032), BrCa225 (n = 18, no. 
of metabolites = 397, no. of genes = 21,773) were downloaded from 
Benedetti et al.14. RNA-seq data of primary tumor tissues from the 
TNBC cohort (n = 360, no. of genes = 23,211) were downloaded from 
the National Omics Data Encyclopedia (https://www.biosino.org/node/
analysis/detail/OEZ00000398) according to Jiang et al.27. Bulk metabo-
lomics data of the TNBC cohort (n = 479, no. of metabolites = 594) were 
downloaded from Xiao et al.26. There were 258 tumor samples with 
paired RNA-seq and metabolomics data after matching.

Human RCC RNA-seq and isotopic labeling data infused with 
[U-13C]glucose in vivo
Paired RNA-seq and isotopic labeling data from 76 primary tumor or 
adjacent normal kidney samples of persons with RCC were downloaded 
from Bezwada et al.28. The RCC dataset had measurements for 64 iso-
topologs and 12,300 genes. Because small fluctuations of isotopolog 
levels that are not biologically interpretable can be quantified as signals 
in mass spectrometry, we set a criterion to filter out isotopologs whose 
average fraction over all samples was less than 10%. This ended with a 
total of 23 isotopologs including biologically meaningful isotopologs 
such as citrate M + 2 and malate M + 2.

Human NSCLC cell line RNA-seq and isotopic labeling data
We downloaded two human NSCLC cell line datasets with paired 
RNA-seq and isotopic labeling data from Chen et al.3: NSCLC-G (n = 85, 
no. of isotopologs = 28, no. of genes = 16,383) and NSCLC-Q (n = 85, 
no. of isotopologs = 21, no. of genes = 16,383). A total of 85 NSCLC cell 
lines were cultured with medium containing the isotopically enriched 
nutrient under identical conditions. The isotopic data in NSCLC-G were 
labeled with [U-13C]glucose, while the isotopic data in NSCLC-Q were 
labeled with [U-13C]glutamine. After filtering out isotopologs whose 
average fraction over all samples was less than 10%, there were nine and 
eight isotopologs in the NSCLC-G and NSCLC-Q datasets, respectively.

TCGA datasets
We downloaded paired RNA-seq, WES and clinical data of 1,020 
RCC tumor and adjacent normal samples in TCGA KIPAN from the 
Genome Data Analysis Center (GDAC) at Broad Institute. A total of 606 
TCGA KIRC samples were included in TCGA KIPAN. mtDNA mutation  
calls using a PCR-based amplification approach for 61 ChRCC cases 
in TCGA KICH were downloaded from Davis et al.29. Paired RNA-seq, 
WES and clinical data of TCGA LUAD (n = 576) were also downloaded 
from GDAC.

Annotation of MAF files from WES data
We downloaded MAF files of WES data for CPTAC, CPTAC_val, TCGA 
KIPAN and TCGA KIRC from the corresponding websites mentioned 
above. We annotated all molecular variations to 0 or 1 in a gene-wise 
way, where 0 represented wild-type or silent variations and 1 repre-
sented nonsilent variations. Missense mutation, nonsense muta-
tion, frame-shift deletion, splice site mutation, frame-shift insertion, 
in-frame deletion, splice-region variant, translation start site mutation, 
in-frame insertion and nonstop mutation were considered as nonsilent 
molecular variations. Silent mutations, intron mutation, 3′ UTR muta-
tion and 5′ UTR mutation were considered as silent variations, because 
they were not able to change gene functions.

DA score
The DA score assesses the distinct regulation of a metabolic path-
way between two groups. Calculated through a Wilcoxon rank-sum 
test applied to all pathway metabolites, the score undergoes P-value 
correction using the Benjamini–Hochberg method (FDR-corrected  
P value < 0.1). For each pathway, the DA score is derived as follows: (no. 
of significantly enriched metabolites − no. of significantly depleted 
metabolites)/no. of total metabolites. Scoring is exclusively applied 
to pathways exhibiting three or more significantly altered metabolites.

Survival analysis
We collected RNA-seq data and participant-level clinical information 
from IMmotion151 (refs. 35,52) (n = 823), a published trial exploring 
immunotherapeutic versus systemic agents in advanced ccRCC. To 
account for diverse drug effects in clinical trials, we conducted separate 
statistical analyses for the immunotherapy arm (atezolizumab + beva-
cizumab) and the sunitinib arm. The survival regression analysis was 
performed using the Python package lifelines.

http://www.nature.com/natcancer
https://portal.gdc.cancer.gov/projects/CPTAC-3
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Statistical and reproducibility
Statistical analyses were conducted using either R or Python.  
Differential distribution comparisons were implemented with the 
Wilcoxon rank-sum test or t-test. All statistical tests were two-sided 
by default, unless specified otherwise, with P values corrected using 
the Benjamini–Hochberg method53. No statistical method was used  
to predetermine sample size and no data were excluded from the  
analyses. Blinding and randomization were not relevant because this 
was an observational study.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the conclusions of this paper are publicly available 
through the links provided in the Methods or in the Supplementary 
Information. The four ccRCC reference datasets, containing paired 
metabolomics and RNA-seq data, can be accessed from Zenodo 
(https://doi.org/10.5281/zenodo.11286535)54. Paired RNA-seq and iso-
topic labeling data from 76 primary tumor or adjacent normal kidney 
samples of persons with RCC were downloaded from Bezwada et al.28. 
Paired RNA-seq and isotopolog data from 42 primary tumor or adjacent 
normal lung samples of persons with NSCLC were downloaded from Cai 
et al.42. Paired RNA-seq and WES data of 1,020 RCC tumor and adjacent 
normal samples in TCGA KIPAN were obtained from the GDAC at the 
Broad Institute (http://firebrowse.org/). mtDNA mutation calls using 
a PCR-based amplification approach for 61 ChRCC cases in TCGA KICH 
were sourced from Davis et al.29. RNA-seq data and participant-level 
clinical information from the IMmotion151 trial (n = 823), exploring 
immunotherapeutic versus systemic agents in advanced ccRCC, were 
retrieved from published sources35,52. Source data are provided with 
this paper.

Code availability
All original code to run UnitedMet and regenerate figures was depos-
ited to GitHub (https://github.com/reznik-lab/UnitedMet) and is pub-
licly available as of the date of publication.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | UnitedMet outperforms Lasso and MIRTH at predicting 
metabolite levels from RNA-seq data. a) UnitedMet’s hyperparameter λ, the 
number of embedding dimensions, is determined by 10-fold cross-validation 
in the benchmarking experiments of 4 ccRCC datasets. Average mean absolute 
error between predicted ranks and true ranks across 10 folds changes with 
different numbers of embedding dimensions. Data are presented as mean values 
± SEM (standard error of the mean). Optimal dimension is picked by the elbow 
point of the curve. Performance evaluation spans a λ range of [1,351] with a step 
of 10. b) The imputation performance for each dataset is assessed by the number 
of well-predicted metabolites. Metabolites with predicted ranks that show 
significant positive correlation (two sided FDR-adjusted p < 0.1 and spearman 
rho > 0) are defined as well-predicted. c) Performance to impute 50% held-out 
metabolites from the remaining 50% measured metabolites and RNA-seq data. 
Performance evaluated by the spearman rho among all predicted metabolites. 

Extended UnitedMet with a weighted loss function is used. Significant difference 
was assessed by the two-sided Wilcoxon signed-rank test. (CPTAC, n = 78 patient 
samples, PLasso_UnitedMet = 4.2 × 10−20, PMIRTH_UnitedMet = 2.6 × 10−20; CPTAC_val, n = 64 
patient samples, PLasso_UnitedMet = 3.8 × 10−12, PMIRTH_UnitedMet = 1.3 × 10−6; RC18, n = 354 
patient samples, PLasso_UnitedMet = 3.4 × 10−101, PMIRTH_UnitedMet = 2.0 × 10−107; RC20, n = 359 
patient samples, PLasso_UnitedMet = 6.0 × 10−105, PMIRTH_UnitedMet = 1.7 × 10−103). In the box 
plots, the center line represents the median, the bounds of the box indicate the 
interquartile range (25th to 75th percentiles), and the whiskers extend to the 
minima and maxima within 1.5 times the interquartile range. Data points outside 
this range are shown as individual outliers. d) Performance to impute 50% held-
out metabolites from the remaining 50% measured metabolites and RNA-seq 
data. Performance evaluated by the number of well-predicted metabolites. 
Extended UnitedMet with a weighted loss function is used.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | UnitedMet’s metabolite level predictions are consistent 
across 4 ccRCC datasets. a) Correlation plots of metabolite-level prediction 
performances, characterized by their spearman correlation between true ranks 
and predicted ranks, in all pairwise comparisons of 4 ccRCC datasets. Each dot 
represents a metabolite. Significant difference was assessed by the two-sided 
spearman correlation. b) Prediction uncertainty is negatively correlated with 
the prediction accuracy. Prediction uncertainty is estimated by quantifying 
the standard deviation of 1000 posterior draws of metabolite levels. For each 
metabolite, average standard deviation across all samples is associated with 
its prediction accuracy, characterized by spearman rho values between true 
ranks and predicted ranks. Each dot, colored by the proportion of censored 
measurements, represents a metabolite. Significant difference was assessed 
by the two-sided spearman correlation. c) The imputation performance for the 
TNBC dataset is assessed by spearman rho values between predicted values and 

their ground-truths across all simulated missing metabolites. Well-predicted 
metabolites with predicted ranks that show significant positive correlation 
(two-sided FDR-adjusted p < 0.1 and spearman rho > 0) with the actual ranks 
are labeled red. d) Predicted metabolite level changes in metabolic subtype C1 
(n = 52 patient samples) v.s. C2 samples (n = 119 patient samples) in the TNBC 
dataset. Top: Boxplots showing predicted metabolite levels in lipid metabolism. 
Bottom left: Boxplots showing predicted metabolite levels in glutathione 
metabolism. Bottom right: Boxplots showing predicted metabolite levels in 
sugar metabolism. p values are calculated by unpaired two tailed parametric 
t-tests. In the box plots, the center line represents the median, the bounds of the 
box indicate the interquartile range (25th to 75th percentiles), and the whiskers 
extend to 1.5 times the interquartile range. Individual data points are shown as 
dots.
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Extended Data Fig. 3 | UnitedMet’s performance of predicting isotopologues 
from RNA-seq data. a) UnitedMet’s hyperparameter λ, the number of 
embedding dimensions, is determined by 10-fold cross-validation in the 
benchmarking experiments of 3 isotope labeling datasets respectively. 
Performance evaluation spans a λ range of [1,81] with a step of 10. Average mean 
absolute error between predicted ranks and true ranks across 10 folds changes 
with different numbers of embedding dimensions. Optimal dimension is picked 
by the elbow point of the curve. b) True ranks of citrate m + 2 were not correlated 
with gene expression signature of TCA cycle. For each sample in [U-13C]glucose 
labeled NSCLC dataset (left) and RCC right), true ranks of citrate m + 2 were 
compared with TCA cycle signature scores calculated from gene expressions 
in the corresponding Hallmark gene set. Significant difference was assessed 

by the two-sided spearman correlation. c) True ranks of Lactate m + 3 were 
well-predicted by UnitedMet but not by gene expression signature of Hallmark 
glycolysis pathway. For each sample in [U-13C]glucose labeled RCC, true ranks 
of lactate m + 3 were compared with predicted ranks from UnitedMet (left) and 
glycolysis pathway scores calculated from gene expressions in the corresponding 
Hallmark gene set (right). Significant difference was assessed by the two-sided 
spearman correlation. d) Schematic of the isotopologue distribution prediction 
for TCGA KIPAN samples with UnitedMet. RNA-seq data (X_TCGA-KIPAN) of the TCGA 
KIPAN cohort (target dataset) are trained with the [U-13C]glucose labeled RCC 
dataset containing paired RNA-seq and isotope labeling data. X: RNA-seq data; Y: 
Isotopologue data. Both target and reference datasets contain different subtypes 
of RCC.
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Extended Data Fig. 4 | Validation of BAP1 mutation-specific metabolite 
changes in CPTAC and CPTAC_val datasets. a) UnitedMet’s predicted metabolite 
differences between BAP1-mutant and wildtype samples align with measured 
data in CPTAC and CPTAC_val. Differential abundances of imputed metabolites 
between BAP1-mutant and wildtype samples in TCGA KIRC were compared to 
ground-truth differences in the measured CPTAC (left) and CPTAC_val (right) 
cohorts. Metabolites in dark blue are consistently and significantly enriched/
depleted (FDR-adjusted p < 0.1, two-sided Wilcoxon rank-sum test) in both 
measured and predicted cohorts. b) Measured metabolite level changes in 

BAP1 mutant v.s. BAP1 wildtype samples in CPTAC (top, MUT, n = 8 patient 
samples; WT, n = 42 patient samples) and CPTAC_val (bottom, MUT, n = 6 patient 
samples; WT, n = 50 patient samples) dataset. Boxplots comparing measured 
unphosphorylated glucose, citrate, fumarate, and malate levels in MUT BAP1 
v.s. WT BAP1 samples. p values are calculated by unpaired two tailed parametric 
t-tests. In the box plots, the center line represents the median, the bounds of the 
box indicate the interquartile range (25th to 75th percentiles), and the whiskers 
extend to 1.5 times the interquartile range. Individual data points are shown as 
dots.
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Extended Data Fig. 5 | TCA cycle labelings were associated with EGFR 
mutations but not with pathological stages in predicted TCGA-LUAD data. a) 
EGFR mutations in LUAD are associated with decreased glucose contribution to 
the TCA cycle. Predicted citrate m + 2/pyruvate m + 3 levels (left) and glutamate 
m + 2/pyruvate m + 3 levels (right) in EGFR-mutant (n = 68 patient samples) 
v.s. EGFR-wildtype samples (n = 445 patient samples) in TCGA LUAD cohort. 
P values are calculated by unpaired two tailed parametric t-tests. In the box 
plots, the center line represents the median, the bounds of the box indicate the 
interquartile range (25th to 75th percentiles), and the whiskers extend to 1.5 times 
the interquartile range. Individual data points are shown as dots. b) Oxidative 
metabolism does not correlate with disease progression in LUAD. Predicted 
citrate m + 2/pyruvate m + 3 levels (left), glutamate m + 2/pyruvate m + 3 levels 
(middle), and malate m + 2/pyruvate m + 3 levels (right) are not associated with 
pathological stages in TCGA LUAD cohort (stage i, n = 275 patient samples; stage 

ii, n = 122 patient samples, stage iii, n = 84 patient samples; stage iv, n = 26 patient 
samples. Kruskal–Wallis tests were performed to assess the significance. In the 
box plots, the center line represents the median, the bounds of the box indicate 
the interquartile range (25th to 75th percentiles), and the whiskers extend to 
1.5 times the interquartile range. Individual data points are shown as dots. c) 
Samples from metastatic sites in ccRCC patients show higher ratios (compared 
to samples from primary tumor sites) of predicted citrate m + 2/pyruvate m + 3 
(left), succinate m + 2/pyruvate m + 3 (middle) and malate m + 2/pyruvate m + 3 
(right) in CheckMate cohort (primary ccRCC, n = 225 patient samples; metastatic 
ccRCC, n = 84 patient samples). Significances are assessed by unpaired two tailed 
parametric t-tests. In the box plots, the center line represents the median, the 
bounds of the box indicate the interquartile range (25th to 75th percentiles), and 
the whiskers extend to 1.5 times the interquartile range. Individual data points are 
shown as dots.
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