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Abstract 

Background:  Chagas disease (CD) is caused by Trypanosoma cruzi, which is transmitted mainly through the feces/
urine of infected triatomine bugs. The acute phase lasts 2–3 months and is characterized by high parasitemia and 
nonspecific symptoms, whereas the lifelong chronic phase features symptoms affecting the heart and/or digestive 
tract occurring in 30–40% of infected individuals. As in humans, cardiac abnormalities are observed in T. cruzi-infected 
dogs and cats. We reviewed the technological advances in the serological diagnosis of CD in dogs and cats.

Methods:  A review of the published literature during the last 54 years (1968–2022) on the epidemiology, clinical 
features, diagnosis, treatment and prevention of CD in dogs and cats was conducted.

Results:  Using predefined eligibility criteria for a search of the published literature, we retrieved and screened 436 
publications. Of these, 84 original studies were considered for inclusion in this review. Dogs and cats are considered 
as sentinels, potentially indicating an active T. cruzi transmission and thus the risk for human infection. Although dogs 
and cats are reputed to be important for maintaining the T. cruzi domestic transmission cycle, there are no commer‑
cial tests to detect past or active infections in these animals. Most published research on CD in dogs and cats have 
used in-house serological tests prepared with native and/or full-length recombinant antigens, resulting in variable 
diagnostic performance. In recent years, chimeric antigens have been used to improve the diagnosis of chronic CD in 
humans with encouraging results. Some of them have high performance values (> 95%) and extremely low cross-
reactivity rates for Leishmania spp., especially the antigens IBMP-8.1 to IBMP-8.4. The diagnostic performance of IBMP 
antigens was also investigated in dogs, showing high diagnostic performance with negligible cross-reactivity with 
anti-Leishmania infantum antibodies.

Conclusions:  The development of a commercial immunodiagnostic tool to identify past or active T. cruzi infections 
in dogs and cats is urgently needed. The use of chimeric recombinant T. cruzi antigens may help to fill this gap and is 
discussed in this review.
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Background
Chagas disease (CD) or American trypanosomiasis is a 
neglected parasitic disease caused by the hemoflagellate 
protozoan Trypanosoma cruzi. Recent estimates indi-
cate that 6–7 million people are infected worldwide, with 
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10,000 deaths attributable to CD annually in 21 Latin 
American countries [1]. Due to the continuous pres-
ence of the vector, 70 million people in this region are 
at risk of contracting the disease via vector transmission 
[1]. The parasite is primarily transmitted through the 
feces or urine of infected bloodsucking triatomine bugs 
also referred to as kissing bugs (Hemiptera: Reduviidae) 
[1]. Over 130 triatomine species have been identified 
as potential vectors of T. cruzi [2]. Fifty-two triatomine 
species have been described in Brazil, of which five are 
considered of epidemiological importance because of 
their domestic habitats: Triatoma infestans (Fig.  1A), 
Panstrongylus megistus (Fig. 1B, C), Triatoma brasilien-
sis, Triatoma pseudomaculata and Triatoma sordida 
(Fig. 1D, E, F). Non-vectorial routes of transmission are 
also important for T. cruzi transmission, such as blood 
transfusion or the use of blood products, congenital 
transmission, consumption of contaminated food and 
beverages, organ donation and laboratory accidents [3]. 

Increased travel and migration flows have facilitated the 
spread of T. cruzi-infected individuals, making the dis-
ease a global health problem, particularly in non-endemic 
countries in Europe, North America, Asia and Oceania 
[4–7].

Clinically, human CD is divided into two phases: acute 
and chronic. The acute phase begins within 1–2  weeks 
of infection, lasts 2–3  months and is characterized by 
high parasitemia and nonspecific symptoms such as 
fever, tachycardia and lymphadenopathy [8]. The lifelong 
chronic phase can occur in two forms: an indeterminate 
form, which is usually a latency period in which indi-
viduals show no symptoms but have positive serological 
results, and a symptomatic form. Approximately 30–40% 
of chronically infected individuals progress to a sympto-
matic form, which can be further subdivided into cardiac, 
digestive, or mixed forms (cardiac and digestive) [8]. As 
in humans, cardiac disease is also observed in T. cruzi-
infected dogs [9–11] and cats [12]. Indeed, some animals 

Fig. 1  Triatomines normally found in endemic areas of South America. Preserved pair of Triatoma infestans A and Panstrongylus megistus B, kindly 
provided by Dr. Gilmar Jose da Silva Ribeiro Júnior (Fiocruz-Bahia). C shows a live Panstrongylus megistus female captured in the city of Barra do 
Mendes, Bahia, Brazil. Live triatomines of the species Triatoma sordida found on the floor D and roof E of a chicken house in the rural area of the 
municipality of Tremedal, Bahia. E shows some T. sordida adult specimens captured for gut content analysis
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develop progressive chronic myocarditis with cardiac 
dilatation and electrocardiogram abnormalities that may 
lead to sudden death. Clinical signs may include spleno-
megaly, lymphadenopathy and heart failure [13].

Although CD was discovered more than a century ago, 
this zoonosis still poses a public health threat [14]. The 
presence of domestic animals in the environment is a 
risk factor for human infection because they may attract 
triatomines to human dwellings. Indeed, triatomines 
typically feed on chickens, pigs, dogs and cats [15, 16]. 
Figure 2 shows a typical scenario in poor rural commu-
nities in Latin American countries where mud houses 
are still common (Fig.  2A, E, F) and domestic animals 
such as dogs, chickens and pigs are present (Fig.  2B, C, 
D respectively). Among domestic animals, dogs and cats 
play an important role in maintaining the domestic cycle 
of T. cruzi, since these animals are susceptible to differ-
ent forms of infection [17, 18]. They are reputed to be the 
main reservoirs of T. cruzi in Latin America and some 
regions of the US [13, 19–21]. Dogs and cats are also con-
sidered as sentinels for human infection [22, 23], since 
they can indicate the presence of an active T. cruzi trans-
mission cycle and thus the risk of human infection.

Despite the public health and veterinary importance, 
there are no commercially available tests to detect past or 
active T. cruzi infections in dogs and cats. In this review, 
we summarize basic information on CD in dogs and cats, 
with particular emphasis on diagnostic methods.

Search strategy, eligibility and review
An online search was performed in the US National 
Library of Medicine National Institutes of Health (Pub-
Med, Bethesda MD, USA; https://​pubmed.​ncbi.​nlm.​nih.​
gov/), the Latin American and Caribbean Health Science 
Literature Database (LILACS; https://​lilacs.​bvsal​ud.​org/) 
and the Scientific Electronic Library Online (Scielo Bra-
zil, São Paulo SP—Brazil; https://​scileo.​br/) databases 
using Health Sciences Descriptors (DeCS). The descrip-
tors in the different databases were “Chagas disease,” 
“dogs,” and “cats” in Portuguese, English and Spanish. 
The Boolean operator “AND” was used to cross descrip-
tors and keywords. Search results were then filtered for 
the period 1968 to 2022 and extracted into a database in 
Microsoft Excel (Microsoft Corp., Redmond, WA, USA) 
in CSV format (comma-separated values).

Inclusion criteria were (1) articles indexed in the previ-
ously cited databases; (2) original studies in Portuguese, 
Spanish, or English; (3) published between 1968 and 
2022. The survey took place from January to June 2022, 
excluding secondary publications such as books, mono-
graphs, dissertations and theses.

The extraction and analysis of primary data were con-
ducted by two independent researchers. Exclusion of 

articles was based first on reading the titles as the first 
analysis, followed by reading the abstracts (if avail-
able) and finally reading the full texts. In case of doubts 
or discrepancies, a third researcher was consulted. A 
total of 436 articles were found during the initial search. 
After an initial analysis of the titles, 191 articles were 
excluded, and another 86 articles were not included 
because they were duplicates. Of the remaining 159 arti-
cles, the abstracts were read and 106 were considered 
for conducting the integrative review. Of these, 17 arti-
cles were excluded because they were not available in 
the scientific literature. After the qualitative analysis, 84 
of the 89 selected articles were considered for conduct-
ing this review. The process of study selection was per-
formed according to the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (Additional file 1: 
PRISMA) model [24], which is shown in Fig. 3.

Trypanosoma cruzi infection and CD in dogs
Dogs become infected after coming in contact with the 
feces of triatomine bugs containing T. cruzi trypomas-
tigote (Fig. 4), by ingesting infected triatomines, or con-
genitally [25]. They are considered the most important 
domestic reservoirs of T. cruzi in areas where CD is 
endemic owing to their proximity to humans, high par-
asitemia in acute phase of the disease and propensity to 
attract triatomines [17, 20, 22]. Nonetheless, the role of 
dogs as reservoirs may apparently vary. For instance, a 
study conducted in Brazil showed that dogs from some 
regions presented negative blood cultures and fresh 
blood preparations [26], whereas studies conducted in 
Argentina [22, 27] and Brazil [28] indicated that vast 
majority of seropositive dogs had active parasitemia.

A study conducted in 1996 estimated that dogs con-
tribute 13.9 times more than humans to triatomine infec-
tion in households [29]. Accordingly, the likelihood of a 
triatomine bug to become infected by T. cruzi was found 
50 times higher after a single blood meal on a dog than 
on a human [29]. In another study examining the feed-
ing habits of over 1000 domestic T. infestans, it was found 
that dogs were the most common blood source (49%), 
followed by cats (39%), humans (38%) and chickens (29%) 
[17].

Considering the role of dogs as reservoirs for T. cruzi, 
the seroprevalence in dogs has also been used in math-
ematical models for domestic transmission of human 
CD [30]. However, seroprevalence data from differ-
ent countries may vary widely (Fig.  5), which may be 
partly attributed to the variability in terms of transmis-
sion risk, but also to sample size and serological tests 
used by different research groups to detect anti-T. cruzi 
antibodies in dogs, as well as to the genetic variability 
of the circulating T. cruzi strains (discrete typing units 

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://lilacs.bvsalud.org/
https://scileo.br/
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Fig. 2  The epidemiologic scenario of poor rural communities in many Latin American countries. Mud house with cracks where triatomines can 
hide (A-C), with detail of a crack in a rural adobe/brick house (A). B Inside of the house illustrated in (A). Mud house with cracks (C) with presence 
of domestic animals in the environment: dog (D), chickens (E) and pigs (F). These animals can attract triatomines for a blood meal, thus helping 
maintain the peridomestic cycle of T. cruzi. Photographs were taken in rural areas of the municipalities of Tremedal (A and B) and Irecê, Bahia, Brazil 
(E–F)
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(DTU). In Mexico, a study conducted in 2010 reported a 
prevalence of 34% [31], while another study carried out 
in 2017 detected a prevalence of 4.4% [32]. Other stud-
ies conducted in Mexico have reported different preva-
lence values [33–43]. Recently, anti‑T. cruzi antibodies 
were detected in 50% (17/34) of dogs from two rural set-
tlements in the Sierra de Los Tuxtlas, Veracruz, Mexico 

[44]. In Costa Rica, 5.2–27.7% of dogs were seroposi-
tive in endemic areas [45–47], whereas in Colombia the 
prevalence ranged from 9.6% to 34% [48–52]. In the 
US, a study with 86 working dogs reported a seropreva-
lence of 14.1% [53], whereas other studies reported a 
lower prevalence [54–57]. Trypanosoma cruzi infection 
was reported in 63 (16.8%) of 375 dogs from a teaching 

Fig. 3  Study selection process, in accordance with the PRISMA model
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hospital in Texas [58] and in 110 (18.1%) of 608 dogs in 
shelters across this same state [59]. In 2020, an American 
nationwide study using dog samples from 41 states and 
Washington DC revealed a seropositivity in 120/1610 
animals (7.5%) [60]. In a National Park located along the 
Texas-Mexico border, 28.6% (4/14) of dogs were reactive 
on at least two serologic assays [61]. More recently, 26 of 
197 (13.2%) shelter dogs from Oklahoma had detectable 
antibodies against T. cruzi [62]. In Brazil, the seropreva-
lence in dogs ranged from 0 to 53%, according to research 
conducted in different regions [63–83]. In other Latin 
American countries, the seroprevalence varies according 
to geographic setting, e.g. 1.9% in Peru [84], 4.3% in Gre-
nada [85], 5.2% in French Guiana [86], 10% in Nicaragua 
[87], 4.6–19.9% in Chile [88–90], 11.1–17.6% in Panama 
[91, 92], 6.4–22.1% in Venezuela [93–96], 17.5–53% in 
Argentina [17, 97–99], 22% in Bolivia [100] and 57.1% in 
Ecuador [101].

Regarding predisposing factors, it has been observed 
that dogs with poor nutritional conditions are 6.3  times 
more likely to be infected compared to well-nourished 
dogs in the same endemic area [102]. This is thought to 
be related to a deficient innate immune response in dogs 
with poor nutritional conditions, which favors the occur-
rence of higher parasitemia [102]. Another predisposing 

factor is keeping dogs in kennels with multiple dogs. In 
fact, an American study found that the risk of T. cruzi 
infection in dogs living in kennels is 30.7% per year [103].

During the acute phase of infection, T. cruzi circu-
lates in the bloodstream and trypomastigotes can be 
observed in most tissues, triggering a systemic inflamma-
tory response with the production of proinflammatory 
cytokines (Fig. 6).

Clinical signs vary widely according to infection phase 
(acute versus chronic) and to dog’s age. For instance, the 
main presenting clinical signs in young puppies are leth-
argy, generalized lymphadenopathy, slow capillary refill 
time with pale mucous membranes and in some cases 
splenomegaly and hepatomegaly [13]. On the other hand, 
if infection occurs after 6 months of age, dogs may display 
no signs of acute disease other than slight depression and 
low-rising parasitemia [13]. In general, the main lesion in 
young dogs experimentally infected with T. cruzi is acute 
myocarditis that begins in the atria and spreads through 
the interventricular septum toward the ventricles [104]. 
When fully developed, it is located predominantly in the 
right atrium, the right half of the ventricular septum and 
the free wall of the right ventricle. Electrocardiogram 
(ECG) changes are progressive and reflect atrial involve-
ment. Heart block occurs only in the terminal stage and 

Fig. 4  Developmental stages of Trypanosoma cruzi in invertebrate (triatomine bug) and vertebrate (dog, cat and human) hosts
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Fig. 5  Seroprevalence of Chagas disease in dogs and cats in different endemic countries of North, Central and South America
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is associated with severe inflammation and necrosis 
along the A-V conduction tissue. Specific treatment of 
dogs with severe acute disease often results in regression 
of histologic and ECG changes [104].

Dogs that survive the acute phase enter the undeter-
mined phase, characterized by the lack of clinical signs 
and subpatent parasitemia [13]. Some dogs will progress 
to develop chronic disease, typified by cardiac altera-
tions, including chronic myocarditis with cardiac dilata-
tion [13, 105, 106]. During this phase electrocardiogram 
abnormalities become more evident [13, 107, 108]. Other 

lesions are associated with fibrosis and cardiomyocyte 
necrosis, possibly caused by the inflammatory pro-
cesses that trigger hyalinization and fibrosis [107–110]. 
Right-side and, eventually, left-side chamber failure may 
occur, inducing pulse deficits, ascites, pleural effusion, 
hepatomegaly and jugular venous congestion [13, 111, 
112]. In general, naturally infected dogs showed hyper-
proteinemia, low hemoglobin and hematocrit levels, 
hypoalbuminemia, hyperglobulinemia, high lactate dehy-
drogenase (LDH) and aspartate transferase (AST) lev-
els, creatine kinase (CK) and creatine kinase myocardial 

Fig. 6  Schematic representation of the pathogenesis of Chagas disease in Trypanosoma cruzi-infected dogs
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band (CK-MB) and troponin I profiles consistent with 
active myocarditis [113–116].

Chagasic megaesophagus and megacolon can be 
observed in both the acute and chronic phases [117]. 
In the acute phase, T. cruzi triggers an inflammatory 
reaction in the esophagus/colon and causes myenteric 
denervation. Ganglionitis and periganglionitis of the 
Auerbach’s plexus ranged from mild to moderate and 
resulted in significant neuronal lesions in dogs experi-
mentally infected with T. cruzi strain Berenice-78 [118]. 
In the chronic phase, persistent myenteric denervation 
occurs and may lead to impaired digestive function. Glial 
cell involvement occurs in the acute phase and may lead 
to a decrease in the glial fibrillary acidic protein immu-
noreactive area of enteric glial cells in the chronic phase 
[117].

Prognosis may be unpredictable and the survival rate 
of chronically infected, untreated dogs is variable. For 
instance, dogs diagnosed with CD at an older age tend to 
survive longer than dogs diagnosed at a younger age [13]. 
A study showed that a combination of amiodarone and 
itraconazole may increase the survival time of T. cruzi-
infected dogs [119]. On the other hand, a recent study 
showed that two dogs with severe, symptomatic Chagas 
cardiomyopathy treated with itraconazole and amiodar-
one died suddenly within 6  months of diagnosis [120]. 
These findings underscore the need for early recognition 
of CD in dogs and continued research to develop effec-
tive antiparasitic treatment protocols.

Trypanosoma cruzi infection and CD in cats
Chagas disease in cats is not as well studied as in dogs. 
Risk factors for the development of CD in cats are still 
unclear, but it appears that free-roaming cats are more 
susceptible to T. cruzi infection and are an important risk 
factor for transmission to humans [37]. Indeed, xenodi-
agnosis data indicated that cats are highly likely to infect 
peridomestic triatomine vectors [17]. Clinical signs and 
histologic findings in cats are similar to those described 
in humans and dogs [121]. Although more common in 
humans, digestive symptoms such as esophagitis have 
also been described in T. cruzi-infected cats [12]. Neuro-
logical signs associated with CD have been described in 
several species, including dogs [13], but never in cats.

Some cats can mount an effective immune response to 
T. cruzi. However, when immunocompromised or coin-
fected with other infectious agents [such as feline infec-
tious peritonitis, feline leukemia virus (FELV), feline 
immunodeficiency virus (FIV) and feline herpesvirus 
type 1], they may be more susceptible to T. cruzi [37], but 
this is something that requires further study.

There are few studies on the epidemiology of T. cruzi 
infection in cats (Fig.  5). In a study conducted in three 

Mexican cities (Mérida, Umán and Tulum) in Yucatán, 
7.8% of 95 cats were positive by ELISA and Western blot, 
using excreted superoxide dismutase as antigen [122]. 
Interestingly, no infection was observed in other studies 
conducted in distinct parts of Mexico [32, 38, 39].

A study conducted in Paraná (Brazil) showed 30.8% of 
679 cats had anti-T. cruzi antibodies detectable by IFAT 
and 23.6% by ELISA. Only 7.6% of the cats were simul-
taneously positive to both tests, showing a large discrep-
ancy between these methods [123]. Recent studies in 
the US revealed 7.3–11.4% of the cats were seropositive 
in South Texas [12] and Louisiana [124], respectively. 
Among studies that investigated T. cruzi infections in 
cats, the highest prevalence was reported in Trinidad and 
Mercedes, two rural villages in the province of Santiago 
del Estero, Argentina [17]. The authors found an overall 
seroprevalence of 39–40% in cats at baseline and 1 year 
later, respectively. Seroprevalence was found to increase 
with age but was not with sex [17].

Diagnostic methods
In endemic areas, the presence of the above-mentioned 
clinical signs and clinicopathological abnormalities can 
lead veterinarians to suspect CD in dogs and cats. In the 
acute phase, parasitological (e.g., fresh or stained blood 
preparations, hemoculture and xenodiagnosis) [26] or 
molecular methods [125] may be useful to confirm the 
infection (Fig.  7). In addition, molecular methods may 
be useful for monitoring parasitemia during drug treat-
ment of CD in dogs [126]. However, parasitemia in dogs 
and cats is generally low and intermittent in the chronic 
phase [106], which reduces the sensitivity of parasito-
logical and molecular methods. On the other hand, dur-
ing the chronic phase, anti-T. cruzi antibody production 
reaches detectable titers and can be identified by indirect 
immunoassays. In dogs, serum immunoglobulin M (IgM) 
begins to decrease markedly about 3 months after infec-
tion, whereas the opposite is true for immunoglobulin G 
(IgG), which increases up to 15 months and then gradu-
ally decreases up to 2 years and then appears to stabilize 
over the years [127].

Table 1 summarizes serological methods and antigens 
previously used in studies involving dogs and cats. Some 
of the tests described were manufactured for the diagno-
sis of CD in humans, but they have been adapted for dogs 
and cats. One of the major drawbacks of this adapta-
tion is the lack of phase 1 and phase 2 studies to validate 
the method in dogs and cats, so the results may not be 
reproducible. For example, Zecca et  al. (2020) used two 
immunochromatographic tests developed for humans—
Chagas Stat-Pak (Chembio Diagnostic Systems, Inc., 
Medford, NY) and Chagas Detect Plus Rapid Test (InBios 
International, Inc., Seattle, WA)—to detect anti-T. cruzi 
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antibodies in cats. Although both tests use protein A to 
detect IgG antibodies, there are no studies validating 
their use in cats.

Whole-cell homogenates or fractionated lysates of T. 
cruzi epimastigotes have traditionally been used as com-
plex antigen mixtures to detect anti-T. cruzi antibodies. 
Although these combinations have been shown to pro-
vide sufficient sensitivity to detect even low antibody lev-
els [128], difficulties in standardization, cross-reactivity 
and specificity issues have hindered their use in humans 
[129–132]. This is especially true for IFAT and ELISA 
results used to diagnosis CD in humans and other spe-
cies, which may vary depending on the circulating T. 
cruzi strain in the study area and the epimastigote strain 
used in the tests [65, 133, 134]. Another drawback is the 
use of different epimastigote strains in IFAT because 
T. cruzi has a high antigenic variation that can lead to 

false-negative or false-positive results [65], depending on 
the geographic region.

In the last 2 decades, advances in DNA recombination 
technology have enabled the use of recombinant pro-
teins in immunoassays (primarily ELISA and chemilumi-
nescence assays), as large quantities of purified antigens 
can be produced in transformed prokaryotic cells grown 
in bioreactors [135]. Approximately 25% of the proteins 
expressed by T. cruzi contain tandem repeat amino acid 
sequences consisting of 5–68 amino acids [136–139]. 
This improved recognition by antibodies compared to 
proteins that lack repeated sequences [130, 140, 141] 
and improved the performance of immunoassays com-
pared to cell extracts or whole epimastigotes [136, 142]. 
Indeed, sera from infected humans often contain high 
titers of antibodies against these repeated sequences 
[143–145]. However, it has been observed that assays 

Fig. 7  Schematic representation of the natural history of Trypanosoma cruzi infection in dogs. *In the acute phase, most infected animals are 
asymptomatic, but when symptomatic, they may present the described clinical signs
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Table 1  Serological tests and antigens used in studies with dogs and cats

Method Antigen or manufacturer Performance 
assessment?

Sample and sample size References

EIA Whole lysate extracted from epimastigotes of Colombian T. cruzi strains Cas-15 and 
Gal-61

No Serum
D (n = 251)

[178]

IFAT Complete epimastigotes of Colombian T. cruzi strains Cas-15 and Gal-61

IHA Chagastest HAI test (Wiener Laboratories Rosario, Argentina)

EIA TSSApep lineage-specifc No Serum
D (n = 85)
C (n = 19)
A (n = 7)

[179]

RDT Chagas Sero K-SeT RDT

EIA Laboratorio-Lemos SRL, Buenos Aires, Argentina No Serum
D (n = 291)

[32]

IHA Polychaco, Laboratorio-Lemos SRL, Buenos Aires, Argentina

IFAT According to [180]—(Tulahuén strain) No Serum
D (n = 54)

[47]

EIA ELISA of Biozima kit (Polychaco)

IHA Hemacruzi (BioMerieux)

IFAT According to [180]—(Tulahuén strain) No Serum
D (n = 182)

[181]

IHA Polychaco S.A.I.C, Buenos Aires, Argentina

EIA Homogenate of the flagellar fraction of T. cruzi

IFAT Complete epimastigotes of F90 and Y88 strains No Serum
D (n = 330)

[65]

EIA Chimeric recombinant proteins IBMP

RDT InBios Stat-Pak rapid test No Serum
C (n = 284)

[124]

EIA T. cruzi parasite lysate from strain WB1

RDT Trypanosoma Detect2 MRA Rapid Test. Inbios International Ltd., Washington, USA No Serum
D (n = 67)

[85]

EIA Whole lysate extracted from epimastigotes of NC-9 strain No Serum
D (n = 2)

[182]

IFAT Complete epimastigotes of NC-9 strain

IFAT Complete epimastigotes of Panamanian Burunga strain No Serum
D (n = 99)

[92]

EIA ELISA Chagastest. Wiener Lab., Argentina modified with whole lysate extracted from 
epimastigotes of Panamanian Burunga strain

EIA Iron superoxide dismutase—FeSODe No Serum
D (n = 303)

[41]

WB Iron superoxide dismutase—FeSODe

IFAT According to [180] Yes Serum
D (n = 481)

[183]

IHA Polychaco SAIC, Buenos Aires, Argentina

CFT According to [184]

DAT Polychaco SAIC, Buenos Aires, Argentina

IHA Polychaco, Buenos Aires, Argentina No Serum
D (n = 86)
C (n = 38)

[17]

EIA Homogenate of the flagellar fraction of T. cruzi

IFAT According to [180]—(Tulahuén strain)

RDT Trypanosoma Detect, Inbios, Washington, USA Yes Serum
D (n = 199)
C (n = 57)

[185]

IHA Polychaco, Buenos Aires, Argentina

EIA ELISA A: anti-IgG-HRP; Santa Cruz Biotechnology, Santa Cruz, CA
ELISA B: using recombinant trans-Sialidase as antigen

IFAT Fluorescein-conjugated anti-gammaglobulin LID; Laboratorio Inmunodiagnóstico, 
Buenos Aires, Argentina

WB TESA-blotting, BioMerieux based on strain Y No Serum
D (n = 111)

[83]

RDT Chagas StatPak® Assay, Chembio, USA No Serum
D (n = 153)

[86]

EIA Total proteins from Querétaro strain of T. cruzi No Serum
D (n = 209)

[42]

WB Total proteins from Querétaro strain of T. cruzi

IFAT Complete epimastigotes of Colombian T. cruzi strains I00/BR/00F (TcI) and MHOM/
BR/1957/Y (TcII)

No Serum
D (n = 62)
WM (n = 36)

[64]

EIA ELISA, Bio-Manguinhos, Rio de Janeiro, Brazil
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using recombinant proteins can also lead to false-nega-
tive results [130]. The high genetic variability of the para-
site may be responsible for these results, as the tandem 
repeat amino acid sequences contain a limited repertoire 
of antigenic determinants that are not expressed or only 
partially expressed in some T. cruzi strains [146]. To over-
come this limitation, several studies have described the 
combined use of two or more recombinant proteins in a 
single assay to increase sensitivity without losing specific-
ity [147–151]. In theory, this strategy could compromise 
assay performance due to imbalanced binding of these 
epitopes to the solid surface, competition for binding and 
spatial distribution of epitopes in the solid phase. How-
ever, immunoassays containing a mixture of fusion pro-
teins showed good performance [136]. More recently, an 
array of different antigens printed in each well of 96-well 
plates has been shown potentially useful for the diagnosis 
of human chronic CD [152].

In recent years, synthetic chimeric recombinant anti-
gens consisting of conserved repetitive amino acid frag-
ments of different antigenic T. cruzi proteins have been 
proposed to improve the accuracy of immunoassays for 
the diagnosis of human CD [130, 136, 153]. In 1999, a 
study investigated the diagnostic potential of a branched 
synthetic peptide (2/D/E/Lo1.2) and a linear recombi-
nant peptide (r2/D/E/Lo1.2). The results showed that 
both antigens increased the reactivity of weakly reactive 
sera [137]. High diagnostic performance was obtained 
in a study examining antigens CP1, CP2 or a mixture 
between them. CP1 contains repetitive fragments of 

flagellar repetitive antigen (FRA) and shed acute phase 
antigen (SAPA), whereas CP2 consists of amino acid 
sequences of three antigens: FRA, SAPA and B13 [136]. 
The discriminative ability values obtained for CP1 and 
CP2 were 25% and 52% higher, respectively, than those 
of their individual antigen mixtures. CP2 was the only 
antigen that showed higher discriminative capability 
between T. cruzi-positive and -negative samples com-
pared to the homogenate of the whole parasite [136]. 
Similar results were obtained with a chimeric antigen 
designated TcBCDE, a 24-kDa fusion protein composed 
of repetitive sequences of nine T. cruzi proteins (MAP, 
JL8, CRA, B13, TcD, TcE and SAPA). This antigen was 
evaluated and proven to be highly sensitive for the diag-
nosis of human CD [154]. A chimeric protein called CP3, 
composed of the antigenic determinants microtubule-
associated protein (MAP), TcD and trypomastigote small 
surface antigen (TSSA)-II/V/VI, was 100% sensitive and 
90.5% specific [155]. These results not only demonstrate 
that chimeric recombinant proteins are highly accurate in 
the diagnosis of chronic CD, but also that they are able 
to detect anti-T. cruzi antibodies regardless of parasite 
strain or gene expression intensity. In addition, these 
findings support the utility of performing immunochemi-
cal assays with hybrid, chimeric single-molecule antigens 
rather than peptide mixtures or recombinant proteins.

Recently, four chimeric recombinant T. cruzi antigens 
have been proposed for the diagnosis of chronic CD in 
humans: IBMP-8.1, IBMP-8.2, IBMP-8.3 and IBMP-8.4 
(IBMP is the Portuguese acronym for Biology Molecular 

Table 1  (continued)

Method Antigen or manufacturer Performance 
assessment?

Sample and sample size References

EIA Plates of Chagas III ELISA kit (Grupo Bios®) and monoclonal secondary antibody goat 
anti-dog IgG-HRP: sc-2433 (Santa Cruz Biotechnology, INC)

No Serum
D (n = 356)

[48]

IFAT N.I.H.—Colombia

RDT Chagas Sero K-SeT (TSSA peptide epitope specific to TcII/V/VI) Yes D (n = 57) [172]

RIPA Tulahuén strain epimastigote lysate No Serum
D (n = 301)

[57]

RDT Chagas Stat-Pak (Chembio, Medford, NY, USA) No Serum
D (n = 540)

[56]

EIA Whole parasite lysate from a local strain WB1

WB Whole parasite lysate from a local strain WB1

RDT Chagas Stat-Pak (Chembio, Medford, NY, USA)
Chagas Detect Plus Rapid Test (InBios International, Inc., WA, USA)

No Serum
C (n = 167)

[12]

IFAT Texas Veterinary Medical Diagnostic Laboratory (TVMDL, College Station, TX)

EIA Recombinant proteins PGR31-His, PGR30-His and PGR24-His No Serum
D (n = 333)

[93]

MABA Recombinant proteins PGR31-His, PGR30-His and PGR24-His

EIA Modified Gold ELISA Chagas commercial test Chimeric recombinant proteins IBMP No Serum
Dogs (n = 40)

[69]

A (armadillos), C (cats), CFT (complement fixation test), D (dogs), DAT (direct agglutination test), IBT (immunoblot test), IFAT (immunofluorescence antibody test), 
MABA (microplate alamar blue assay), RDT (rapid diagnostic test/immunochromatography), WB (Western blot), WM (wild mammals) TSSA (mucin trypomastigote small 
surface antigen)
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Instituto of Paraná, where the antigens were expressed 
and purified). The diagnostic potential of these proteins 
for the detection of CD in humans has been extensively 
studied, using different diagnostic methods and platforms 
such as indirect ELISA [129, 156–161], liquid microarray 
[162], lateral flow assay [163], double-antigen sandwich 
ELISA [164], Western blot (unpublished data) and immu-
nosensor [165]. IBMP antigens are composed of different 
epitopes of several T. cruzi proteins, as described in Fig. 8 
[156, 159, 166]. In general, this diversity of antigenic 
determinants is responsible for their high reactivity to 
anti-T. cruzi antibodies.

The ability of IBMP antigens to discriminate T. cruzi-
positive from -negative human samples was evaluated, 
and the area (AUC) under the receiver-operator curve 
was determined for each molecule. The determination of 
AUC values is used as the global accuracy of immunoas-
says [129] and can be classified as low (51–61%), moder-
ate (62–81%), elevated (82–99%) or outstanding (100%) 
[167]. Accordingly, AUC values ranged from 98.4% to 
100% and from 97.8% to 99.7% when positive and nega-
tive samples were assayed with IBMP antigens using 
indirect ELISA and liquid microarray, respectively, as 
diagnostic platforms [129]. These results indicate that all 
four IBMP antigens have high discriminatory capability. 
Considering the high overall accuracy values, the IBMP 

antigens were used to participate in a phase II study with 
T. cruzi human positive and -negative samples from dif-
ferent geographic endemic regions of Brazil and other 
endemic countries using indirect ELISA [156–158] and 
liquid microarray [162]. Sensitivity, specificity and diag-
nostic odds ratio values were obtained that were higher 
than those obtained with commercial tests [156–158, 
162, 168]. Cross-reactivity with Leishmania spp. was 
extremely low in patients with American cutaneous 
and visceral leishmaniasis [160]. In light of the negligi-
ble cross-reactivity, the authors recommend the use of 
IBMP antigens in regions where T. cruzi and Leishmania 
spp. are co-endemic [160]. In 2020, Silva et al. [163] pro-
posed a lateral flow assay using IBMP-8.1 and IBMP-8.4 
chimeric antigens for the diagnosis of CD in humans. 
The study showed that the assay can correctly diagnose 
both T. cruzi-positive and -negative individuals regard-
less of geographic origin or clinical presentation. AUC 
values were 100%, demonstrating an outstanding diag-
nostic accuracy. The study showed that the lateral flow 
assay based on these antigens is a promising method for 
screening CD [163]. In 2020, this device was licensed by 
the Brazilian Health Regulatory Agency to form the port-
folio of diagnostic products of the Brazilian Ministry of 
Health for use in the Unified Health System: the TR-Cha-
gas Bio-Manguinhos (Oswaldo Cruz Foundation, Rio de 

Fig. 8  Constitution of the IBMP chimeric recombinant proteins [156, 159, 166]
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Janeiro, RJ, Brazil) [169]. Recently, all four IBMP antigens 
have shown promising results in a phase 3 study with 
more than 5000 samples from a Brazilian blood bank, 
especially the IBMP-8.3 and IBMP-8.4 antigens [161].

With the exception of IBMP antigens, all chimeric 
recombinant proteins discussed here (CP1, CP2, CP3, 
2/D/E/Lo1.2, r2/D/E/Lo1.2, TcBCDE) have been evalu-
ated only for human diagnostics. As mentioned previ-
ously, there are no commercial tests for the diagnosis 
of CD in dogs and cats. In 2019, a phase I study inves-
tigated the diagnostic performance of IBMP antigens in 
dogs [170]. AUC values ranged from 91–100%, demon-
strating good diagnostic performance of these molecules 
also for the diagnosis of CD in dogs. Cordeiro et al. [165] 
reached the same conclusion by showing that IBMP-8.1 
reached a maximum AUC value for both human and 
canine samples using an impedimetric immunosensor for 
rapid detection of anti-T. cruzi antibodies. Recently, two 
recombinant T. cruzi proteins (IBMP-8.1 and IBMP-8.4) 
were tested as diagnostic platforms using a rapid immu-
nochromatographic assay (TR Chagas, Bio-Manguinhos, 
Rio de Janeiro, Brazil) [171]. Recombinant antigens were 
formatted in a rapid immunochromatographic assay 
using either Staphylococcus aureus protein A or Strep-
tococcus pyogenes protein G as gold-labeled reagents to 
visualize the precipitin band formed between immuno-
globulin (Ig) G-specific antibodies and the recombinant 
antigen immobilized on the nitrocellulose strip used in 
the assay. Protein A and protein G were based on the 
fact that these microbial molecules bind with different 
affinity and specificity to immunoglobulins of differ-
ent species, including dogs. The authors found that the 
intensity pattern of the bands was directly proportional 
to the serological titer in IFAT. The sensitivity was 94% 
and the specificity was 91%. The agreement obtained was 
considered substantial by kappa analysis (84%). Of the T. 
cruzi-positive hemoculture samples, 88.9% were positive 
with TR-Chagas Bio-Manguinhos. The assay was efficient 
in detecting infections with five of the six T. cruzi discrete 
typing units (DTU; TcI, n = 8; TcII, n = 1; TcI/TcII, n = 2; 
TcIII, n = 2; TcIV, n = 1; TcIII/TcV, n = 6). Cross-reactions 
were not observed in infections with Leishmania infan-
tum, Trypanosoma rangeli, Trypanosoma caninum and 
Dirofilaria immitis, but were observed in sera from dogs 
infected with Crithidia mellificae, Anaplasma spp. and 
Erlichia spp. However, the authors used a convenient 
serum panel for cross-reactivity analysis, many of which 
had only a single sample per disease. Therefore, further 
studies should be conducted to confirm or refute these 
results. This test provides rapid preventive measures in 
areas at high risk for Chagas disease occurrence in a safe, 
reliable, cost-effective and immediate manner without 
the need for more complex laboratory testing. In 2020, 

the diagnostic performance of a rapid test based on try-
pomastigote small surface antigen (TSSA) was evaluated 
(namely Chagas Sero K-SeT). However, low sensitivity 
for the diagnosis of Chagas disease in dogs was observed 
(28%; 16/57), indicating the need for further studies to 
improve test performance [172].

Conclusion
Although the detection of anti-T. cruzi antibodies is 
possible in any mammalian species, serological tests 
may give discrepant results in different situations. 
This is mainly due to the high genetic and phenotypic 
intraspecific diversity of T. cruzi [173, 174], the selec-
tion of antigens used to sensitize the solid phase of 
immunoassays [133], the variable prevalence of the dis-
ease [175, 176] and the variable immune responses in 
T. cruzi-infected individuals [177]. The development 
of commercial diagnostic tools to detect past expo-
sure to T. cruzi in dogs and cats would be useful from 
both veterinary and public health perspectives. Such 
a test should be able to detect antibodies regardless of 
the geographical region and the circulating DTU, with 
high sensitivity, specificity and accuracy, as well as with 
low risk of cross-reactivity (especially with Leishmania 
spp.). Furthermore, the test should be rapid (rapid diag-
nostic test), inexpensive and easy-to-use under field 
conditions (point-of-care test). Data show that the chi-
meric recombinant antigens combine all the necessary 
characteristics for a test with good applicability for epi-
demiological surveillance in veterinary clinical practice 
and in animal blood centers.
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